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ABSTRACT 

Power transformers are critical components of electrical power systems, and their 

failure can lead to severe operational disruptions, financial losses, and safety hazards. 

Traditional transformer fault diagnosis techniques, such as dissolved gas analysis (DGA), 

partial discharge (PD) monitoring, and frequency response analysis (FRA), rely heavily 

on expert knowledge and rule-based frameworks, making them prone to inaccuracies 

and inconsistencies. Recent advancements in artificial intelligence (AI) and machine 

learning (ML) have introduced data-driven methodologies that enhance fault 

detection, classification, and predictive maintenance by automating feature 

extraction and improving diagnostic accuracy. This systematic review, based on the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines, evaluates 107 peer-reviewed studies published between 2010 and 2024, 

assessing the role of AI and ML in transformer fault diagnosis. The findings highlight that 

deep learning models, particularly convolutional neural networks (CNNs) and long 

short-term memory (LSTM) networks, achieve superior fault classification accuracy 

compared to conventional methods, with some models surpassing 95% accuracy in 

real-world applications. Hybrid AI models, such as ANN-SVM combinations and 

reinforcement learning-based optimizations, further enhance diagnostic reliability by 

mitigating data inconsistencies and optimizing fault classification strategies. AI-driven 

predictive maintenance models demonstrate substantial improvements in transformer 

health monitoring by shifting from traditional time-based maintenance to condition-

based strategies, reducing unexpected failures by up to 40%. Additionally, multi-sensor 

integration techniques, including wireless sensor networks (WSNs) and IoT-enabled 

monitoring systems, enhance fault detection accuracy by fusing real-time data from 

different diagnostic modalities. However, the review also identifies challenges related 

to AI model interpretability, dataset limitations, and deployment scalability, which need 

to be addressed for broader industrial adoption. Overall, this study underscores the 

transformative role of AI in improving transformer fault detection, classification, and 

predictive analytics, paving the way for more efficient and automated power grid 

management. 
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INTRODUCTION 

Power transformers play a crucial role in the reliability and efficiency of electrical power systems by 

facilitating voltage regulation and distribution across vast networks (Sun et al., 2012) Given their 

importance, the failure of transformers can result in significant economic losses, operational 

disruptions, and safety hazards (Raza et al., 2020). Traditional transformer fault diagnosis relies on 

offline monitoring and periodic inspections, which may not provide real-time fault detection and 

predictive insights (Faria et al., 2015). Various fault detection techniques, such as dissolved gas 

analysis (DGA), partial discharge (PD) monitoring, and frequency response analysis (FRA), have been 

widely adopted, yet their efficiency largely depends on expert interpretation and empirical rule-

based frameworks (Heymann et al., 2024). The emergence of AI and machine learning has 

introduced data-driven methods capable of automatically identifying patterns, improving fault 

classification accuracy, and enhancing maintenance strategies (Ahmadi & Sanaye-Pasand, 2022). 

Moreover, Artificial Intelligence (AI) and Machine Learning (ML) techniques have transformed 

transformer fault diagnosis by leveraging large datasets, extracting key fault features, and facilitating 

early fault detection (Velásquez & Lara, 2020). Among the widely employed AI-based models, 

artificial neural networks (ANNs) have been extensively used for fault pattern recognition and 

classification due to their ability to learn complex nonlinear relationships (Kherif et al., 2021). Support 

vector machines (SVMs) and decision tree algorithms have also demonstrated strong performance 

in diagnosing specific types of transformer faults (Ashkezari et al., 2013). Deep learning techniques, 

particularly convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, 

have been utilized to enhance diagnostic accuracy by processing time-series sensor data and 

extracting hierarchical features (Koroglu & Demircali, 2016). These AI-based approaches have been 

successfully applied to real-time monitoring systems, reducing dependence on manual inspections 

(Zheng et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Transformer fault diagnosis method based on SMOTE and NGO-GBDT 

Source: Wang. et al. (2024) 
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Dissolved gas analysis (DGA) remains one of the most widely used methods for transformer fault 

diagnosis, with AI-driven enhancements improving its diagnostic precision (Singh & Bandyopadhyay, 

2010). Conventional DGA interpretation techniques, such as the Duval Triangle, Key Gas Method, 

and Roger’s Ratio, often yield inconsistent results due to overlapping fault signatures (Jiang et al., 

2020). AI and ML models have been employed to address these inconsistencies by automatically 

identifying gas concentration patterns and classifying faults more accurately (Dladla & Thango, 

2025). Hybrid AI approaches that combine multiple classifiers, such as ANN-SVM and fuzzy logic-ANN, 

have been particularly effective in reducing false diagnoses and improving fault prediction rates 

(Zhang et al., 2019). The adoption of reinforcement learning-based optimization techniques has 

further refined DGA-based fault classification, leading to better decision-making in maintenance 

planning (Sahri et al., 2014). Moreover, Partial discharge (PD) detection is another crucial aspect of 

transformer fault diagnosis, with AI-driven techniques significantly improving its effectiveness 

(Poonnoy et al., 2020). Traditional PD detection methods, including acoustic emission (AE) and ultra-

high-frequency (UHF) sensing, often struggle with noise interference and require complex signal 

processing (Prasojo et al., 2020). AI-based signal processing methods, such as wavelet transform 

coupled with deep learning models, have demonstrated superior capability in isolating fault-related 

PD signals and classifying discharge types with higher precision (Wang et al., 2021). Additionally, 

hybrid AI models that integrate feature extraction techniques with probabilistic models, such as 

Bayesian networks, have proven beneficial in reducing uncertainty in PD fault classification (Illias et 

al., 2020). Machine learning techniques have also been applied to frequency response analysis (FRA) 

for identifying mechanical deformations and winding displacements in transformers (Rao et al., 

2021). Traditional FRA-based methods require extensive expertise to interpret variations in 

impedance spectra, which can be subjective and error-prone (Illias & Liang, 2018). AI-based 

approaches, including random forests and ensemble learning methods, have significantly improved 

the interpretability and automation of FRA-based diagnostics (Abu-Siada, 2019). The use of deep 

autoencoders for feature extraction has further enhanced the accuracy of mechanical fault 

identification by reducing the dimensionality of spectral data and improving classification 

performance (Enwen et al., 2018). Such advancements have contributed to the shift towards data-

driven transformer health assessment models (Misbahulmunir et al., 2020). 

 
Figure 2: Transformer Health Check: DGA Technologies 

 

 
Source: insulect.com (2024) 

 

The growing implementation of AI and ML in transformer fault diagnosis has resulted in improved fault 

detection accuracy, reduced false positives, and enhanced decision-making in maintenance 

planning (Taha et al., 2015). AI-powered condition monitoring systems integrate multiple sensor data 

sources, such as infrared thermography, vibration analysis, and oil contamination monitoring, to 
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provide a holistic assessment of transformer health (Ghoneim et al., 2016). By leveraging AI algorithms 

to analyze large-scale transformer data, utilities can optimize predictive maintenance strategies and 

minimize downtime (Liu et al., 2015). These AI-driven advancements in transformer diagnostics 

contribute to increased grid reliability and cost-effective asset management (Yang & Hu, 2013).This 

systematic review establishes three primary objectives to advance understanding of AI/ML 

applications in transformer fault diagnosis. First, it evaluates the comparative effectiveness of neural 

networks , support vector machines , and deep learning architectures in improving fault classification 

accuracy beyond conventional DGA methods. Second, it assesses methodological innovations in 

hybrid frameworks, such as genetic algorithm-SVM integrations and multi-modal data fusion 

approaches , which address limitations in single-source diagnostic systems. Third, the analysis critically 

examines technical challenges related to data quality, including solutions like TPE-XGBoost 

optimization  and denoising autoencoders , which enhance model robustness against incomplete 

or noisy datasets. Fourth, it explores feature selection strategies  and computational efficiency 

improvements through ensemble methods  that enable real-time monitoring capabilities. Finally, the 

review investigates the trade-offs between algorithmic interpretability and diagnostic precision, 

comparing deep learning models  with explainable alternatives like decision tree variants  across 20 

experimental studies spanning hardware-in-loop tests  and field implementations. 

LITERATURE REVIEW 

Transformer fault diagnosis has evolved significantly with the integration of artificial intelligence (AI) 

and machine learning (ML) techniques, addressing limitations in traditional diagnostic methods. 

Conventional approaches such as dissolved gas analysis (DGA), partial discharge (PD) detection, 

and frequency response analysis (FRA) have long been used for monitoring transformer health, but 

their effectiveness is often constrained by human interpretation, noise interference, and diagnostic 

inconsistencies (Liu et al., 2015). AI and ML models offer a data-driven alternative, enhancing fault 

detection accuracy, automating classification, and improving predictive maintenance (Illias & 

Liang, 2018). Existing literature has explored various AI methodologies, including artificial neural 

networks (ANNs), support vector machines (SVMs), deep learning architectures, and hybrid models 

that integrate multiple diagnostic techniques (Dladla & Thango, 2025). This section provides a 

systematic synthesis of past research, categorizing AI-based transformer fault diagnosis techniques 

and evaluating their effectiveness. The literature review is structured into key areas, including 

traditional diagnostic techniques, AI and ML applications, deep learning advancements, hybrid AI 

models, and key challenges in AI-driven diagnostics. 

Dissolved Gas Analysis (DGA)  

Dissolved Gas Analysis (DGA) is a widely used diagnostic tool for detecting transformer faults based 

on the composition of gases dissolved in the insulating oil (Zhang et al., 2019). Transformers under 

abnormal operating conditions generate various gases due to thermal and electrical stress, including 

methane (CH₄), ethylene (C₂H₄), ethane (C₂H₆), and hydrogen (H₂), each of which correlates with 

specific fault types (Poonnoy et al., 2020). Conventional DGA techniques rely on established 

interpretation methods such as the Duval Triangle, Key Gas Method, and Roger’s Ratio to classify 

faults, including overheating, partial discharge, and arcing (Wang et al., 2021). However, these rule-

based approaches suffer from overlapping fault categories and subjective decision-making, which 

limit their diagnostic precision (Illias & Liang, 2018). Several studies have demonstrated inconsistencies 

in traditional DGA analysis, as different methods sometimes yield contradictory results (Enwen et al., 

2018). Moreover, manual interpretation of gas ratios can lead to errors, especially when multiple 

faults coexist (Misbahulmunir et al., 2020). To overcome these challenges, researchers have explored 

the integration of AI and machine learning techniques to enhance DGA-based transformer fault 

detection (Taha et al., 2015). 
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Figure 3: Test setup for PD-stressing and dissolved gas analysis 

 

  Source: Aragón-Patil et al.. (2007) 

 

Despite its effectiveness, conventional DGA interpretation methods have several limitations, primarily 

related to rigid threshold values and lack of adaptability to complex transformer operating 

conditions (Ghoneim et al., 2016). The Duval Triangle method, which is based on a graphical 

classification of gas concentrations, is often criticized for its inability to detect mixed-mode faults (Liu 

et al., 2015). Similarly, the Key Gas Method depends on predefined gas concentration thresholds, 

making it less effective for diagnosing evolving faults with gradual gas accumulation (Abu-Siada, 

2019). Roger’s Ratio, another widely used approach, often fails to classify minor fault conditions 

accurately due to variations in gas decomposition rates (Enwen et al., 2018). Additionally, these rule-

based techniques do not consider historical trends in gas evolution, reducing their predictive 

capability (Jiang et al., 2018). Studies by Taha et al. (2015) and Ghoneim et al. (2016) indicate that 

statistical inconsistencies in traditional DGA methods often result in misclassification of incipient faults, 

leading to either false alarms or undetected failures. Consequently, researchers have turned to AI-

driven approaches to overcome the subjectivity and limitations inherent in conventional DGA 

interpretation techniques (Liu et al., 2015). The integration of AI and machine learning in DGA fault 

classification has significantly improved diagnostic accuracy and fault prediction capabilities (Yang 

& Hu, 2013). Machine learning models such as artificial neural networks (ANNs), support vector 

machines (SVMs), and deep learning architectures have been successfully applied to classify 

transformer faults based on gas composition patterns (Ekojono et al., 2022). Hybrid AI techniques, 

such as ANN-SVM models, have demonstrated improved fault classification accuracy by combining 

the pattern recognition ability of neural networks with the decision boundary optimization of SVMs 
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(Suwarno et al., 2024). Moreover, deep learning models, particularly convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), have been utilized to process historical DGA data, 

enabling early fault detection and trend analysis (Illias & Liang, 2018). Fuzzy logic-based AI models 

have also been employed to enhance DGA interpretation, reducing diagnostic uncertainties and 

accommodating imprecise data (Wang et al., 2021). Reinforcement learning approaches have 

further optimized DGA-based predictive maintenance by dynamically adjusting fault classification 

parameters (Rao et al., 2021). Studies by Illias and Liang, (2018) and Enwen et al. (2018) suggest that 

AI-driven DGA models outperform traditional methods by providing real-time, adaptive fault 

diagnosis, thus enhancing transformer reliability and operational efficiency. 

Partial Discharge (PD) Detection Methods 

Partial discharge (PD) is a critical indicator of insulation degradation in power transformers, and its 

timely detection is essential for preventing catastrophic failures (Harbaji et al., 2015). Conventional 

PD detection methods primarily rely on acoustic emission (AE) and ultra-high frequency (UHF) sensing 

techniques to capture PD activity (Lu et al., 2020). AE-based PD detection involves measuring 

transient pressure waves generated by electrical discharges within the insulation medium, while UHF 

sensing captures electromagnetic emissions associated with PD events (Do et al., 2020). These 

methods are widely used due to their high sensitivity and ability to detect PD activity in enclosed 

transformer structures (Wang et al., 2019). However, AE sensors are highly dependent on the 

placement location and require complex signal interpretation, making them susceptible to missed 

or misclassified PD events (Sun et al., 2021). Similarly, UHF-based detection faces challenges in 

isolating PD signals from external noise sources, particularly in high-voltage substations (Ward et al., 

2021). Recent studies have indicated that the effectiveness of AE and UHF techniques is often limited 

by their inability to differentiate between different PD types without additional signal processing 

methods (Harbaji et al., 2015). One of the primary challenges in PD signal analysis is the presence of 

noise interference, which complicates fault classification and reduces diagnostic accuracy (Lu et 

al., 2020). PD signals are often embedded within a noisy background caused by environmental 

disturbances, power system harmonics, and electromagnetic interference (Wang et al., 2019). In AE-

based detection, mechanical vibrations and external acoustic sources can obscure weak PD 

signals, leading to false positives or missed detections (Sun et al., 2021). Likewise, UHF-based PD 

monitoring is highly susceptible to interference from communication signals and transient electrical 

noise, which can distort PD waveform characteristics (Ward et al., 2021). Conventional signal 

processing techniques such as Fourier transform and wavelet analysis have been employed to filter 

noise and extract PD features, but these methods often struggle with dynamic noise environments 

(Harbaji et al., 2015). Ward et al. (2021)  and Sun et al. (2021) reported that even with advanced 

denoising algorithms, traditional PD analysis methods require significant human expertise and 

manual parameter tuning, which can introduce inconsistencies in fault detection. As a result, AI-

driven approaches have been increasingly explored to enhance the accuracy and robustness of 

PD detection systems (Ward et al., 2021). 

AI-based signal processing techniques have significantly improved PD detection by automating 

feature extraction, enhancing noise filtering, and optimizing fault classification (Kunicki & Wotzka, 

2019). Machine learning algorithms such as support vector machines (SVMs), artificial neural networks 

(ANNs), and decision trees have demonstrated superior PD classification performance compared to 

conventional threshold-based methods (Harbaji et al., 2015). Deep learning models, particularly 

convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, have been 

employed to analyze PD signal patterns in real-time, reducing the impact of noise interference and 

improving detection accuracy (Lu et al., 2020). Fuzzy logic and hybrid AI models have also been 

integrated with traditional PD detection techniques to enhance adaptability in varying operating 

conditions (Do et al., 2020). Moreover, reinforcement learning-based optimization techniques have 

been used to dynamically adjust PD detection parameters, further improving diagnostic reliability 

(Wang et al., 2019). Studies by Sun et al. (2021) and Ward et al. (2021) indicate that AI-driven PD 

detection methods not only improve fault classification accuracy but also reduce the dependency 

on manual expertise, making them highly effective for large-scale transformer monitoring 

applications. 
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Figure 4: Visual Representation of Power Transformer Faults Using Color-Coded HTML & CSS Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency Response Analysis (FRA)  

Frequency Response Analysis (FRA) is widely recognized as an effective diagnostic technique for 

detecting mechanical deformations and winding displacements in power transformers (Shintemirov 

et al., 2010). FRA operates by injecting a range of frequency signals into the transformer winding and 

analyzing the corresponding output response to detect deviations from the expected frequency 

spectrum (Zhao et al., 2017). Mechanical deformations caused by aging, short circuits, or 

transportation stress alter the inductive and capacitive characteristics of the transformer, resulting in 

detectable changes in the FRA signature (Zhao et al., 2017). Traditional electrical testing methods, 

such as insulation resistance and winding resistance measurements, often fail to detect minor 

displacements or localized faults, whereas FRA can provide highly sensitive diagnostic insights into 

internal mechanical integrity (Shintemirov et al., 2010). Several studies have confirmed the superiority 

of FRA in identifying mechanical defects compared to other non-invasive diagnostic techniques 

(Huang et al., 2018). However, the effectiveness of FRA heavily depends on expert interpretation of 

frequency response signatures, which poses challenges in standardization and repeatability across 

different transformer designs (Du et al., 2024).One of the primary challenges in FRA-based fault 

diagnosis is the complexity and subjectivity involved in manual interpretation (Han et al., 2022). The 

FRA signature varies depending on transformer design, core configuration, and winding topology, 

making it difficult to establish universal fault classification criteria (Zhong et al., 2023). Experts must 

compare measured FRA curves against historical or baseline data to identify abnormalities, but this 

approach is prone to inconsistencies due to differences in test conditions and transformer aging 

effects (Tao et al., 2021). Additionally, environmental factors such as temperature fluctuations and 

electrical noise can introduce variations in FRA measurements, further complicating manual analysis 

(El-Hasnony et al., 2020). Conventional statistical and graphical methods, such as magnitude and 

phase shift comparisons, require significant experience and may lead to misinterpretation of subtle 

defects (Jin et al., 2023). Studies by Zhang et al. (2020) and Rokani et al. (2023) indicate that manual 

FRA evaluation is time-consuming and lacks automation, which limits its scalability for real-time 
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transformer monitoring in large power grids. The inherent 

subjectivity in manual FRA interpretation has prompted 

researchers to explore AI-driven solutions for automating 

fault classification and improving diagnostic consistency 

(Li et al., 2023). 

AI-driven automation has significantly enhanced FRA-

based transformer fault classification by enabling pattern 

recognition, anomaly detection, and predictive 

diagnostics (Lu et al., 2023). Machine learning algorithms 

such as support vector machines (SVMs), artificial neural 

networks (ANNs), and decision trees have been 

successfully applied to FRA data, reducing the reliance on 

expert interpretation and improving classification 

accuracy (Zhong et al., 2023). Deep learning techniques, 

particularly convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), have demonstrated 

strong performance in analyzing complex FRA patterns 

and detecting subtle variations in winding displacements 

(Pei et al., 2021). Hybrid AI models, which combine multiple 

classifiers and feature extraction techniques, have further 

improved fault detection by minimizing false positives and 

enhancing robustness against noise (Ibrahim et al., 2016). 

Additionally, reinforcement learning-based optimization 

methods have been used to refine FRA analysis by 

dynamically adjusting classification parameters (Ward et 

al., 2021). Studies by Fan et al. (2021) and Guan et al. 

(2023) suggest that AI-driven FRA diagnostics not only 

enhance accuracy and reliability but also provide 

scalable and automated solutions for transformer health 

monitoring, making them highly beneficial for power 

utilities and grid operators. 

Artificial Neural Networks (ANNs) for Fault Classification 

Artificial Neural Networks (ANNs) have been widely 

employed in transformer fault diagnosis due to their ability 

to model complex nonlinear relationships between input 

data and fault conditions (Aklima et al., 2022; Xu et al., 

2022). ANNs consist of multiple interconnected layers of 

artificial neurons that process large-scale diagnostic data 

and extract key features to classify faults with high 

accuracy (Bakkar et al., 2022; Shahan et al., 2023). 

Common ANN architectures used in transformer fault 

detection include feedforward neural networks (FNNs), 

convolutional neural networks (CNNs), and recurrent 

neural networks (RNNs), each suited for specific diagnostic 

tasks (Guerbas et al., 2024; Tonoy & Khan, 2023). 

Feedforward ANNs are particularly effective in identifying 

static fault patterns based on dissolved gas analysis (DGA) 

and frequency response analysis (FRA) data (Humaun et 

al., 2022; Rokani et al., 2023). CNNs have been applied for 

fault classification using time-series data, enhancing 

feature extraction and improving noise robustness in 

diagnostic signals (Alam et al., 2023; Schøler et al., 2023). 

RNNs, especially long short-term memory (LSTM) networks, have been integrated into transformer 

health monitoring systems to detect temporal fault progression and predict insulation degradation 

Figure 5: Frequency Response 

Analysis (FRA) 
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trends (Rokani et al., 2023; Tonoy, 2022). Studies have demonstrated that ANN-based models 

outperform traditional rule-based fault classification techniques, offering improved accuracy and 

adaptability to different transformer operating conditions (Mahfuj et al., 2022; Xu et al., 2022). 

 

Figure 6: Artificial Neural Networks in Transformer Fault Classification 

 

Supervised learning approaches have played a crucial role in training ANN models for transformer 

fault diagnosis, leveraging labeled datasets to learn fault classification patterns (Barbosa et al., 2012; 

Jahan, 2023). Supervised learning-based ANN models require historical transformer fault data, where 

input parameters such as gas concentration levels, vibration signals, and frequency response 

characteristics are mapped to corresponding fault categories (Islam et al., 2018; Roksana, 2023). 

Backpropagation-based training algorithms have been widely used to optimize ANN performance 

by adjusting network weights to minimize classification errors (Bakkar et al., 2022; Bhuiyan et al., 2024). 

ANN-based supervised learning has been applied to various diagnostic methods, including partial 

discharge (PD) detection, where PD waveform features are analyzed to classify insulation defects 

(Alqudsi & El-Hag, 2018; Sohel et al., 2022). Hybrid supervised learning models that integrate ANNs 

with support vector machines (SVMs) and decision trees have demonstrated enhanced 

generalization capability and fault detection accuracy (Aciu et al., 2021; Hossen et al., 2023). 

However, challenges remain in obtaining high-quality labeled datasets for training ANN models, as 

transformer fault datasets are often imbalanced, leading to biased model predictions (Alqudsi & El-

Hag, 2017; Maniruzzaman et al., 2023). Researchers have addressed this issue by employing data 

augmentation techniques and transfer learning to improve ANN-based fault classification 

performance (Mohiul et al., 2022; Schmidhuber, 2014). 

The performance evaluation of ANN-based fault detection systems has been extensively studied, 

with metrics such as accuracy, precision, recall, and F1-score commonly used to assess classification 

effectiveness (Sun et al., 2021). Studies have shown that ANN models consistently achieve higher 

fault detection accuracy compared to traditional statistical and rule-based methods (Bhalla et al., 

2012). The integration of ensemble learning techniques, where multiple ANN models are combined 

to enhance robustness, has further improved diagnostic reliability in real-world transformer monitoring 

applications (Menezes et al., 2022). Deep learning variants of ANNs, such as deep belief networks 

(DBNs) and generative adversarial networks (GANs), have been utilized to refine fault classification 

by generating synthetic diagnostic data to augment training datasets (Hossain et al., 2024; 

Mahabub, Das, et al., 2024; Mahabub, Jahan, et al., 2024; Zhu et al., 2022). AI-driven interpretability 

methods, including SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-

Agnostic Explanations), have been applied to ANN-based transformer diagnostics to provide insights 

into model decision-making processes (Ghoneim et al., 2016). Studies by Fernandes et al. (2022) and 
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Athisayam and Kondal (2022) suggest that ANN-based transformer fault detection not only improves 

classification accuracy but also reduces dependency on expert knowledge, making it a valuable 

tool for automated power system maintenance. 

Support Vector Machines (SVMs)  

Support Vector Machines (SVMs) have been widely applied in transformer fault classification due to 

their ability to handle high-dimensional data and separate complex fault patterns effectively 

(Benmahamed et al., 2021). SVMs operate by constructing an optimal hyperplane that maximizes 

the margin between different fault categories, making them suitable for classifying transformer faults 

based on dissolved gas analysis (DGA), partial discharge (PD) signals, and frequency response 

analysis (FRA) data (Das et al., 2023). Researchers have demonstrated that SVMs achieve high 

classification accuracy in transformer fault diagnosis, particularly when combined with kernel 

functions that enhance nonlinear feature mapping (Lin et al., 2019). Various studies have applied 

SVMs to diagnose insulation failures, overheating faults, and mechanical deformations, showing their 

superiority over traditional rule-based diagnostic techniques (Hatata et al., 2022). Ashkezari et al. 

(2013) and Wang (2023) found that hybrid SVM models incorporating feature selection methods such 

as principal component analysis (PCA) and genetic algorithms improved fault classification 

performance by reducing computational complexity and eliminating irrelevant features. However, 

the effectiveness of SVMs depends on the appropriate selection of kernel functions and 

hyperparameter tuning, which can impact model generalization in transformer fault detection (Islam 

et al., 2018). 

Decision tree algorithms have 

also been widely employed in 

transformer fault pattern 

recognition due to their simplicity 

and interpretability 

(Benmahamed et al., 2017). 

Decision trees operate by 

recursively splitting the dataset 

into homogenous groups based 

on specific fault characteristics, 

making them useful for classifying 

transformer faults using DGA 

ratios, PD pulse patterns, and FRA 

signatures (Ashraf et al., 2022). 

Traditional decision tree models, 

such as ID3, C4.5, and CART, 

have been extensively applied in 

transformer diagnostics, with 

studies demonstrating their 

effectiveness in identifying fault 

types with moderate 

computational effort (Song et al., 

2023). Decision trees have been 

particularly successful in 

handling categorical transformer 

fault data, providing explicit rule-

based classification structures 

that facilitate expert validation (Wang & Zhang, 2017). However, a significant drawback of decision 

trees is their tendency to overfit training data, leading to poor generalization on unseen fault 

scenarios (Ghoneim & Taha, 2020). To address this issue, researchers have developed ensemble 

decision tree techniques, such as random forests and gradient boosting machines, which aggregate 

multiple tree-based models to improve diagnostic accuracy and reduce classification errors (Do et 

al., 2020). Zhang et al. (2020)reported that random forests demonstrated better robustness in 

Figure 7: Overview of Support Vector Machines (SVMs) 
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transformer fault classification than single decision tree models, particularly when applied to large 

transformer fault datasets. 

Comparative analyses between SVMs, decision trees, and artificial neural networks (ANNs) have 

revealed significant differences in classification accuracy, computational efficiency, and fault 

detection robustness (Mishra & Rout, 2017). Studies have consistently shown that ANNs outperform 

both SVMs and decision trees in handling large-scale transformer diagnostic datasets due to their 

deep feature extraction capabilities (Koroglu & Demircali, 2016). However, SVMs have been found 

to achieve comparable or superior accuracy to ANNs when working with smaller, well-structured 

datasets, particularly in DGA-based fault classification (Thango, 2022). Decision trees, while offering 

high interpretability, generally exhibit lower classification accuracy than SVMs and ANNs due to their 

susceptibility to overfitting and lack of generalization in complex transformer fault scenarios (Wei et 

al., 2014). Hybrid approaches that combine SVMs with ANNs or ensemble decision trees have been 

proposed to leverage the strengths of each method, improving overall classification performance 

(Jiejie et al., 2017). Kazemi et al. (2021) and Huang et al. (2011) suggest that selecting the appropriate 

machine learning model for transformer fault diagnosis depends on dataset characteristics, fault 

complexity, and the trade-off between accuracy, interpretability, and computational efficiency. 

Deep Learning Applications in Transformer Fault Detection 

Deep learning techniques have 

increasingly been applied to 

transformer fault diagnosis due to 

their ability to extract complex 

features, process large-scale 

diagnostic data, and enhance 

fault classification accuracy (Xiong 

et al., 2022). Among these, 

Convolutional Neural Networks 

(CNNs) have gained prominence 

for their capability to analyze fault-

related data, particularly in partial 

discharge (PD) and dissolved gas 

analysis (DGA) classification 

(Rezaeianjouybari & Shang, 2020). 

CNNs leverage spatial hierarchies 

of features and are widely used for 

PD signal classification, as they can 

identify intricate discharge patterns 

from raw waveforms without the 

need for extensive preprocessing 

(Schmidhuber, 2014). Several 

studies have demonstrated the 

effectiveness of CNNs in improving 

transformer fault classification by 

extracting fault-related spectral 

features and minimizing manual 

feature engineering efforts Akhtar 

et al. (2023). Qiu et al. (2023) and Bhuiyan et al. (2022)found that CNN models trained on PD datasets 

achieved superior fault detection accuracy compared to conventional machine learning methods. 

Additionally, image-based fault recognition using CNNs has been applied to transformer oil analysis 

and thermal imaging, allowing automated identification of insulation degradation and hot spots in 

transformer components (Tang et al., 2020). 

Long Short-Term Memory (LSTM) networks have emerged as powerful tools for time-series fault 

prediction in transformer health monitoring due to their ability to capture temporal dependencies 

(Matsuo et al., 2022). LSTMs are particularly useful in real-time transformer fault monitoring, where 

sensor data must be processed continuously to detect anomalies indicative of insulation breakdown, 

Figure 8: Deep Learning in Transformer Fault Detection 
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overheating, or mechanical failures (Afrasiabi et al., 2020). These networks have been employed to 

analyze long-term transformer performance trends, improving predictive maintenance strategies by 

forecasting potential failures based on historical operational data (Ma & Chu, 2019). Bacciu et al., 

(2020) applied LSTM models to DGA datasets, showing that recurrent architectures outperformed 

traditional statistical models in identifying transformer faults at early stages. Xing et al. (2023) further 

demonstrated that LSTM-based predictive maintenance models could reduce false positives by 

differentiating between normal variations and critical fault patterns. By integrating LSTM networks 

with other deep learning models, researchers have developed hybrid frameworks that enhance 

diagnostic robustness in transformer fault classification (Che et al., 2021). 

In addition to supervised deep learning methods, autoencoders have been widely adopted for 

unsupervised anomaly detection in transformer fault diagnosis (Mandal et al., 2020). Autoencoders, 

a type of neural network trained to reconstruct input data, are effective in identifying deviations 

from normal operational states, making them suitable for detecting early-stage transformer faults 

(Jiang et al., 2019). These models learn to encode normal fault-free transformer behavior, enabling 

them to flag anomalous conditions indicative of insulation failure, winding deformation, or oil 

contamination (Pan et al., 2018). Zhang et al. (2022) showed that deep autoencoder models applied 

to FRA data could successfully detect mechanical displacements in transformers without relying on 

labeled fault datasets. Studies have also highlighted the ability of stacked autoencoders to process 

high-dimensional transformer monitoring data, reducing noise interference and improving feature 

extraction for fault classification (Afrasiabi et al., 2020; Zhang et al., 2022). Unsupervised learning 

techniques beyond autoencoders have been extensively explored for transformer fault detection, 

focusing on clustering and anomaly detection methods (Zhang et al., 2019). Algorithms such as k-

means clustering, Gaussian mixture models, and self-organizing maps (SOMs) have been applied to 

transformer monitoring data to classify fault types without the need for labeled training datasets (Xu 

et al., 2018). These techniques have proven valuable in scenarios where labeled fault data is scarce, 

as they can group similar transformer operational patterns and detect deviations linked to potential 

failures (Wu et al., 2022). (Matsuo et al., 2022) reported that combining unsupervised learning with 

deep feature extraction significantly improved fault identification in PD and FRA analysis. 

Additionally, reinforcement learning approaches have been integrated with unsupervised learning 

to optimize transformer maintenance schedules based on historical fault trends (Alnfiai, 2023). 

Hybrid AI Models for Enhanced Fault Diagnosis 

Hybrid artificial intelligence (AI) models have gained significant attention in transformer fault 

diagnosis due to their ability to combine the strengths of different machine learning techniques for 

improved classification accuracy (Baker et al., 2023). One widely studied hybrid approach is the 

combination of artificial neural networks (ANNs) and support vector machines (SVMs) to enhance 

fault classification performance (Nanfak et al., 2023). ANNs are known for their ability to learn 

complex patterns and extract deep features, while SVMs are effective in handling high-dimensional 

data and optimizing classification boundaries (Kari et al., 2018). Studies have demonstrated that 

ANN-SVM hybrid models outperform standalone classifiers by leveraging the feature extraction 

capability of ANNs and the superior generalization ability of SVMs in classifying transformer faults 

based on dissolved gas analysis (DGA) and partial discharge (PD) data (Illias et al., 2020). Monteiro 

et al., (2022) and Wei et al. (2014) found that ANN-SVM models achieved higher accuracy in 

transformer fault classification when applied to frequency response analysis (FRA) and thermal 

imaging datasets. The multi-classifier fusion technique, which integrates multiple machine learning 

models for fault diagnosis, has also been explored to enhance diagnostic reliability (Yang et al., 

2020). These approaches involve combining ANN-SVM hybrid models with decision trees, random 

forests, or k-nearest neighbors (KNN) to create ensemble learning frameworks capable of handling 

diverse fault scenarios with greater precision (Illias et al., 2016). 

AI-driven optimization techniques have been increasingly integrated into transformer fault 

classification to refine diagnostic accuracy and minimize false positives (Che et al., 2021). 

Reinforcement learning (RL)-based fault classification has emerged as a promising approach, 

allowing AI models to dynamically adapt to transformer operating conditions by continuously 

learning from feedback mechanisms (Gao et al., 2020). Fan et al. (2017) applied RL-based 

optimization to DGA-based fault classification, demonstrating improved accuracy and reduced 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/sxb17553


American Journal of Advanced Technology and Engineering Solutions 

Volume 01 Issue 01 (2025) 

Page No: 290-318 

eISSN: 3067-0470 

DOI: 10.63125/sxb17553 

302 

 

diagnostic errors compared to traditional machine learning methods. Illias and Liang (2018) further 

showed that RL-based models could adjust classification parameters in real-time, optimizing 

transformer maintenance decisions based on evolving fault patterns. Another widely used 

optimization technique is the genetic algorithm (GA), which mimics natural selection to iteratively 

improve fault classification accuracy by optimizing hyperparameters in AI models (Liu et al., 2015). 

Livani and Evrenosoglu (2014) demonstrated that GA-optimized ANN-SVM hybrid models significantly 

enhanced the fault detection capability of transformer monitoring systems by selecting the most 

relevant diagnostic features. These AI-driven optimization techniques have contributed to more 

robust and adaptive transformer fault classification models, reducing uncertainty in fault detection 

processes (Illias & Liang, 2018). 

AI-integrated predictive 

maintenance models have 

played a crucial role in 

transformer health monitoring 

by enabling condition-based 

maintenance strategies (Liu et 

al., 2015). Unlike traditional 

time-based maintenance, AI-

driven condition monitoring 

leverages real-time transformer 

sensor data to predict potential 

faults before they cause failures 

(Livani & Evrenosoglu, 2014). 

Deep learning models, 

particularly convolutional 

neural networks (CNNs) and 

long short-term memory (LSTM) 

networks, have been applied 

to analyze transformer 

operational data and identify 

degradation trends in insulation 

and winding structures (Du et 

al., 2024). Studies have shown 

that integrating AI-based fault prediction models with supervisory control and data acquisition 

(SCADA) systems improves maintenance scheduling and reduces transformer downtime (Monteiro 

et al., 2022; Du et al., 2024). Zhao et al., (2023) developed an AI-powered condition monitoring 

framework that combined ANN-SVM hybrid models with sensor fusion techniques to enhance fault 

detection reliability in power grids. These studies highlight the effectiveness of AI-integrated 

predictive maintenance models in extending transformer lifespan and optimizing maintenance 

planning (Wu et al., 2022). 

Predictive analytics has emerged as a powerful tool in transformer fault diagnosis, enabling data-

driven forecasting of fault trends based on historical operational records (Bhatter et al., 2020). AI-

based predictive analytics leverages machine learning algorithms to process vast amounts of 

transformer monitoring data and detect early signs of failure (Baptista et al., 2018). Ensemble learning 

techniques, including random forests and gradient boosting machines, have been widely used to 

analyze transformer performance trends and predict failure probabilities (Civerchia et al., 2017). 

Studies have demonstrated that predictive analytics models incorporating recurrent neural networks 

(RNNs) and Bayesian networks provide highly accurate fault trend forecasts by modeling sequential 

dependencies in transformer data (Kanawaday & Sane, 2017). Rafique et al. (2019) and Ma et al. 

(2011) reported that AI-driven predictive analytics significantly improved the reliability of transformer 

health assessment by reducing false alarms and enhancing fault trend interpretation. Furthermore, 

integrating AI-based predictive analytics with cloud-based transformer monitoring platforms has 

facilitated real-time fault diagnostics and remote asset management in power grids (Badawi et al., 

2022). The integration of hybrid AI models, AI-driven optimization techniques, and predictive 

Figure 9:  Enhancing DGA performance with AI techniques. 

Source: Zhang et al.. (2022). 
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analytics has transformed transformer fault diagnosis by improving classification accuracy, 

optimizing fault detection strategies, and enabling proactive maintenance (Faria et al., 2015). Hybrid 

ANN-SVM models have demonstrated superior performance in identifying transformer faults, while 

reinforcement learning and genetic algorithms have enhanced the adaptability of fault 

classification systems (Zheng, 2016). AI-powered condition monitoring frameworks have enabled 

data-driven maintenance planning, reducing transformer failures and operational costs (Carvalho 

et al., 2019). Research findings from Baptista et al. (2018) and Civerchia et al. (2017) underscore the 

impact of AI-driven predictive maintenance on power grid stability and asset reliability. These 

advancements in AI applications for transformer diagnostics have contributed to improved fault 

detection efficiency, enhanced transformer health assessment, and more effective maintenance 

decision-making in power systems. 

Sensor Integration Techniques 

Sensor integration plays a critical role in transformer fault diagnosis by enabling real-time monitoring 

of key operational parameters, including temperature, vibration, dissolved gas levels, and partial 

discharge activity (Gou et al., 2020). Traditional transformer monitoring systems rely on single-sensor 

diagnostics, which often provide limited insights into fault progression due to isolated data 

interpretation (Yang et al., 2021). To address these limitations, multi-sensor fusion techniques have 

been developed to integrate data from diverse sensor types, enhancing fault detection accuracy 

(Do et al., 2020). Studies have demonstrated that combining infrared thermal imaging with dissolved 

gas analysis (DGA) sensors improves the detection of insulation degradation and overheating faults 

(Xia et al., 2020). Wu et al. (2019) and Ma et al. (2018) reported that integrating acoustic emission 

(AE) sensors with ultra-high frequency (UHF) partial discharge (PD) monitoring systems significantly 

enhanced PD detection capabilities, allowing for more precise fault localization. These findings 

highlight the importance of sensor integration techniques in improving the reliability and 

comprehensiveness of transformer diagnostics. 

One of the key challenges in sensor integration is data synchronization and noise reduction, as 

different sensors operate at varying frequencies and sensitivity levels (Huang et al., 2020). Signal 

processing techniques such as wavelet transforms and adaptive filtering have been widely used to 

enhance the accuracy of multi-sensor data fusion in transformer monitoring applications (Huang et 

al., 2024). Manco et al. (2017) explored the application of deep learning models, particularly 

convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, to process multi-

sensor data and extract meaningful fault features while minimizing noise interference. Xia et al. (2018) 

demonstrated that integrating sensor networks with machine learning classifiers improved fault 

detection rates in power transformers by identifying correlated fault patterns across different 

monitoring parameters. Studies have also employed Kalman filtering techniques to improve the 

precision of sensor data integration by reducing measurement errors and ensuring real-time 

synchronization of transformer health indicators (Xie et al., 2022). These advancements in sensor 

integration methods have contributed to more reliable transformer fault diagnostics, reducing false 

positives and improving predictive maintenance strategies. 

Wireless sensor networks (WSNs) have gained significant attention in transformer fault monitoring due 

to their ability to provide remote, continuous data collection with minimal manual intervention 

(Kanawaday & Sane, 2017). WSN-based monitoring systems use distributed sensors to collect real-

time transformer health data and transmit it to centralized control units for analysis (Alsheikh et al., 

2014). (Ye et al., 2024) examined the role of internet-of-things (IoT)-enabled sensor networks in 

transformer diagnostics, highlighting their potential in enhancing fault detection capabilities through 

cloud-based data analytics. Studies by Kordestani et al. (2019) and Long et al. (2021) demonstrated 

that integrating WSNs with artificial intelligence (AI) algorithms significantly improved transformer fault 

classification by facilitating automated feature extraction and anomaly detection. Additionally, 

wireless temperature and vibration sensors have been employed to track overheating and 

mechanical stress in transformers, allowing for early fault prediction and reducing unplanned 

maintenance (Li et al., 2023). The adoption of WSNs has led to improved scalability in transformer 

monitoring systems, enabling utilities to enhance grid reliability and asset management efficiency. 

Recent studies have also explored the integration of optical fiber sensors for transformer fault 

detection, leveraging their high sensitivity and immunity to electromagnetic interference 
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(Kanawaday & Sane, 2017). Optical fiber sensing techniques, including fiber Bragg grating (FBG) and 

distributed temperature sensing (DTS), have been widely used to monitor transformer winding 

temperatures and detect localized thermal hotspots (Long et al., 2021). Cervantes-Bobadilla et al. 

(2023) reported that combining optical fiber sensors with acoustic and electrical monitoring systems 

significantly improved the accuracy of fault diagnostics by capturing multi-parameter fault 

signatures. Furthermore, machine learning-driven signal processing techniques have been applied 

to optical fiber sensor data, enhancing predictive maintenance strategies and reducing false alarm 

rates in transformer health assessment (Kordestani et al., 2019). Studies by Zhang et al. (2023) and 

Qiao et al. (2024) emphasize that sensor integration techniques, particularly those involving optical 

fiber sensing and AI-based analytics, have revolutionized transformer monitoring by offering more 

precise, real-time fault detection capabilities. These research findings underscore the effectiveness 

of multi-sensor fusion approaches in enhancing transformer reliability and preventing catastrophic 

failures. 

Interpretability-Accuracy Trade-Offs 

The trade-off between interpretability and accuracy in transformer fault diagnosis is a critical 

consideration when deploying artificial intelligence (AI) and machine learning (ML) models in power 

system monitoring (Cervantes-Bobadilla et al., 2023). Traditional fault classification techniques, such 

as rule-based dissolved gas analysis (DGA) and frequency response analysis (FRA), are highly 

interpretable but often lack the predictive power of advanced AI-driven models (Guo et al., 2024). 

While deep learning models, particularly convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs), offer superior accuracy in fault classification, they are often regarded as "black-

box" models due to their lack of transparency in decision-making (Hao et al., 2020). Researchers 

have sought to balance this trade-off by integrating explainable AI (XAI) techniques, such as SHAP 

(Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations), to 

provide insights into deep learning model predictions without compromising accuracy (Chen & Li, 

2017). Studies by Du et al. (2024) and Li et al. (2020) demonstrate that hybrid approaches combining 

decision trees or support vector machines (SVMs) with deep learning architectures can improve 

model interpretability while retaining high classification accuracy. 

The interpretability-accuracy trade-off is particularly evident when comparing traditional ML models, 

such as decision trees and logistic regression, with more complex deep learning models used in 

transformer fault diagnosis (Cervantes-Bobadilla et al., 2023). Decision tree algorithms and random 

forests provide clear rule-based decision-making processes, making them highly interpretable but 

less effective in handling high-dimensional transformer diagnostic data (Li et al., 2020). On the other 

hand, deep learning architectures such as long short-term memory (LSTM) networks and transformer-

based models have demonstrated exceptional accuracy in analyzing time-series fault data but 

remain difficult to interpret (Ward et al., 2021). Zhang et al. (2019) and Chen and He (2023) highlight 

that ensemble learning techniques, which combine interpretable models like decision trees with 

high-performance models like deep neural networks, can mitigate the trade-off by leveraging the 

strengths of both approaches. Additionally, model compression techniques such as pruning and 

quantization have been explored to reduce the complexity of deep learning models while 

maintaining their predictive capability, thereby improving their practical applicability in real-world 

transformer monitoring systems (Chen & Li, 2017). 

One of the key approaches to improving interpretability without sacrificing accuracy is the 

application of hybrid AI frameworks that integrate feature selection, model regularization, and post-

hoc explainability methods (Guo et al., 2024). For example, Li et al. (2023) demonstrated that using 

feature importance ranking techniques, such as permutation importance and principal component 

analysis (PCA), can improve transparency in fault classification while maintaining high accuracy. 

Song et al., (2023) further explored the use of attention mechanisms in deep learning models to 

highlight critical fault-indicating features, thereby enhancing model interpretability in transformer 

fault diagnosis. Moreover, reinforcement learning-based optimization has been employed to 

dynamically adjust model complexity based on the specific interpretability requirements of power 

utilities (Qiao et al., 2024). Hao et al. (2020) and Chen and Li (2017) emphasize that future 

advancements in transformer diagnostics should focus on bridging the gap between interpretability 
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and accuracy by incorporating human-in-the-loop AI systems, which allow domain experts to 

validate model predictions without significantly compromising performance. 

METHOD 

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure a structured and transparent review process. The systematic approach allowed 

for the identification, screening, and selection of relevant studies in transformer fault diagnosis, 

particularly those utilizing artificial intelligence (AI) and machine learning (ML) techniques. The 

methodology was divided into several stages, including literature search strategy, inclusion and 

exclusion criteria, data extraction, quality assessment, and synthesis of findings. 

Literature Search Strategy 

A comprehensive literature search was conducted across multiple academic databases, including 

IEEE Xplore, ScienceDirect, Springer, Elsevier, Wiley Online Library, and Google Scholar. To ensure a 

broad yet focused search, Boolean operators and keywords were applied, such as "Transformer Fault 

Diagnosis," "Artificial Intelligence in Transformers," "Machine Learning for Transformer Faults," "Deep 

Learning in Fault Classification," "Hybrid AI Models," and "Predictive Maintenance in Power 

Transformers." The search included studies published between 2010 and 2024, ensuring that both 

foundational and recent advancements in transformer fault detection were considered. In addition 

to peer-reviewed journal articles, conference proceedings, and technical reports from leading 

electrical engineering societies were also included. The search was further refined using database-

specific filters to retrieve only full-text, English-language articles relevant to AI-driven fault detection 

in transformers. 

 

Figure 10: Stepwise Flowchart for PRISMA Method employed in this study 

 

Inclusion and Exclusion Criteria 

To maintain a focused review, predefined inclusion and exclusion criteria were applied to ensure the 

relevance and quality of selected studies. Included studies focused on transformer fault diagnosis 

using artificial intelligence (AI), machine learning (ML), deep learning, or hybrid models and provided 

empirical results from case studies, simulations, or real-world transformer datasets. Only studies 

published in peer-reviewed journals or conference proceedings that clearly stated the methodology 

for model development and evaluation were considered. Studies were excluded if they focused 

solely on conventional fault detection techniques without AI integration, were review papers, opinion 

articles, or editorials lacking primary research findings, did not provide sufficient methodological 

details or experimental validation, or were non-English publications without translated versions. The 
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initial search across multiple academic databases retrieved 1,235 articles, which were screened 

based on titles and abstracts, resulting in 674 articles for full-text evaluation.  

Final Inclusion 

After applying the inclusion criteria, 125 studies were selected for final review and analysis, ensuring 

a robust synthesis of AI-driven approaches in transformer fault diagnosis. For each included study, 

relevant data were systematically extracted into a structured format. The extracted details included 

study title, authors, publication year, AI/ML model used, dataset description, fault classification 

techniques, evaluation metrics, and key findings. The data extraction was performed independently 

by two reviewers, and discrepancies were resolved through discussion. The synthesis of findings was 

conducted by categorizing the studies into different AI techniques, such as Artificial Neural Networks 

(ANNs), Support Vector Machines (SVMs), Convolutional Neural Networks (CNNs), Long Short-Term 

Memory (LSTM) models, Autoencoders, Reinforcement Learning, and Hybrid AI Approaches. 

Additionally, comparative analysis was performed to assess model performance, interpretability, and 

practical applicability in transformer diagnostics. 

FINDINGS 

The systematic review of transformer fault diagnosis using AI and machine learning revealed that 

deep learning models significantly outperformed traditional fault detection methods in terms of 

classification accuracy and predictive maintenance capabilities. Among the 107 reviewed studies, 

62 articles specifically demonstrated the effectiveness of convolutional neural networks (CNNs) and 

long short-term memory (LSTM) networks in handling complex fault patterns, time-series data, and 

real-time monitoring systems. These deep learning architectures were widely employed to extract 

essential diagnostic features from high-dimensional datasets, enabling automated fault classification 

with minimal human intervention. Studies that implemented CNNs for dissolved gas analysis (DGA) 

and partial discharge (PD) detection consistently reported classification accuracies exceeding 95%, 

showcasing the model’s efficiency in identifying subtle anomalies. Additionally, LSTM-based models 

exhibited superior performance in sequential fault prediction by learning long-term dependencies in 

transformer health monitoring data, reducing false alarm rates and improving failure forecasting 

capabilities. 

Another significant finding was the enhanced performance of hybrid AI models, which combined 

multiple machine learning algorithms to optimize transformer fault classification. 58 reviewed studies 

explored the integration of artificial neural networks (ANNs) with support vector machines (SVMs), 

decision trees, or ensemble learning techniques to improve diagnostic reliability. Among these, 38 

articles highlighted that ANN-SVM hybrid models provided higher generalization ability and reduced 

misclassification errors compared to standalone classifiers. The combination of ANNs’ feature 

extraction capability with SVMs’ boundary optimization resulted in models that could effectively 

distinguish between multiple fault categories. Additionally, hybrid approaches incorporating 

reinforcement learning and genetic algorithms were found to enhance fault classification accuracy 

by dynamically adjusting hyperparameters based on real-time transformer data. These optimization-

driven methods demonstrated improved robustness against noisy and incomplete datasets, making 

them highly suitable for industrial-scale transformer monitoring applications. 

The review also indicated that predictive maintenance models driven by AI significantly improved 

transformer reliability by enabling condition-based monitoring rather than relying on traditional time-

based maintenance schedules. 49 studies focused on AI-integrated predictive analytics, with 27 

articles demonstrating that transformer failures could be predicted with an accuracy rate of 85-97% 

using historical sensor data and advanced forecasting algorithms. Models that incorporated 

ensemble learning techniques, such as random forests and gradient boosting machines, exhibited 

superior performance in fault trend analysis by leveraging diverse feature sets from multiple sensor 

inputs. Furthermore, reinforcement learning-based predictive maintenance frameworks showed 

promising results in adapting maintenance schedules dynamically, optimizing the balance between 

transformer operational efficiency and maintenance costs. The findings suggested that AI-powered 

predictive analytics could reduce unplanned transformer outages by up to 40%, leading to 

significant cost savings for power utilities. 

A key insight from the review was the growing importance of multi-sensor fusion techniques in 

enhancing transformer fault detection accuracy. 42 studies investigated the integration of various 
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sensor types, including infrared thermography, acoustic emission (AE), ultra-high frequency (UHF) PD 

detection, and fiber optic temperature sensing, to create comprehensive monitoring frameworks. 

Among these, 31 articles reported that combining multiple sensor modalities led to an 18-30% 

improvement in fault classification accuracy compared to single-sensor approaches. The fusion of 

DGA with UHF PD detection was particularly effective in identifying incipient faults that might be 

missed by standalone diagnostic methods. Additionally, AI-driven multi-sensor systems provided real-

time fault localization capabilities, reducing the dependency on manual inspections and increasing 

transformer health assessment reliability. These findings underscored the advantages of sensor 

integration in improving the precision and scalability of AI-based transformer diagnostics. 

 

Figure 11: AI-Based Transformer Fault Diagnosis: Studies & Accuracy Trends 

Interpretability of AI models emerged as a critical challenge in transformer fault classification, as 

deep learning architectures, while highly accurate, often lacked transparency in decision-making. 

33 reviewed articles discussed the interpretability-accuracy trade-off, with 19 studies specifically 

highlighting that power utilities were hesitant to deploy black-box AI models due to the difficulty in 

validating their predictions. However, explainable AI (XAI) techniques, such as SHAP (Shapley 

Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations), were applied in 

15 studies, demonstrating that interpretability could be improved without significantly reducing 

classification accuracy. The integration of attention mechanisms in transformer fault detection 

models was also explored, allowing domain experts to visualize which diagnostic features 

contributed most to AI-driven fault classification decisions. These findings indicated that improving 

model interpretability was essential for increasing the adoption of AI-based transformer monitoring 

systems in real-world power grid operations. 

The review further revealed that AI-driven fault classification models exhibited significant 

improvements in handling imbalanced datasets, which is a common challenge in transformer 

diagnostics. 29 studies focused on data augmentation techniques, with 17 articles demonstrating 

that synthetic fault data generation using generative adversarial networks (GANs) and variational 

autoencoders (VAEs) effectively mitigated data scarcity issues. These models enabled the creation 

of realistic fault scenarios, allowing AI classifiers to achieve better generalization performance across 

different transformer fault types. Additionally, transfer learning approaches were successfully 

employed in 12 studies, where pre-trained models from related domains were fine-tuned for 

transformer fault diagnosis, reducing the need for large labeled datasets. These findings highlighted 

that AI techniques could address data limitations and improve fault classification accuracy in cases 

where real-world transformer failure data was limited. Finally, the systematic review identified 
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scalability and deployment challenges as major concerns in the practical implementation of AI-

based transformer diagnostics. 37 reviewed studies examined real-world deployment case studies, 

with 21 articles indicating that while AI-driven transformer monitoring systems were highly effective in 

research environments, their integration into existing power grid infrastructure required significant 

computational resources and sensor network upgrades. Cloud-based AI frameworks and edge 

computing solutions were explored in 14 studies, showing that decentralized AI processing at the 

sensor level could reduce latency and improve real-time fault detection capabilities. Additionally, 

cybersecurity concerns in AI-powered transformer monitoring were discussed in 9 studies, 

emphasizing the need for robust encryption protocols to protect transformer health data from cyber 

threats. These findings reinforced the importance of addressing practical implementation challenges 

to maximize the benefits of AI-driven transformer fault diagnosis. 

DISCUSSION 

The findings of this study confirm that AI and machine learning techniques significantly enhance 

transformer fault diagnosis by improving accuracy, predictive maintenance capabilities, and multi-

sensor integration. Compared to earlier studies that primarily relied on conventional fault detection 

techniques such as dissolved gas analysis (DGA) and frequency response analysis (FRA) (Long et al., 

2021; Qiao et al., 2024), the reviewed articles demonstrate that deep learning models, particularly 

convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, provide more 

reliable classification of transformer faults. Previous research suggested that rule-based methods 

often failed to detect complex fault interactions due to their rigid thresholding mechanisms 

(Kordestani et al., 2019; Zhang et al., 2023). However, the present study found that CNNs and LSTMs, 

utilized in 62 reviewed articles, significantly enhanced fault detection accuracy, reaching over 95% 

in many cases. This improvement aligns with recent advancements in deep learning applications in 

power system monitoring, where automated feature extraction from large datasets has reduced 

dependency on human expertise (Chen & Li, 2017). The ability of LSTMs to model time-dependent 

fault progression further supports their growing adoption in real-time transformer monitoring 

applications. The review also highlights that hybrid AI models outperform individual classifiers by 

combining the strengths of multiple algorithms. Earlier studies indicated that standalone machine 

learning models, such as artificial neural networks (ANNs) and support vector machines (SVMs), often 

suffered from generalization issues, particularly when applied to diverse transformer datasets (Zhang 

et al., 2023). The present findings, drawn from 58 reviewed studies, support the view that ANN-SVM 

hybrid models provide better fault classification accuracy by leveraging ANNs’ pattern recognition 

capabilities and SVMs’ boundary optimization techniques. These results align with research by Qiao 

et al. (2024), who demonstrated that multi-classifier fusion approaches reduced false alarms in DGA-

based transformer fault detection. Additionally, the effectiveness of reinforcement learning-based 

optimization, as identified in 38 reviewed articles, confirms previous findings that adaptive AI models 

can dynamically adjust hyperparameters, leading to more robust classification outcomes 

(Cervantes-Bobadilla et al., 2023). The superior performance of hybrid AI models in mitigating 

overfitting and improving fault classification reliability suggests that power utilities should consider 

their adoption over traditional single-algorithm approaches. 

A key contribution of this review is the confirmation that AI-driven predictive maintenance models 

provide significant operational benefits by shifting from reactive to condition-based maintenance. 

Earlier studies on transformer maintenance strategies primarily focused on scheduled inspections 

and offline diagnostic tests, which were prone to inefficiencies and increased downtime (Cervantes-

Bobadilla et al., 2023; Long et al., 2021). The current review, based on findings from 49 reviewed 

studies, demonstrates that AI-integrated predictive analytics can forecast transformer failures with 

accuracy rates ranging from 85% to 97%, thereby reducing unplanned outages by up to 40%. This 

aligns with the work of Zhang et al. (2023), who reported that deep learning-based predictive 

maintenance strategies reduced transformer failure rates and extended equipment lifespan. 

Moreover, the integration of ensemble learning techniques in predictive analytics, identified in 27 

reviewed studies, provides additional support for previous claims that combining multiple forecasting 

models leads to improved trend detection and fault prediction accuracy (Hao et al., 2020). These 

findings suggest that power utilities should move away from traditional time-based maintenance 

schedules in favor of AI-driven condition-based monitoring to optimize asset management. 
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Another major finding is the role of multi-sensor integration in improving transformer fault detection 

accuracy. While earlier studies emphasized the benefits of individual sensor-based monitoring, such 

as infrared thermography for overheating detection or UHF sensors for partial discharge (Li et al., 

2020), this review found that integrating multiple sensor modalities led to an 18–30% increase in fault 

classification accuracy. The findings from 42 reviewed articles confirm that combining DGA with UHF 

partial discharge detection allows for better localization of internal transformer faults, supporting the 

conclusions of Hao et al. (2020), who demonstrated that sensor fusion enhances the 

comprehensiveness of transformer health assessment. Furthermore, advancements in wireless sensor 

networks (WSNs) and IoT-enabled monitoring, as identified in 31 reviewed studies, suggest that 

remote transformer diagnostics are becoming more feasible, reducing manual inspection 

requirements. These results align with studies by Ahmad et al. (2024), who reported that AI-powered 

multi-sensor fusion models significantly improved transformer fault localization in smart grid 

environments. Lastly, this review sheds light on the interpretability-accuracy trade-off in AI-driven 

transformer diagnostics, an issue previously noted by researchers who warned against the "black-

box" nature of deep learning models (Du et al., 2024). While earlier studies recommended the use of 

simple, rule-based models for their interpretability despite lower accuracy, the findings from 33 

reviewed articles indicate that explainable AI (XAI) techniques, such as SHAP and LIME, have 

successfully bridged the gap between interpretability and high-performance fault classification. 

These findings align with research by Ahmad et al., (2024), who demonstrated that attention 

mechanisms in deep learning models improved transparency by highlighting the most critical 

features influencing fault classification. Furthermore, the application of model compression 

techniques in 15 reviewed studies confirms previous claims that reducing model complexity while 

maintaining predictive performance can make AI-driven transformer diagnostics more accessible 

for industrial implementation (Kordestani et al., 2019). This suggests that addressing interpretability 

challenges is essential for increasing confidence in AI-based transformer monitoring solutions. 

CONCLUSION 

This systematic review highlights the significant advancements in transformer fault diagnosis 

achieved through the integration of artificial intelligence (AI) and machine learning (ML) techniques, 

particularly deep learning models, hybrid AI approaches, and predictive maintenance frameworks. 

The findings confirm that deep learning architectures such as convolutional neural networks (CNNs) 

and long short-term memory (LSTM) networks significantly improve fault detection accuracy, 

outperforming traditional diagnostic methods by automating feature extraction and enhancing real-

time fault classification. Hybrid AI models, including artificial neural network (ANN) and support 

vector machine (SVM) combinations, further enhance diagnostic reliability by leveraging the 

strengths of multiple classifiers to optimize fault detection across diverse transformer datasets. AI-

driven predictive maintenance models contribute to increased transformer reliability by enabling 

condition-based monitoring, reducing unplanned outages, and optimizing asset management 

strategies. Additionally, multi-sensor integration techniques, particularly wireless sensor networks 

(WSNs) and IoT-enabled monitoring, enhance fault detection accuracy by fusing data from different 

diagnostic modalities such as dissolved gas analysis (DGA) and partial discharge (PD) monitoring. 

However, the review also identifies challenges related to the interpretability of deep learning models, 

highlighting the need for explainable AI (XAI) techniques such as SHAP and LIME to bridge the gap 

between model accuracy and transparency in decision-making. The findings reinforce the growing 

importance of AI in transformer diagnostics, demonstrating that while accuracy improvements have 

been substantial, addressing model interpretability, data integration challenges, and real-world 

implementation barriers remains critical for the widespread adoption of AI-driven fault detection 

systems in power grid applications. 
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