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ABSTRACT 

The increasing complexity of electrical power systems necessitates advanced fault 

detection and predictive maintenance strategies to enhance operational efficiency 

and grid reliability. Traditional maintenance approaches, such as reactive and 

preventive maintenance, have proven insufficient in mitigating unplanned outages 

and optimizing asset utilization. Recent advancements in artificial intelligence (AI) have 

introduced data-driven solutions that significantly improve fault classification, failure 

prediction, and automated recovery processes. This study conducts a systematic 

review of 180 high-quality peer-reviewed articles, following the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a 

rigorous and transparent research methodology. The findings reveal that AI-driven 

predictive maintenance methods, including machine learning, deep learning, digital 

twin technology, IoT-enabled sensor networks, and self-healing grids, have 

outperformed traditional fault detection techniques in terms of accuracy, adaptability, 

and cost-effectiveness. AI-based fault detection models achieve an average 

accuracy of 85% to 95%, reducing false alarms by 50% and minimizing power restoration 

times by up to 60%. The integration of IoT sensors with real-time analytics has improved 

anomaly detection rates by 28%, while digital twin technology has enhanced 

predictive maintenance efficiency, reducing unplanned outages by 35%. Additionally, 

self-healing grid mechanisms, powered by reinforcement learning algorithms, have 

demonstrated the ability to autonomously isolate faults and reconfigure energy 

distribution, preventing nearly 45% of potential service disruptions. Despite these 

advancements, challenges such as the black-box nature of deep learning models, 

cybersecurity vulnerabilities, and interoperability with legacy systems continue to pose 

barriers to large-scale AI adoption. The study highlights the need for explainable AI 

frameworks, standardized data governance policies, and enhanced cybersecurity 

measures to ensure the sustainable deployment of AI in power grid management. The 

findings provide valuable insights for researchers, utility companies, and policymakers 

seeking to enhance the resilience and efficiency of modern electrical power systems 

through AI-driven fault detection and predictive maintenance strategies.. 
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INTRODUCTION 

The growing complexity of modern electrical power systems has necessitated the adoption of 

advanced fault detection and predictive maintenance strategies to ensure operational efficiency 

and grid reliability (Singh & Singh, 2024). Traditional maintenance approaches, such as reactive and 

preventive maintenance, have become insufficient in addressing the increasing demand for 

uninterrupted power supply, particularly with the integration of renewable energy sources and 

decentralized grid architectures (McHirgui et al., 2024). Artificial Intelligence (AI)-driven fault 

detection and predictive maintenance have emerged as transformative solutions, leveraging data 

analytics, machine learning algorithms, and automated decision-making processes to enhance the 

resilience of power networks (Hua et al., 2022). The application of AI in electrical power systems 

enables real-time anomaly detection, minimizes downtime, and reduces maintenance costs by 

predicting potential equipment failures before they occur (Bendaoud et al., 2022). AI-based 

predictive models offer improved accuracy and efficiency over conventional rule-based 

approaches by identifying hidden patterns in operational data, which facilitates proactive 

maintenance scheduling and grid stability optimization (Muhammed et al., 2024). Moreover, a key 

advancement in AI-driven fault detection and predictive maintenance is the integration of machine 

learning and deep learning algorithms that analyze vast amounts of real-time and historical grid data 

to predict faults and assess asset health (Muhammed et al., 2024). Techniques such as support vector 

machines (SVMs), artificial neural networks (ANNs), decision trees, and ensemble learning have been 

extensively employed in fault classification and anomaly detection in power grids (Shen et al., 2023). 

The use of deep learning models, including convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), has further enhanced predictive accuracy by recognizing complex 

temporal dependencies in power system data (Shen et al., 2023). Unlike traditional condition-based 

maintenance (CBM) approaches, AI-powered predictive maintenance optimizes resource 

allocation by prioritizing critical components that exhibit early signs of degradation, thereby reducing 

unnecessary maintenance interventions and extending the lifespan of electrical infrastructure 

(Ahmad et al., 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The main components of predictive maintenance in the electrical 

engineering 
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Digital twin technology has emerged as a revolutionary tool in the implementation of AI-driven fault 

detection and predictive maintenance strategies. A digital twin is a virtual representation of a 

physical system that continuously updates in real time using sensor data and AI-driven analytics 

(Ahmad et al., 2021). In electrical power systems, digital twins enable enhanced fault diagnosis and 

predictive insights by simulating grid operations and predicting failure scenarios with high precision 

(Omitaomu & Niu, 2021). The integration of AI into digital twins allows for intelligent decision-making 

in maintenance planning by providing a detailed analysis of asset performance, operational risks, 

and maintenance needs (Suryakiran et al., 2022). Studies have shown that digital twins contribute to 

proactive maintenance management by reducing the uncertainty in fault diagnosis and offering 

real-time optimization strategies for grid operators (Sikorski et al., 2020). Another significant 

development in AI-driven fault detection is the implementation of self-healing grid technologies, 

which enhance grid resilience by enabling automated fault isolation and recovery mechanisms. Self-

healing grids leverage AI-powered sensing, edge computing, and intelligent control systems to 

detect, analyze, and respond to faults autonomously (Kumari et al., 2023). These grids incorporate 

automated circuit breakers, reclosers, and network reconfiguration strategies that minimize service 

disruptions by rerouting power supply to unaffected areas (Un-Noor et al., 2017). By utilizing real-time 

data from IoT-enabled sensors and machine learning models, self-healing grids can predict potential 

failures and initiate corrective actions without human intervention (Cavus et al., 2022). Research has 

demonstrated that self-healing capabilities significantly improve grid reliability and reduce 

restoration time in large-scale power distribution networks (Inteha et al., 2022). 

The effectiveness of AI-driven fault detection and predictive maintenance relies on robust data-

driven analytics that facilitate real-time monitoring and fault classification. The deployment of IoT-

based sensor networks in electrical power systems has enabled continuous data acquisition, allowing 

AI models to process and analyze voltage fluctuations, frequency variations, and current imbalances 

in grid operations (Suryakiran et al., 2022). Advanced signal processing techniques, such as wavelet 

transforms and principal component analysis (PCA), have been widely adopted to extract critical 

fault indicators from sensor data, thereby enhancing anomaly detection capabilities (Paldino et al., 

2022). Additionally, cloud computing and edge analytics have improved the efficiency of AI-

powered fault detection by reducing latency in data processing and facilitating real-time decision-

making for grid operators (Krishna et al., 2022). Despite the advancements in AI-driven fault detection 

and predictive maintenance, several challenges must be addressed to ensure large-scale 

implementation in electrical power systems. One of the primary concerns is the quality and reliability 

of data used in AI models, as inaccurate or incomplete datasets can lead to erroneous fault 

predictions and maintenance recommendations (Cavus et al., 2022). Cybersecurity risks also pose a 

significant challenge, as AI-powered grid management systems are vulnerable to adversarial 

attacks that can compromise data integrity and operational reliability (Cicceri et al., 2023). 

Furthermore, the interpretability of AI models remains a critical issue, as complex deep learning 

algorithms often operate as black-box systems, making it difficult for grid operators to understand 

and validate their decision-making processes (Inteha et al., 2022). Research has emphasized the 

importance of developing transparent and explainable AI frameworks to enhance trust and 

adoption in power system applications (Cicceri et al., 2023).The synergy between AI, IoT, and 

machine learning continues to redefine fault detection and predictive maintenance in electrical 

power systems by enabling accurate fault classification, real-time anomaly detection, and 

automated maintenance scheduling (Yaprakdal et al., 2020). The implementation of AI-powered 

solutions in grid management has demonstrated significant improvements in system reliability, 

operational efficiency, and cost-effectiveness (Inteha et al., 2022). The adoption of AI-driven digital 

twins and self-healing technologies has further optimized power grid operations by enhancing fault 

diagnosis capabilities and reducing the risk of catastrophic failures (Shen et al., 2023). Studies have 

consistently highlighted the role of AI in enabling data-driven decision-making processes that support 

predictive maintenance strategies and ensure the long-term sustainability of electrical power 

systems (Un-Noor et al., 2017). 
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This study aims to systematically review AI-driven fault detection and predictive maintenance 

approaches in electrical power systems by examining the role of data-driven analytics, digital twins, 

and self-healing grid technologies. Specifically, the objectives are to (1) explore the effectiveness of 

AI-based machine learning models in fault classification and predictive maintenance; (2) analyze 

the integration of digital twin technology in simulating grid behavior and enhancing maintenance 

decision-making; (3) evaluate the impact of self-healing grids on grid reliability, fault isolation, and 

automated recovery mechanisms; (4) assess the contributions of real-time monitoring, IoT-enabled 

sensor networks, and advanced signal processing techniques in enhancing fault detection 

capabilities; and (5) identify key challenges, including data quality, cybersecurity risks, and the 

interpretability of AI models, that impact the large-scale adoption of AI in electrical power systems. 

Through a comprehensive synthesis of existing studies, this research provides valuable insights into 

the advancements, applications, and limitations of AI-driven fault detection and predictive 

maintenance strategies in modern power grids. 

LITERATURE REVIEW 

The integration of artificial intelligence (AI) in fault detection and predictive maintenance has 

significantly transformed the efficiency and reliability of electrical power systems. Traditional 

maintenance strategies, such as reactive and preventive approaches, have been gradually 

replaced by AI-driven predictive models that enable early fault detection and autonomous 

decision-making (Cavus et al., 2022). AI techniques, including machine learning (ML), deep learning, 

and digital twin simulations, have demonstrated substantial improvements in identifying faults, 

reducing maintenance costs, and optimizing grid stability (Inteha et al., 2022). The literature on AI-

driven fault detection and predictive maintenance explores various methodologies, such as data-

driven analytics, self-healing grids, and IoT-based monitoring, to enhance power system resilience 

Figure 2: Digital Twin Ecosystem for Power Grid Monitoring and Fault Prediction 
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(Yaprakdal et al., 2020). However, the adoption of AI-driven solutions also presents challenges, such 

as data quality, cybersecurity risks, and explainability of AI models (Krishna et al., 2022). This section 

provides a comprehensive synthesis of existing studies on AI-driven fault detection and predictive 

maintenance in electrical power systems. It critically examines the role of machine learning 

algorithms, digital twins, and self-healing technologies in ensuring grid stability and operational 

efficiency. The literature review is structured into the following key areas. 

Traditional Maintenance Approaches 

Maintenance strategies in electrical power systems have traditionally relied on reactive and 

preventive approaches to ensure operational reliability and reduce unexpected failures. Reactive 

maintenance, often referred to as corrective maintenance, involves repairing or replacing faulty 

components after a failure has occurred (Wang et al., 2024). This approach has been widely used in 

conventional power systems due to its simplicity and low upfront cost; however, it often leads to 

increased downtime, higher maintenance expenses, and potential safety hazards (Werner et al., 

2019). Studies indicate that reactive maintenance is particularly ineffective for critical infrastructure, 

as it can lead to cascading failures and system-wide disruptions (Wang et al., 2024; Werner et al., 

2019). In contrast, preventive maintenance follows scheduled inspections and component 

replacements based on predefined time intervals or usage thresholds (Wang et al., 2021). While 

preventive maintenance reduces the likelihood of unexpected failures, it can be inefficient due to 

unnecessary servicing of components that may not require immediate attention (Propfe et al., 2012). 

Research has demonstrated that both reactive and preventive strategies lack adaptability in 

addressing modern power system complexities, necessitating the adoption of more data-driven and 

intelligent maintenance solutions (Wu et al., 2020). Despite its widespread historical application, 

reactive maintenance has been associated with significant operational inefficiencies and economic 

losses. Studies have shown that unplanned outages caused by reactive maintenance can result in 

substantial financial burdens for power utilities, leading to costly emergency repairs and 

compensation for service interruptions (Wang et al., 2021; Wu et al., 2020). Additionally, reactive 

maintenance contributes to excessive wear and tear on electrical components, reducing their 

lifespan and increasing overall replacement costs (Cavus et al., 2025; Hoffmann et al., 2020). The 

unpredictability of equipment failures in reactive maintenance strategies further complicates 

resource allocation, as grid operators must allocate emergency repair teams and spare parts on 

short notice (Wu et al., 2020). Comparative studies indicate that reliance on reactive maintenance 

disproportionately affects aging power infrastructure, particularly in regions with high electricity 

demand and frequent grid stress events (Wang et al., 2021). Furthermore, the environmental impact 

of reactive maintenance is notable, as increased failure rates contribute to higher energy losses and 

excessive emissions from backup power sources (Cavus et al., 2025; Wang et al., 2021). Research 

suggests that the transition toward predictive maintenance strategies can alleviate these 

inefficiencies by identifying potential failures before they occur (Antonov et al., 2023). 

Preventive maintenance, while an improvement over reactive strategies, presents its own set of 

limitations in modern power grids. One of the primary challenges associated with preventive 

maintenance is its reliance on fixed maintenance schedules, which do not account for the actual 

condition of equipment (Hoffmann et al., 2020). Studies have shown that this rigid approach can 

lead to unnecessary maintenance interventions, increasing operational costs without necessarily 

improving system reliability (Chen et al., 2021; Hoffmann et al., 2020). Moreover, preventive 

maintenance can sometimes fail to detect early signs of component degradation, leading to 

unforeseen failures despite routine inspections (Cavus et al., 2025; Vita et al., 2023). The effectiveness 

of preventive maintenance also depends on accurate historical data and expert knowledge, which 

may not always be available in complex, distributed power networks (Shetty, 2018). Research 

highlights that while preventive maintenance reduces failure rates compared to reactive 

approaches, it remains suboptimal in addressing real-time grid dynamics and the growing 

penetration of renewable energy sources (Ardabili et al., 2022; Shetty, 2018). Consequently, there is 

increasing advocacy for predictive maintenance methodologies that utilize AI-driven analytics and 

real-time sensor data to enhance power system reliability (Centomo et al., 2020). Both reactive and 

preventive maintenance strategies have become increasingly inadequate in managing modern 

power grids, particularly with the integration of smart grid technologies and distributed energy 
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resources. The shift toward digitized grid management necessitates more advanced maintenance 

approaches that incorporate real-time monitoring, fault detection, and predictive analytics 

(Antonov et al., 2023; Wu et al., 2020).  

Studies indicate that the limitations of traditional maintenance strategies—such as increased 

downtime, inefficient resource utilization, and inability to adapt to changing grid conditions—have 

driven the adoption of AI-based predictive maintenance frameworks (Cavus et al., 2025; Hoffmann 

et al., 2020). Unlike traditional approaches, predictive maintenance relies on machine learning 

algorithms, IoT-based sensor networks, and digital twin simulations to forecast failures and optimize 

asset management (Liu et al., 2018). Comparative analyses suggest that predictive maintenance 

not only reduces operational costs but also enhances overall grid stability and energy efficiency 

(Wang et al., 2021). As power systems continue to evolve, traditional maintenance approaches are 

increasingly being supplemented—or even replaced—by more sophisticated AI-driven techniques 

capable of addressing modern grid challenges with greater precision and reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shift Towards Predictive Maintenance 

The increasing complexity of electrical power systems, coupled with rising energy demands and the 

integration of renewable energy sources, has necessitated a paradigm shift from traditional 

maintenance approaches to predictive maintenance strategies (Mazhar et al., 2023). Traditional 

reactive and preventive maintenance methodologies have proven inadequate in ensuring grid 

reliability, as they often result in costly downtimes, inefficient resource allocation, and undetected 

early-stage equipment failures (S. Wang et al., 2024). In contrast, predictive maintenance leverages 

real-time data analytics and advanced computational models to assess the health of power system 

components, allowing for timely intervention before failures occur (Ahmad et al., 2021). Condition-

based maintenance (CBM) and AI-driven predictive maintenance have emerged as two primary 

approaches that optimize maintenance scheduling, minimize operational disruptions, and extend 

asset lifespan (Wang et al., 2021). These data-driven techniques integrate machine learning, the 

Internet of Things (IoT), and digital twin technologies to continuously monitor grid performance, 

detect anomalies, and predict potential system failures with high accuracy (Wang et al., 2024). 

Figure 3: Traditional to AI drive Maintenance Approaches 
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Condition-based maintenance (CBM) represents a transition from time-based maintenance 

schedules to real-time performance monitoring, enabling maintenance actions to be performed 

only when necessary. CBM relies on sensor data collected from power system components, such as 

transformers, circuit breakers, and generators, to assess operational conditions and identify 

performance deviations (Ahmad et al., 2021). Research has shown that CBM significantly improves 

maintenance efficiency by reducing unnecessary servicing while ensuring that critical components 

receive timely interventions (Kumari et al., 2023). Key techniques in CBM include vibration analysis, 

infrared thermography, partial discharge monitoring, and oil analysis, which provide essential insights 

into the degradation of electrical components (Bindi et al., 2023). Comparative studies indicate that 

CBM reduces maintenance costs and downtime by enabling early detection of faults, leading to a 

more reliable power grid infrastructure (Wu et al., 2020). Additionally, CBM facilitates optimized 

maintenance planning by prioritizing assets based on real-time performance metrics rather than 

relying on predefined schedules that may not align with actual component conditions (Farzaneh et 

al., 2021). 

 

Figure 4: cycle of Shift Towards Predictive Maintenance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AI-driven predictive maintenance builds upon CBM by incorporating artificial intelligence, big data 

analytics, and advanced statistical modeling to forecast potential failures and optimize 

maintenance decisions (Ahmad et al., 2021). Machine learning algorithms, such as support vector 

machines (SVMs), artificial neural networks (ANNs), and deep learning models, have been 

extensively used to analyze power system data and detect fault patterns (Bindi et al., 2023). These 

models process large volumes of historical and real-time data, identifying correlations that may not 

be evident through traditional monitoring techniques (Wang et al., 2021). AI-based predictive 

maintenance enhances fault detection accuracy by leveraging adaptive learning mechanisms, 

which improve over time as more data becomes available (Wu et al., 2020). Moreover, digital twin 

technology has further advanced AI-driven predictive maintenance by providing virtual simulations 

of power grid operations, allowing for precise failure prediction and scenario-based decision-making 

(Glaessgen & Stargel, 2012). Studies have demonstrated that AI-powered predictive maintenance 

not only reduces unexpected breakdowns but also optimizes asset utilization, ensuring that 

maintenance resources are allocated efficiently (Glaessgen & Stargel, 2012; Kumari et al., 2023). The 

implementation of predictive maintenance in modern power grids has yielded significant 

operational benefits, including improved system reliability, enhanced cost-effectiveness, and 

increased energy efficiency. Self-healing grid technologies, which utilize AI-based fault detection 

and automated recovery mechanisms, have further strengthened predictive maintenance 

capabilities by enabling real-time response to grid anomalies (Moenck et al., 2024). The integration 

of IoT-based monitoring systems has played a crucial role in predictive maintenance by enabling 

seamless data collection, real-time analytics, and automated fault detection (Bortolini et al., 2022). 
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Studies indicate that predictive maintenance strategies contribute to more sustainable grid 

management by reducing energy losses and minimizing the environmental impact associated with 

reactive maintenance practices (Moenck et al., 2024). However, challenges such as data quality, 

cybersecurity risks, and the interpretability of AI models must be addressed to fully realize the 

potential of predictive maintenance in power system management (Xu et al., 2019).  

Role of AI in Predictive Maintenance 

Artificial intelligence (AI) has revolutionized predictive maintenance in electrical power systems by 

enabling accurate fault detection, minimizing operational costs, and optimizing overall grid 

performance (Ahmad et al., 2021; Muhammad Mohiul et al., 2022). Traditional maintenance 

strategies, such as reactive and preventive approaches, often fail to address emerging challenges 

in power system management due to their reliance on fixed schedules and manual inspections 

(Kumari et al., 2023; Maniruzzaman et al., 2023). AI-driven predictive maintenance leverages 

advanced computational models, including machine learning (ML), deep learning, and neural 

networks, to analyze vast amounts of real-time and historical operational data for early fault 

identification and risk assessment (Chaoui et al., 2018; Hossen et al., 2023). By utilizing AI, power utilities 

can transition from static maintenance schedules to dynamic, data-driven strategies that adapt to 

changing grid conditions, thereby improving reliability and cost-effectiveness (Sohel et al., 2022; 

Wang et al., 2024). AI techniques have demonstrated superior performance in diagnosing faults in 

transformers, circuit breakers, and power transmission lines, leading to proactive maintenance 

scheduling and reducing system downtime (Bhuiyan et al., 2024; Oluwasegun & Jung, 2020). One of 

the primary applications of AI in predictive maintenance is anomaly detection, which enables the 

early identification of faults before they escalate into critical failures. Machine learning models, such 

as support vector machines (SVMs), k-nearest neighbors (k-NN), and random forests, are widely used 

to classify fault patterns and detect deviations from normal operational conditions (Bindi et al., 2023; 

Roksana, 2023). These models analyze sensor data, including voltage fluctuations, current 

imbalances, and temperature variations, to assess the health of electrical components (Kumar et 

al., 2022). Deep learning models, including convolutional neural networks (CNNs) and long short-

term memory (LSTM) networks, have been particularly effective in recognizing complex fault 

signatures in high-dimensional power system data (Bazmohammadi et al., 2022; Jahan, 2023). 

Research has demonstrated that AI-driven anomaly detection significantly reduces the risk of 

unexpected equipment failures, as it allows for timely maintenance interventions based on real-time 

condition monitoring (Ahmed et al., 2022; Drews et al., 2007). Additionally, AI-powered fault 

detection minimizes false alarms and improves diagnostic accuracy, reducing the operational 

burden on grid operators (Mahfuj et al., 2022; Wu et al., 2021). 

 

Figure 5: Step wise Role of AI in Predictive Maintenance 

 

 
 

AI applications in predictive maintenance have also contributed to substantial cost savings by 

optimizing asset utilization and minimizing unnecessary maintenance activities (Chowdhury et al., 

2023; Vita et al., 2023). Traditional preventive maintenance often leads to excessive servicing of 

components, resulting in wasted resources and increased operational expenses (Tonoy, 2022; Wang 

et al., 2018). AI-based predictive maintenance, on the other hand, employs predictive analytics to 

assess the remaining useful life (RUL) of equipment, enabling targeted interventions only when 

necessary (Alam et al., 2023; Ranawaka et al., 2024). Studies indicate that AI-driven maintenance 

strategies have reduced maintenance costs in power utilities by up to 30%, primarily by eliminating 
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redundant inspections and extending asset lifespans (Madni et al., 2019; Humaun et al., 2022). 

Moreover, reinforcement learning approaches have been explored for optimizing maintenance 

scheduling, allowing AI models to continuously learn and improve decision-making based on 

evolving grid conditions (Drews et al., 2007; Sudipto et al., 2023). The integration of AI with digital twin 

technology has further enhanced cost efficiency by providing virtual simulations of power system 

behavior, enabling predictive fault analysis without physical inspections (Cavus et al., 2025; Tonoy & 

Khan, 2023). Beyond fault detection and cost reduction, AI-driven predictive maintenance plays a 

crucial role in optimizing overall power system operations by enhancing grid reliability and efficiency. 

Self-healing grid technologies leverage AI-based control systems to autonomously detect and 

isolate faults, reducing restoration time and improving system resilience (Hoffmann et al., 2020; 

Shahan et al., 2023). AI-powered decision support systems assist grid operators in prioritizing 

maintenance activities, ensuring that critical assets receive timely interventions while maintaining 

stable electricity distribution (Aklima et al., 2022; Liu et al., 2018). The deployment of Internet of Things 

(IoT) sensors and AI-driven analytics has further enabled real-time performance monitoring, allowing 

utilities to dynamically adjust maintenance schedules based on live operational data (Kande et al., 

2017; Rahaman & Islam, 2021). Studies highlight that AI-driven predictive maintenance contributes 

to more sustainable energy management by reducing power losses and improving load balancing 

(Cavus et al., 2025; Tonoy, 2022). Despite these advancements, challenges such as data integrity, 

cybersecurity threats, and model interpretability must be addressed to fully leverage AI's potential in 

predictive maintenance (Rahim et al., 2019; Younus, 2022).  

Supervised Learning Techniques 

Supervised learning techniques have become essential in fault classification for predictive 

maintenance in electrical power systems (Mahdy et al., 2023; Y. Wang et al., 2021). These techniques 

rely on labeled datasets, where historical fault data is used to train models to recognize patterns and 

classify new fault instances accurately (Al-Arafat et al., 2024; Kumari et al., 2023). Among the various 

supervised learning algorithms, Support Vector Machines (SVMs), Decision Trees (DTs), and Random 

Forests (RFs) have demonstrated significant effectiveness in detecting and diagnosing faults in power 

grids, transformers, and other critical electrical components (Alam et al., 2024; Oluwasegun & Jung, 

2020). These methods leverage historical operational data, including voltage fluctuations, current 

imbalances, and frequency deviations, to classify faults and predict potential failures with high 

precision (Alam et al., 2024; Chaoui et al., 2018). The adoption of supervised learning in fault 

classification has led to reduced downtime, improved asset utilization, and enhanced maintenance 

efficiency in power utilities (Arafat et al., 2024; Rojek et al., 2023). Moreover, Support Vector Machines 

(SVMs) have been widely used in fault classification due to their ability to handle high-dimensional 

data and provide robust classification even with small datasets. SVMs work by constructing 

hyperplanes that separate different fault categories in a multi-dimensional space, ensuring 

maximum margin separation between faulty and non-faulty instances (Bhuiyan et al., 2024; Farzaneh 

et al., 2021). Studies have shown that SVMs are particularly effective in detecting faults in electrical 

transmission lines and transformers, achieving high classification accuracy when trained on sufficient 

labeled data (Dasgupta & Islam, 2024; Kumari et al., 2023). Hybrid SVM models, which combine 

feature selection techniques with kernel-based SVMs, have been developed to improve 

classification performance by reducing computational complexity and enhancing model 

generalization (Hossain et al., 2024; Kumari et al., 2023). Comparative analyses indicate that SVMs 

outperform traditional rule-based fault detection methods, particularly in detecting transient faults 

and insulation failures in power grids (Glaessgen & Stargel, 2012; Hossain et al., 2024). Despite their 

advantages, SVMs require careful parameter tuning and large computational resources for training 

large-scale datasets (Jahan, 2024; Wu et al., 2020). 

Moreover, Decision Trees (DTs) have also been extensively applied in power system fault classification 

due to their interpretability and ease of implementation. DT models use a hierarchical structure 

where input features, such as voltage variations and frequency disturbances, are processed through 

a series of decision nodes to classify faults into predefined categories (Bhuiyan et al., 2024; 

Szczepaniuk & Szczepaniuk, 2022). The primary advantage of DTs lies in their ability to provide 

transparent decision rules, making them highly suitable for real-time fault detection applications in 

smart grids (Ahmad et al., 2021; Dasgupta & Islam, 2024). Research has demonstrated that DT-based 
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fault classifiers can achieve high accuracy when trained on well-preprocessed datasets with 

relevant fault indicators (Gou et al., 2024; Hossain et al., 2024). However, standard DT models are 

prone to overfitting, where the model memorizes training data rather than generalizing fault patterns 

effectively (Islam et al., 2024; Wu et al., 2020). To address this limitation, pruning techniques and 

ensemble learning approaches have been employed to improve the robustness of DT classifiers (Cao 

et al., 2024; Islam, 2024). 

Random Forests (RFs), an ensemble learning extension of Decision Trees, have emerged as one of 

the most reliable supervised learning techniques for fault classification in electrical power systems. RF 

models construct multiple decision trees during training and aggregate their predictions to improve 

classification accuracy and model stability (Jahan, 2024; Radanliev et al., 2020). This ensemble 

approach reduces (Hua et al., 2022; Jim et al., 2024)the risk of overfitting, making RFs particularly 

suitable for fault classification tasks that involve noisy or imbalanced datasets (Gou et al., 2024; 

Mahabub, Das, et al., 2024). Studies have demonstrated that RF models achieve superior 

classification performance in identifying electrical faults such as short circuits, voltage sags, and 

phase imbalances compared to single-tree models (Ivaniš, 2024; Mahabub, Jahan, et al., 2024). 

Furthermore, feature importance analysis in RF models allows utilities to identify the most critical 

parameters contributing to fault classification, aiding in more efficient predictive maintenance 

planning (Islam et al., 2024; Propfe et al., 2012). Despite their advantages, RFs require significant 

computational resources for training large ensembles, which may pose challenges for real-time 

applications in power grid monitoring (S. H. Mridha Younus et al., 2024; Younus et al., 2024). The 

integration of supervised learning techniques such as SVMs, DTs, and RFs has significantly improved 

fault classification in predictive maintenance, enabling power utilities to detect failures with higher 

accuracy and efficiency (Rahaman et al., 2024; Rana et al., 2024). These algorithms have 

demonstrated their ability to process vast amounts of sensor data, identify fault patterns, and 

optimize maintenance schedules based on predictive analytics (Roy et al., 2024; Shen et al., 2023). 

While each method offers unique strengths and challenges, their combined use in hybrid models has 

further enhanced fault detection accuracy and decision-making capabilities (Radanliev et al., 2020; 

Sabid & Kamrul, 2024). As electrical power systems continue to evolve, supervised learning 

techniques will remain a cornerstone of AI-driven predictive maintenance, providing reliable and 

scalable solutions for fault classification and power grid optimization (Danish & Senjyu, 2023; Siddiki 

et al., 2024). 

 

Figure 6: Supervised Learning Techniques for Fault Classification in Predictive Maintenance 
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Deep Learning Models 

The application of deep learning in power grid fault prediction has significantly enhanced the ability 

of utilities to detect and mitigate failures with high accuracy and efficiency (Luo et al., 2023; Sunny, 

2024c). Unlike traditional machine learning models, deep learning techniques, including 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term 

Memory (LSTM) models, can automatically extract relevant features from large volumes of complex 

grid data without requiring manual feature engineering (Roy et al., 2023; Sunny, 2024a). These models 

excel at capturing spatial, temporal, and sequential dependencies in power system signals, allowing 

for improved fault classification, anomaly detection, and predictive maintenance (Sunny, 2024b; S. 

Wang et al., 2024). The integration of deep learning into power system monitoring has demonstrated 

superior fault prediction capabilities compared to conventional supervised learning methods, 

making them an indispensable tool in modern smart grids (Razee et al., 2025; Bedi & Toshniwal, 2019). 

Convolutional Neural Networks (CNNs) have been widely applied in power grid fault classification 

due to their strong feature extraction capabilities. CNNs process input data through multiple layers 

of convolutional filters that capture spatial patterns in sensor measurements, including voltage 

waveforms, frequency deviations, and phase imbalances (Bedi & Toshniwal, 2019; Islam et al., 2025; 

Succetti et al., 2020). Studies have shown that CNN-based models achieve high accuracy in 

detecting and classifying different types of power system faults, such as short circuits, voltage sags, 

and harmonics distortion (Chaoui et al., 2018; Cicceri et al., 2023; Islam et al., 2025). The ability of 

CNNs to analyze time-frequency representations of electrical signals, such as spectrograms and 

wavelet transforms, makes them particularly effective in identifying transient faults (Correa-Jullian et 

al., 2020; Munira, 2025). Additionally, hybrid CNN models that integrate attention mechanisms and 

residual learning techniques have demonstrated improved robustness in noisy and imbalanced 

datasets (Cicceri et al., 2023; Sarkar et al., 2025). However, despite their advantages, CNNs primarily 

focus on spatial relationships and may not effectively capture long-term temporal dependencies in 

sequential power system data, necessitating the use of recurrent architectures (Shimul et al., 2025; 

Succetti et al., 2020). 

 

Figure 7: Common Deep Learning Optimizations 

 

Source:  Jianping Gou et al (2021) 
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Recurrent Neural Networks (RNNs) have been extensively utilized in power grid fault prediction due 

to their ability to process sequential data and capture temporal dependencies. Unlike CNNs, which 

operate on fixed-sized input features, RNNs leverage recurrent connections that allow them to retain 

past information and model time-series data effectively (Taufiqur, 2025; Xu et al., 2024). Studies have 

demonstrated that RNNs can predict faults in power transmission lines, transformers, and substations 

by analyzing historical sensor readings and detecting anomalies indicative of impending failures 

(Park et al., 2024; Xu et al., 2024; Younus, 2025). The application of RNN-based models in real-time 

power system monitoring has improved early fault detection by continuously updating fault 

probability estimates based on incoming data (Xu et al., 2019). However, conventional RNNs suffer 

from vanishing gradient issues, limiting their ability to capture long-term dependencies in power grid 

signals (Basnet & Ali, 2021). To overcome this limitation, advanced recurrent architectures such as 

Long Short-Term Memory (LSTM) networks have been developed to enhance predictive 

performance in power system fault analysis (Cicceri et al., 2023). 

Long Short-Term Memory (LSTM) networks represent a significant advancement in deep learning-

based fault prediction, as they effectively address the challenges of traditional RNNs by 

incorporating gated mechanisms that regulate information flow (Chaoui et al., 2018). LSTM models 

have demonstrated remarkable accuracy in forecasting grid failures by analyzing multi-step time-

series data and identifying complex temporal dependencies in electrical signals (Kumar et al., 2023). 

Studies have shown that LSTM-based models outperform both CNNs and standard RNNs in long-term 

fault prediction tasks, particularly in high-voltage transmission networks where subtle anomalies 

precede critical failures (Xu et al., 2019). Additionally, hybrid architectures that combine CNNs and 

LSTMs have been developed to leverage both spatial and temporal feature extraction, resulting in 

improved accuracy in real-time fault detection (Wang et al., 2023). Despite their superior predictive 

capabilities, LSTMs require extensive computational resources and large labeled datasets for 

training, making their deployment challenging in real-time power grid applications (Kumar et al., 

2023). The adoption of deep learning models, particularly CNNs, RNNs, and LSTMs, has significantly 

enhanced fault detection and predictive maintenance strategies in modern power grids. These 

models have demonstrated exceptional performance in analyzing high-dimensional power system 

data, improving fault classification accuracy, and optimizing maintenance planning (Xu et al., 2019). 

The integration of AI-driven deep learning architectures with IoT-based sensor networks and edge 

computing has further strengthened real-time power grid monitoring and fault mitigation efforts 

(Kumar et al., 2023). While deep learning continues to revolutionize predictive maintenance in 

electrical power systems, ongoing research focuses on addressing challenges related to model 

interpretability, scalability, and deployment in distributed grid environments (Wang et al., 2023).  

Hybrid AI Models 

Hybrid AI models have emerged as a powerful approach for predictive maintenance in electrical 

power systems by integrating multiple machine learning techniques to enhance fault detection 

accuracy and reliability (Zhang et al., 2020). Traditional machine learning and deep learning models, 

such as Support Vector Machines (SVMs), Decision Trees (DTs), Random Forests (RFs), Convolutional 

Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks, each possess unique 

strengths and limitations (Liu et al., 2024). Hybrid AI models combine these methods to leverage their 

complementary advantages, improving predictive performance, reducing false positives, and 

enhancing computational efficiency (Zakaret et al., 2022). By integrating supervised, unsupervised, 

and reinforcement learning techniques, hybrid models can analyze large-scale power system data, 

identify hidden patterns in fault occurrences, and optimize maintenance planning with greater 

precision (Propfe et al., 2012). The synergy between different AI algorithms has enabled power utilities 

to transition from static maintenance strategies to dynamic, self-learning models capable of 

adapting to changing grid conditions in real time (Pestana & Sofou, 2024). A common approach in 

hybrid AI models is the combination of ensemble learning techniques with deep learning 

architectures to improve predictive maintenance accuracy. For example, hybrid models that 

integrate Random Forests (RFs) with deep neural networks (DNNs) have demonstrated superior fault 

classification performance by combining the feature selection capabilities of RFs with the high-

dimensional data processing ability of DNNs (Wesley et al., 2024). Studies have shown that hybrid RF-

DNN models outperform standalone classifiers in detecting transient faults in power transmission lines 
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by reducing misclassification rates and improving generalization across different operating 

conditions (Propfe et al., 2012; Wesley et al., 2024). Similarly, CNN-LSTM hybrid models have been 

widely adopted for predictive maintenance in smart grids, as CNNs efficiently extract spatial features 

from power grid sensor data while LSTMs capture long-term dependencies in sequential fault 

occurrences (Zhang & Wang, 2021). Research has demonstrated that CNN-LSTM models provide 

enhanced fault prediction accuracy compared to traditional RNNs, particularly in high-voltage 

substations where early fault detection is crucial for preventing system-wide failures (Kaytez, 2020). 

Digital Twin Technology for Power Grid Monitoring 

Digital twin technology has emerged as a transformative approach for monitoring and managing 

power grids by creating virtual representations of physical grid infrastructure (Tuegel, 2012). A digital 

twin is a dynamic, real-time digital replica of a physical system that integrates historical and live data 

to simulate grid behavior under various operational scenarios (Mashaly, 2021). The primary objective 

of digital twins in power grid management is to provide a holistic view of system performance, 

enabling predictive maintenance, fault detection, and operational optimization (Wang et al., 2021). 

By leveraging real-time sensor data, digital twins continuously update and refine their models, 

ensuring accurate system state representation and anomaly detection (McHirgui et al., 2024). These 

models employ advanced data analytics, Internet of Things (IoT) devices, and high-performance 

computing to monitor grid conditions, predict failures, and simulate potential corrective actions (Lv 

& Xie, 2022). The functionality of digital twins in power grid monitoring is rooted in their ability to 

integrate multi-source data, including electrical loads, grid topology, and environmental factors, to 

generate actionable insights (Wu et al., 2020). Digital twins enhance situational awareness by 

allowing grid operators to visualize and assess asset conditions in real time, thus improving decision-

making for maintenance scheduling and resource allocation (Jahromi et al., 2023). Additionally, 

these virtual models facilitate what-if analysis, enabling power system engineers to simulate different 

operational strategies before implementation, reducing risks and optimizing grid stability (Wu et al., 

2020). Recent advancements in cloud computing and edge analytics have further improved the 

efficiency and scalability of digital twins, making them essential for modern smart grid infrastructure 

(Coppolino et al., 2023). 

 

Figure 8: Digital Twin Architecture 

  Source: www.opal-rt.com (2024) 

 

The integration of artificial intelligence (AI) with digital twin technology has significantly enhanced 

fault detection and predictive maintenance capabilities in power systems. AI-driven digital twins 
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utilize machine learning algorithms, deep learning models, and real-time analytics to identify 

abnormal patterns and potential failures before they occur (McHirgui et al., 2024). AI models, 

including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-

Term Memory (LSTM) networks, analyze streaming sensor data to detect voltage fluctuations, load 

imbalances, and insulation degradation, which are indicative of impending faults (Wang et al., 

2021). This integration allows for real-time fault classification and proactive maintenance scheduling, 

reducing unplanned outages and operational costs (Wu et al., 2020). AI-enabled digital twins also 

facilitate self-learning mechanisms that improve predictive maintenance accuracy over time. These 

models continuously refine fault prediction algorithms by analyzing historical fault data and real-time 

sensor inputs, ensuring adaptive maintenance strategies based on evolving grid conditions 

(Mandolla et al., 2019). Furthermore, reinforcement learning techniques have been incorporated 

into digital twin systems to optimize maintenance actions dynamically, prioritizing interventions based 

on fault severity and grid impact (Mandolla et al., 2019; Mashaly, 2021). Studies have shown that AI-

powered digital twins improve fault detection precision by over 30% compared to conventional rule-

based monitoring systems, making them an invaluable tool for modern power utilities (Deena et al., 

2022; Mandolla et al., 2019; Mashaly, 2021). 

Self-Healing Grids and Autonomous Fault Management 

Self-healing grids represent a transformative advancement in power system resilience, leveraging 

automation and advanced computational techniques to detect, isolate, and rectify faults with 

minimal human intervention (McHirgui et al., 2024; Werner et al., 2019). These grids are designed to 

autonomously restore normal operation following disturbances by dynamically adjusting grid 

topology and rerouting power flow (Qiao & Lv, 2023). Unlike traditional power distribution networks, 

which rely on manual fault response and maintenance, self-healing grids employ real-time 

monitoring and intelligent control mechanisms to prevent outages and mitigate disruptions 

(Mandolla et al., 2019). Key functionalities of self-healing grids include rapid fault isolation, 

automated reconfiguration, load balancing, and predictive maintenance to ensure continuous and 

stable power delivery (Werner et al., 2019). Moreover, the core concept of self-healing power grids 

is rooted in their ability to respond dynamically to faults through automated system adjustments. 

These grids integrate distributed energy resources (DERs), smart switches, and intelligent control 

algorithms to optimize energy flow and minimize downtime (Mashaly, 2021). By leveraging real-time 

data analytics and predictive fault detection, self-healing grids can preemptively identify 

vulnerabilities and initiate corrective measures before faults escalate (Zhang et al., 2020). Studies 

have demonstrated that self-healing mechanisms significantly improve grid reliability, particularly in 

regions prone to extreme weather events and high electrical demand (Deena et al., 2022). The 

implementation of self-healing grids is increasingly aligned with the goals of modern smart grids, as 

they enhance energy security and improve operational efficiency (Shen et al., 2023). The 

effectiveness of self-healing grids is largely dependent on the integration of sensor networks and 

automated circuit reconfiguration technologies. The deployment of IoT-enabled sensors across 

power grids allows for continuous monitoring of electrical parameters, such as voltage, current, and 

temperature, facilitating real-time anomaly detection (Mandolla et al., 2019). These sensors collect 

and transmit data to centralized or edge-computing systems, where AI-driven fault diagnosis models 

process the information to identify potential failures (Coppolino et al., 2023). The use of advanced 

communication protocols, such as 5G and low-power wide-area networks (LPWAN), enhances the 

efficiency of sensor-based fault detection systems by ensuring low-latency data transmission (Zhang 

et al., 2020).Automated circuit reconfiguration is another critical component of self-healing grids, 

enabling the system to isolate faults and redirect power flow to unaffected areas. Intelligent reclosers 

and smart switches automatically reroute electricity in response to detected faults, reducing service 

disruptions and minimizing the need for manual intervention (Deena et al., 2022). Studies have 

demonstrated that the integration of automated circuit reconfiguration with AI-powered predictive 

maintenance significantly improves grid stability by proactively addressing weak points in the 

network (Shen et al., 2023).  
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Figure 9: From Monitoring to AI-Driven Optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, cloud-based grid management platforms enhance the effectiveness of self-healing 

mechanisms by providing real-time visualization and control over grid reconfiguration processes (Wu 

et al., 2020). In China, large-scale smart grid deployments have successfully implemented self-

healing capabilities in high-voltage transmission networks, allowing for dynamic load balancing and 

rapid recovery from grid disturbances (Wu et al., 2020). Additionally, in Japan, researchers have 

explored the use of AI-enhanced self-healing grids in disaster-prone regions, where intelligent 

reclosers and distributed energy resources (DERs) have significantly improved power restoration 

following earthquakes and typhoons (Deena et al., 2022). Case studies from India and Brazil have 

also highlighted the benefits of self-healing grids in rural and remote areas, where automated circuit 

reconfiguration has minimized downtime and enhanced energy access (Tuegel, 2012). 

IoT-Enabled Sensor Networks 

The integration of the Internet of Things (IoT) in power grid monitoring has revolutionized fault 

detection by enabling real-time data collection and analysis. IoT-enabled sensor networks play a 

crucial role in continuously monitoring the electrical parameters of power systems, detecting 

anomalies, and predicting faults before they escalate into critical failures (Russell et al., 2018). Various 

types of sensors are deployed in power grids to collect data on voltage, current, temperature, 

humidity, and vibrations, which are key indicators of system health (Walia et al., 2024). Among the 

most commonly used sensors, Phasor Measurement Units (PMUs) provide high-speed, time-

synchronized measurements of voltage and current phasors, allowing for real-time stability analysis 

and fault localization (Mazhar et al., 2023). Current and Voltage Sensors monitor fluctuations in 

electrical parameters and help in the early detection of overvoltage, undervoltage, and short 

circuits (Bedi et al., 2022). Additionally, Temperature Sensors play a critical role in monitoring the 

thermal performance of transformers, circuit breakers, and transmission lines, as overheating is often 

a precursor to equipment failure (Atlam et al., 2018). Vibration Sensors are used to detect 

mechanical faults in rotating electrical machines such as generators and motors, helping prevent 

catastrophic breakdowns (Gou et al., 2024). Partial Discharge (PD) Sensors are particularly useful in 

monitoring insulation health, detecting electrical discharges that indicate insulation degradation 

before complete failure occurs (Anthony, 2024; Pandiyan et al., 2024). The combination of these IoT 
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sensors enables a comprehensive, real-time assessment of power system conditions, enhancing fault 

detection accuracy and predictive maintenance planning (Minerva et al., 2020). 

The exponential growth of IoT sensor networks in power grids has necessitated the use of advanced 

computing solutions to process vast amounts of real-time data efficiently. Cloud computing provides 

scalable storage and computational power for analyzing sensor data, enabling AI-driven predictive 

maintenance and fault detection (Cakir et al., 2023). By leveraging cloud-based platforms, utilities 

can centralize data from multiple grid locations, apply machine learning models, and generate 

actionable insights for grid operators (Kumar et al., 2020). Cloud computing services, such as Amazon 

Web Services (AWS), Microsoft Azure, and Google Cloud, offer AI-driven analytics tools that help 

identify abnormal patterns in electrical grid behavior and forecast potential failures (Udayaprasad 

et al., 2024). However, cloud computing alone is often insufficient for time-sensitive applications, as 

data transmission to centralized servers can introduce latency issues. To address this challenge, edge 

computing has emerged as a complementary solution, enabling real-time data processing closer to 

the source of data collection (Bhaskar et al., 2022). Edge computing devices, such as industrial 

gateways and edge AI processors, analyze sensor data locally, reducing the need for constant 

communication with cloud servers (Quy et al., 2024). This decentralized approach significantly 

enhances the responsiveness of AI-driven fault management systems, allowing for immediate 

corrective actions in cases of power disturbances (Zahmatkesh & Al-Turjman, 2020). The combination 

of cloud and edge analytics has improved grid reliability by enabling faster fault detection, real-time 

anomaly mitigation, and optimized resource utilization (Alonso et al., 2024). 

Signal processing techniques play a fundamental role in analyzing power system data collected 

from IoT sensor networks. These techniques help in extracting meaningful features from noisy sensor 

signals, allowing AI models to classify faults accurately and distinguish between normal and 

abnormal operating conditions (Gou et al., 2024). One of the most widely used techniques in fault 

analysis is the Wavelet Transform (WT), which provides time-frequency domain representation, 

making it highly effective in detecting transient disturbances such as voltage sags, harmonics, and 

switching transients (Pandiyan et al., 2024). WT has been successfully applied in analyzing power 

quality disturbances and identifying early-stage insulation degradation in transformers and cables 

(Kumar et al., 2020). Another widely used method is the Fourier Transform (FT), which converts time-

domain signals into the frequency domain, allowing for the identification of harmonic distortions and 

frequency abnormalities in electrical power systems (Bhaskar et al., 2022). The Fast Fourier Transform 

(FFT), a computationally efficient version of FT, is frequently employed for real-time spectral analysis 

of grid signals, enabling the detection of periodic faults and oscillatory instability (Zahmatkesh & Al-

Turjman, 2020). Additionally, Principal Component Analysis (PCA) is utilized in fault classification and 

dimensionality reduction, helping AI models focus on the most relevant features while eliminating 

redundant or noisy data (Kumar et al., 2020). PCA has been particularly effective in detecting sensor 

anomalies and optimizing fault detection algorithms in large-scale power grids (Zahmatkesh & Al-

Turjman, 2020). The integration of these signal processing techniques with AI-driven models has 

significantly improved the accuracy and efficiency of IoT-based fault detection systems. 

Explainability and Trust in AI Decision-Making 

Artificial intelligence (AI) has significantly transformed predictive maintenance and fault detection 

in electrical power systems by leveraging deep learning models to process vast amounts of real-time 

data and identify anomalies (Shen et al., 2023). However, one of the major challenges associated 

with deep learning-based AI models is their black-box nature, which makes it difficult for operators 

and decision-makers to understand how predictions and classifications are derived (Antonopoulos 

et al., 2020). Unlike traditional rule-based systems, where decision-making logic is explicitly 

programmed, deep learning models, such as Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks, operate through complex, multi-layered computations that lack 

transparency (Barrett & Haruna, 2020). This opacity raises concerns about trust, accountability, and 

reliability, particularly in high-stakes applications like power grid fault management, where incorrect 

predictions can lead to severe operational and financial consequences (Lipu et al., 2023). 

The lack of interpretability in AI models limits their adoption in safety-critical industries, as engineers 

and grid operators may be reluctant to rely on opaque algorithms for fault detection and predictive 

maintenance (Farzaneh et al., 2021). Studies have shown that while deep learning models 
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outperform traditional methods in accuracy and efficiency, their decision-making processes remain 

inscrutable to human operators, making it difficult to validate their predictions (Adnan et al., 2021). 

For instance, an AI-driven fault detection system might predict a potential transformer failure with 

high confidence, but without explainability, operators cannot ascertain which sensor readings or 

system conditions contributed to the prediction (Barrett & Haruna, 2020). The European Union’s 

General Data Protection Regulation (GDPR) has further highlighted the need for AI explainability by 

advocating for the "right to explanation," which mandates that AI-driven decisions affecting 

individuals or businesses should be interpretable and justifiable (Lipu et al., 2023). To address the 

black-box problem, researchers have developed Explainable AI (XAI) frameworks that enhance the 

interpretability of AI-driven decision-making in power systems (Farzaneh et al., 2021). One of the most 

widely used techniques for AI explainability is Shapley Additive Explanations (SHAP), which assigns 

importance scores to input features, helping operators understand which parameters—such as 

voltage fluctuations, frequency anomalies, or current distortions—had the most significant influence 

on an AI model’s prediction (Adnan et al., 2021). Another approach is Local Interpretable Model-

agnostic Explanations (LIME), which generates simplified surrogate models that approximate deep 

learning behavior in an interpretable way (Serban & Lytras, 2020).  LIME has been successfully applied 

in AI-driven power grid monitoring, where it provides human-readable explanations of fault 

classification results (Antonopoulos et al., 2020).  

 

Figure 10: Explainability and Trust in AI Decision-Making 

 

Additionally, attention-based deep learning architectures have been explored to highlight which 

time-series data points contribute most to AI-driven fault detection, improving transparency in 

predictive maintenance applications (Adnan et al., 2021). Building trust in AI-driven fault detection 

also requires robust validation and regulatory compliance measures to ensure that AI predictions 

align with real-world power system behavior (Serban & Lytras, 2020). One approach involves using 

hybrid AI models, where interpretable machine learning algorithms, such as decision trees and rule-

based classifiers, are integrated with deep learning systems to provide justifiable explanations for 

critical maintenance decisions (Radanliev et al., 2020). Additionally, digital twin technology has 

been increasingly used to validate AI-driven predictions by simulating power grid behavior and 

comparing AI outputs with physical grid conditions (Lipu et al., 2023). Ensuring that AI-driven 

predictive maintenance models are interpretable, robust, and aligned with engineering principles is 

crucial for fostering trust among power system operators, regulators, and stakeholders (Farzaneh et 

al., 2021). Despite ongoing advancements in explainable AI, challenges remain in balancing model 

complexity and interpretability. While deep learning models continue to outperform traditional 

techniques in fault detection accuracy, their opacity poses challenges in terms of accountability, 
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regulatory compliance, and user trust (Omitaomu & Niu, 2021). Future research in AI-driven power 

system management must focus on developing interpretable deep learning architectures, 

incorporating human-in-the-loop AI frameworks, and enhancing collaboration between AI 

researchers and electrical engineers to build transparent, reliable, and trustworthy predictive 

maintenance solutions (Serban & Lytras, 2020). 

AI vs. Traditional Fault Detection Methods 

The increasing complexity of modern power grids has necessitated more advanced fault detection 

and predictive maintenance techniques beyond traditional rule-based approaches (Bindi et al., 

2023). Conventional fault detection methods, such as time-based preventive maintenance, 

condition-based monitoring, and statistical anomaly detection, have long been employed to ensure 

the reliability of electrical power systems (Runsewe et al., 2023). These traditional techniques rely on 

predefined thresholds, expert-driven decision rules, and periodic inspections to identify potential 

failures (Trizoglou et al., 2021). However, as power systems become more decentralized and data-

driven, these methods have exhibited limitations in adaptability, scalability, and predictive 

accuracy, prompting the shift toward artificial intelligence (AI)-based fault detection (Lopez et al., 

2022). AI-driven techniques, including machine learning (ML) and deep learning (DL), have 

demonstrated significant improvements in fault classification, failure prediction, and real-time 

monitoring by leveraging vast amounts of historical and real-time sensor data (Eggebeen et al., 

2023). 

Figure 11: AI vs. Traditional Fault Detection Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the key advantages of AI-based fault detection over traditional methods is its ability to 

process large-scale and high-dimensional data with greater accuracy and efficiency (Mustafa et 

al., 2024). Traditional predictive maintenance techniques often rely on heuristic-based models, such 

as vibration analysis, thermal imaging, and expert-driven failure assessment, which require manual 

interpretation and periodic evaluations (Zhang et al., 2020). While these approaches have proven 

effective in structured environments, they lack the ability to detect complex, non-linear patterns in 

power system failures (Lazzaretti et al., 2020). AI-driven methods, particularly supervised and 

unsupervised learning algorithms, can automatically learn fault patterns from historical data and 

continuously refine their predictive capabilities without human intervention (Zhang et al., 2020). For 

instance, Support Vector Machines (SVMs) and Random Forest (RF) classifiers have outperformed 
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conventional rule-based techniques in diagnosing insulation failures in transformers and short circuits 

in distribution networks (Eggebeen et al., 2023). Moreover, deep learning techniques, such as 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, have further 

enhanced fault detection accuracy by analyzing sequential and time-series data from power grids 

(Runsewe et al., 2023). Traditional condition-based monitoring relies on fixed threshold limits for 

detecting abnormalities in voltage, current, and frequency deviations (Lopez et al., 2022). In 

contrast, deep learning models can dynamically identify hidden fault signatures that may not be 

evident through traditional threshold-based methods (Eggebeen et al., 2023). Studies have shown 

that AI-based fault detection can achieve up to 95% classification accuracy in identifying transient 

faults, whereas conventional rule-based methods often suffer from high false positive and false 

negative rates due to rigid decision criteria (Liao & Lu, 2021). Additionally, AI models integrate 

reinforcement learning techniques, enabling adaptive maintenance scheduling based on evolving 

grid conditions, which is not possible with static predictive maintenance frameworks (Sifat et al., 

2023). 

While AI-based fault detection offers significant advantages over traditional methods, challenges 

such as model interpretability, computational requirements, and data dependency must be 

addressed for large-scale adoption (Xu et al., 2024). Traditional predictive maintenance techniques, 

such as periodic inspections and expert-driven diagnostics, provide a level of transparency and 

explainability that deep learning models often lack (Bhuiyan et al., 2021). The black-box nature of 

deep learning architectures makes it difficult for power grid operators to validate AI-driven fault 

predictions, leading to concerns about trust and regulatory compliance (Zhang et al., 2020). Efforts 

to develop explainable AI (XAI) frameworks, such as Shapley Additive Explanations (SHAP) and Local 

Interpretable Model-Agnostic Explanations (LIME), aim to bridge this gap by providing human-

readable insights into AI decision-making processes (Adnan et al., 2023). Additionally, AI-driven fault 

detection requires high-quality, labeled datasets for training, which may not always be available in 

legacy power grid infrastructures, posing a barrier to implementation (Choi et al., 2023). Despite 

these challenges, AI-based fault detection continues to outperform traditional predictive 

maintenance techniques in terms of fault classification accuracy, adaptability to changing grid 

conditions, and automated real-time anomaly detection (Alsharif et al., 2024). The integration of AI 

with Internet of Things (IoT) sensor networks, cloud computing, and digital twin technology has further 

enhanced its effectiveness in modern power systems (Wang et al., 2024). Comparative studies 

indicate that hybrid AI approaches, which combine machine learning with conventional statistical 

techniques, provide the best balance between predictive accuracy and model interpretability 

(Eggebeen et al., 2023). As power grids transition towards smarter and more autonomous systems, 

AI-driven fault detection is expected to play a central role in ensuring grid resilience, reducing 

maintenance costs, and minimizing unplanned outages (Alsharif et al., 2024). 

METHOD 

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure a systematic, transparent, and rigorous review process. The PRISMA framework 

provided a structured approach for identifying, selecting, appraising, and synthesizing relevant 

literature on AI-driven fault detection and predictive maintenance in electrical power systems. The 

methodological process involved multiple phases, including literature search, inclusion and exclusion 

criteria application, data extraction, quality assessment, and synthesis of findings. 

Article Identification and Search Strategy 

The systematic literature search was conducted across multiple academic databases, including IEEE 

Xplore, ScienceDirect, SpringerLink, Web of Science, and Scopus. These databases were selected 

due to their extensive coverage of peer-reviewed research articles on artificial intelligence, fault 

detection, and predictive maintenance in power systems. To ensure comprehensive retrieval of 

relevant studies, a predefined set of search terms and Boolean operators was used. The keywords 

included "AI-driven fault detection," "predictive maintenance in power grids," "machine learning for 

fault diagnosis," "self-healing grids," "digital twin in power systems," and "IoT-enabled fault monitoring." 

The search was refined using Boolean operators such as AND, OR, and NOT to combine relevant 

terms and exclude irrelevant studies. The literature search focused on articles published between 
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2015 and 2024 to capture the latest advancements in AI-driven predictive maintenance. A total of 

3,450 articles were initially retrieved from the selected databases. 

Screening and Selection Process 

After retrieving the initial set of articles, duplicates were identified and removed using reference 

management software, resulting in 2,850 unique articles. The titles and abstracts of these articles 

were then screened based on predefined inclusion and exclusion criteria. The inclusion criteria 

required that studies (1) focus on AI applications in fault detection and predictive maintenance 

within electrical power systems, (2) provide empirical evidence through case studies, experiments, 

or simulations, (3) be published in peer-reviewed journals or conference proceedings, and (4) be 

written in English. Articles were excluded if they (1) focused on unrelated fields such as AI in finance 

or healthcare, (2) lacked sufficient methodological details, (3) were review papers without original 

research findings, or (4) were opinion pieces or editorials. This screening process reduced the number 

of relevant articles to 635. 

Full-Text Review and Quality Assessment 

The remaining 635 articles underwent a full-text review to further assess their relevance and 

methodological rigor. Each study was evaluated based on research design, data collection 

methods, AI techniques applied, and the validity of findings. Quality assessment was conducted 

using a modified version of the Critical Appraisal Skills Programme (CASP) checklist, which examined 

factors such as clarity of research objectives, appropriateness of AI models, robustness of data 

analysis, and reproducibility of results. Two independent reviewers assessed each article, and 

discrepancies in judgment were resolved through discussion. Following this in-depth review, 180 high-

quality articles were selected for inclusion in the final analysis. 

Data Extraction and Synthesis 

Data extraction was performed using a structured coding framework that captured key details from 

each selected study. The extracted data included study title, authors, publication year, research 

objectives, AI techniques used (e.g., machine learning, deep learning, digital twins, reinforcement 

learning), power system components analyzed (e.g., transformers, transmission lines, substations), 

evaluation metrics (e.g., accuracy, precision, recall, F1-score), and main findings. This structured 

approach ensured consistency in data collection and facilitated comparative analysis across 

studies. The synthesis of findings followed a narrative approach, categorizing studies based on their 

AI methodologies and application areas. Studies were grouped into distinct categories, including (1) 

machine learning-based fault detection, (2) deep learning techniques for predictive maintenance, 

(3) digital twin applications in power grids, (4) IoT-enabled sensor networks for real-time fault 

monitoring, and (5) self-healing grid technologies. Within each category, thematic analysis was 

conducted to identify common trends, emerging research directions, and existing gaps. 

Quantitative results, such as model performance comparisons and improvement percentages, were 

also documented where applicable. 

FINDINGS 

The systematic review of 180 high-quality articles revealed that AI-driven fault detection and 

predictive maintenance significantly enhance power grid resilience by improving fault prediction 

accuracy, reducing maintenance costs, and minimizing system downtime. Out of the reviewed 

studies, 134 articles (74.4%) reported that AI-based predictive maintenance strategies outperformed 

traditional condition-based monitoring techniques, with machine learning models achieving an 

average fault detection accuracy of 85% to 95%. This improvement was particularly evident in power 

transformers and high-voltage transmission lines, where real-time anomaly detection led to a 40% 

reduction in unexpected failures. The extensive use of supervised learning algorithms, including 

support vector machines, decision trees, and ensemble learning techniques, allowed AI systems to 

effectively classify faults with minimal human intervention. The high citation count of these articles, 

exceeding 8,700 citations, highlights the growing reliance on AI methodologies for ensuring grid 

reliability. 

Deep learning techniques have shown remarkable advancements in fault detection and predictive 

maintenance, as demonstrated by 79 articles (43.9%), which reported the successful application of 

deep neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs). 

These models have significantly improved fault classification in large-scale power grids, with CNN-
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based models achieving an average precision of 92% in detecting transient faults. The use of long 

short-term memory (LSTM) networks for time-series forecasting of power system anomalies has 

resulted in an 18% improvement in predictive accuracy compared to traditional statistical 

forecasting models. These findings, backed by over 6,200 citations, emphasize the scalability of deep 

learning-based fault detection, particularly in handling high-dimensional sensor data from IoT-

enabled grids. The review identified that digital twin technology is playing an increasingly crucial role 

in power grid monitoring and predictive maintenance, with 53 articles (29.4%) detailing its 

implementation in simulating grid behavior and fault scenarios. Digital twins have been reported to 

enhance real-time grid monitoring by 30%, enabling proactive intervention before faults lead to 

service disruptions. The articles further indicate that utilities employing digital twins for predictive 

maintenance have observed a 35% decrease in unplanned outages and a 25% extension in asset 

lifespan. The impact of these findings is reflected in the 4,500 citations accumulated across the 

reviewed studies, reinforcing the importance of digital twin integration for optimizing grid stability. 

 

Figure 12: Stacked Area Chart: Findings in AI-Based Fault Detection 

 

IoT-enabled sensor networks have emerged as a key enabler of AI-driven fault detection, as 

evidenced by 92 articles (51.1%), which highlighted the effectiveness of real-time sensor data in 

improving fault localization and anomaly detection. The deployment of IoT sensors in smart grids has 

led to a 50% reduction in false fault alarms, enhancing decision-making efficiency for grid operators. 

Real-time voltage and current monitoring through sensor networks has improved anomaly detection 

rates by 28%, ensuring early intervention and minimizing the risk of cascading failures. The widespread 

adoption of IoT-based fault detection techniques is supported by more than 5,300 citations, 

underlining their critical role in predictive maintenance strategies for modern power systems. 

Moreover, self-healing grids, which leverage AI-driven automation for fault isolation and recovery, 

have demonstrated substantial improvements in grid resilience, as reported by 61 articles (33.9%). 

The implementation of self-healing technologies has led to a 60% reduction in power restoration time, 

minimizing the impact of outages on consumers and industrial operations. The use of reinforcement 

learning algorithms for adaptive fault recovery has enabled power grids to dynamically reconfigure 

energy flow, preventing up to 45% of potential service disruptions. The significant contribution of 

these findings is reflected in the 4,200 citations, underscoring the growing adoption of self-healing 

grids to achieve autonomous fault management in next-generation power networks. 

The review also revealed key challenges in AI-driven fault detection and predictive maintenance, 

with 48 articles (26.7%) identifying barriers such as model interpretability, data quality issues, and 
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cybersecurity risks. The black-box nature of deep learning models remains a concern for grid 

operators, as 41% of these studies emphasized the need for explainable AI frameworks to improve 

trust and accountability in predictive maintenance decisions. Data integration challenges, 

particularly in legacy power systems, have slowed AI adoption, with utilities reporting difficulties in 

harmonizing sensor data from diverse sources. The security of AI-powered fault detection systems has 

also emerged as a critical issue, with a 35% increase in reported cyber threats targeting smart grid 

infrastructure. These challenges, collectively cited over 3,600 times, highlight the ongoing need for 

enhanced AI transparency, robust data governance, and cybersecurity measures to ensure the 

sustainable deployment of AI in power grid maintenance. 

DISCUSSION 

The findings of this study confirm the increasing reliability and efficiency of AI-driven fault detection 

and predictive maintenance in power grids, aligning with earlier research while offering new insights 

into specific advancements. Previous studies have highlighted the superiority of AI-based fault 

detection over traditional rule-based techniques, particularly in its ability to analyze large-scale data 

and identify complex fault patterns (Cavus et al., 2022). The present review expands on this by 

demonstrating that AI-based fault classification models achieve an average detection accuracy of 

85% to 95%, significantly reducing false alarms and improving response times. Earlier research by 

Cavus and Allahham (2024) found that traditional condition-based monitoring methods had a fault 

detection accuracy of 60% to 75%, indicating that AI-powered techniques have outperformed 

conventional systems. The widespread adoption of supervised learning algorithms, such as decision 

trees and support vector machines, confirms the scalability of AI models in predictive maintenance, 

as also reported in Vita et al. (2023). 

Deep learning has been a major area of advancement in AI-driven predictive maintenance, and 

the current review affirms its role in improving fault detection precision. Prior studies by Cavus et al., 

(2025) and Hoffmann et al. (2020) recognized the potential of deep neural networks in classifying 

electrical faults, though they noted limitations in computational complexity and overfitting risks. The 

present findings support these observations but indicate that recent innovations, particularly in CNN 

and LSTM models, have mitigated these issues. The reviewed studies demonstrate that CNN-based 

fault detection models now achieve 92% precision, an improvement over the 80% reported in 

previous studies (Cavus et al., 2025). Similarly, the use of LSTM networks for time-series analysis has 

enhanced predictive accuracy by 18% compared to traditional statistical forecasting models, 

validating earlier work by Liu et al. (2018). This suggests that deep learning approaches have not only 

become more refined but also more applicable in real-world power grid monitoring. Moreover, the 

role of digital twin technology in power system fault prediction has been increasingly emphasized in 

recent literature, and this review confirms its significant contributions. Earlier research by Blum et al. 

(2022) argued that digital twins could enhance real-time grid monitoring but lacked empirical data 

on performance improvements. The findings from this study provide concrete evidence that digital 

twins contribute to a 30% improvement in real-time monitoring and a 35% reduction in unplanned 

outages, supporting recent research by Lee et al. (2013). Additionally, the reviewed studies indicate 

that utilities integrating digital twins into their predictive maintenance strategies have observed a 

25% increase in asset lifespan, reinforcing earlier claims by Liu et al. (2018). These results suggest that 

digital twin technology is no longer an experimental tool but a critical component of modern smart 

grid infrastructure. 

IoT-enabled sensor networks have revolutionized fault monitoring by providing real-time data 

collection and enhanced anomaly detection. Earlier research by Hoffmann et al. (2020) 

demonstrated that IoT sensor integration led to a 30% improvement in early fault detection, but 

scalability remained a challenge. The findings from this study indicate that recent advancements in 

sensor technology and cloud-edge computing integration have increased the effectiveness of IoT-

based fault detection, leading to a 50% reduction in false alarms and a 28% improvement in anomaly 

detection rates. This aligns with more recent studies, such as those by Cavus et al. (2022), which 

reported that improved sensor calibration techniques and 5G connectivity have strengthened real-

time monitoring capabilities. The growing citation count of studies on IoT-enabled fault detection 

highlights its increasing adoption, further confirming its reliability in predictive maintenance. 
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The self-healing grid concept has gained prominence in recent years, and the present review 

confirms its effectiveness in minimizing outage durations and improving grid resilience. Earlier 

research by Blum et al. (2022) noted that self-healing technologies had the potential to reduce 

power restoration times by 40%, though real-world applications were limited at that time. The findings 

in this review indicate that recent advancements in AI-driven self-healing grids have pushed this 

number to 60%, with reinforcement learning algorithms improving autonomous grid recovery rates. 

Case studies reviewed in this study also confirm that adaptive self-healing mechanisms can prevent 

up to 45% of potential service disruptions, aligning with research by Cavus et al. (2025). These findings 

suggest that self-healing grids are becoming increasingly viable for large-scale deployment, offering 

substantial improvements over conventional fault response strategies. Despite the advancements in 

AI-driven predictive maintenance, challenges remain in model interpretability, data integration, and 

cybersecurity risks. Previous research by Lee et al. (2013) warned of the black-box nature of deep 

learning models, which limits their adoption in safety-critical power systems. The current review finds 

that 41% of reviewed studies emphasized the need for explainable AI (XAI) frameworks, confirming 

that model transparency remains a major concern. Studies by Wang et al. (2023) and Hoffmann et 

al. (2020) suggested that hybrid AI models incorporating decision trees or rule-based systems could 

enhance interpretability, and the findings in this study support this claim. Additionally, cybersecurity 

concerns were noted in 35% of the reviewed studies, aligning with earlier findings by Cavus et al. 

(2025), which warned of increasing cyber threats in AI-powered grids. The comparative analysis of 

AI-driven fault detection and traditional predictive maintenance methods further strengthens the 

case for widespread AI adoption in power grids. While earlier studies by Vita et al. (2023) and Fahim 

et al. (2022) suggested that AI models had only incremental advantages over conventional 

methods, the present review finds that AI-driven techniques have now surpassed traditional systems 

in fault classification accuracy, adaptability, and cost-effectiveness. The integration of AI with IoT, 

cloud computing, and digital twin technology has enhanced grid stability beyond what earlier 

researchers anticipated. However, to ensure sustainable implementation, future research must 

address concerns regarding model transparency, dataset standardization, and regulatory 

compliance, as highlighted by over 3,600 citations in the reviewed literature. 

CONCLUSION 

The systematic review of AI-driven fault detection and predictive maintenance in electrical power 

systems demonstrates that artificial intelligence has significantly enhanced the accuracy, efficiency, 

and reliability of fault classification and predictive maintenance strategies. By benchmarking AI-

based approaches against traditional predictive maintenance techniques, the study finds that AI-

driven methods, particularly those leveraging machine learning, deep learning, digital twins, IoT-

enabled sensor networks, and self-healing grids, outperform conventional systems in early fault 

detection, anomaly classification, and automated response mechanisms. The findings confirm that 

AI-powered predictive maintenance has led to substantial improvements in fault detection 

accuracy, reducing false alarms by 50%, improving asset lifespan by 25%, and minimizing power 

restoration times by up to 60%. Deep learning models, particularly CNNs and LSTMs, have achieved 

remarkable precision in detecting transient faults, while digital twin technology has facilitated real-

time simulation and risk assessment, ensuring more effective fault management. IoT-based real-time 

monitoring has further strengthened predictive maintenance capabilities by integrating cloud 

computing and edge analytics to enhance decision-making efficiency. Additionally, self-healing 

grid technologies have proven their ability to autonomously isolate faults and reconfigure energy 

flow, preventing nearly 45% of potential service disruptions and reinforcing grid resilience. Despite 

these advancements, challenges related to the black-box nature of AI models, cybersecurity 

vulnerabilities, and data integration constraints remain critical issues that must be addressed to 

ensure AI’s large-scale adoption in power grid infrastructure. The need for explainable AI frameworks, 

standardized data governance, and enhanced cybersecurity measures is paramount to fostering 

trust among grid operators, policymakers, and stakeholders. Overall, the findings underscore the 

transformative potential of AI-driven predictive maintenance in modernizing power grids, reducing 

operational costs, and minimizing system downtime, making AI an indispensable tool for the future 

of smart grid management. 
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