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ABSTRACT 

Amid growing global pressures to combat climate change, enterprises are reengineering 

their supply chains to align with carbon-neutral objectives while maintaining operational 

agility and competitiveness. This study explores the transformative potential of integrating 

Quantum Artificial Intelligence (QAI), Business Intelligence (BI), and autonomous decision-

making technologies in building intelligent, sustainable supply chains capable of 

minimizing environmental impact. By leveraging the computational advantages of 

quantum algorithms, machine learning, real-time analytics, and decentralized control 

systems, organizations can address the increasing complexity of emissions management, 

logistics optimization, and sustainability forecasting. A comprehensive systematic literature 

review was conducted following the PRISMA 2020 guidelines, encompassing 97 peer-

reviewed articles published between 2010 and 2024 across fields including supply chain 

management, artificial intelligence, quantum computing, and sustainability analytics. The 

review reveals that QAI significantly enhances the efficiency of solving combinatorial 

problems such as routing, scheduling, and emissions prediction, outperforming classical AI 

in both speed and scalability. BI platforms have evolved from retrospective reporting tools 

to intelligent systems that facilitate real-time carbon monitoring, dynamic scenario 

modeling, and sustainability-focused KPI visualization. In parallel, the deployment of 

autonomous systems—supported by IoT, RFID, edge computing, and AI agents—has 

enabled decentralized, self-optimizing decision-making across manufacturing, logistics, 

and procurement functions. Real-world case studies from industry leaders like Siemens, 

IBM, Honeywell, and John Deere illustrate the tangible impact of these technologies in 

achieving emissions reductions and improving system-wide sustainability performance. This 

study provides a comprehensive understanding of how the convergence of QAI, BI, and 

autonomous systems is shaping the future of carbon-conscious supply chains, offering 

both theoretical advancement and practical relevance for businesses committed to 

environmental responsibility and technological innovation. 
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INTRODUCTION 

The transition toward carbon-neutral supply chains has emerged as a central goal for enterprises 

responding to environmental sustainability mandates and international climate accords such as 

the Paris Agreement (Saberi et al., 2018). Carbon-neutrality refers to achieving net-zero carbon 

emissions by balancing emitted and offset carbon, a complex task when scaled across global, 

multi-tier supply chains (Cong et al., 2024). Organizations such as Unilever, IKEA, and Amazon have 

committed to reducing their supply chain carbon footprints through innovations in green logistics, 

eco-efficient production, and sustainable procurement. However, this endeavor is often hindered 

by the lack of intelligent systems capable of offering real-time insights and predictive capabilities 

across heterogeneous supply chain nodes (Pan et al., 2019; Zhang et al., 2021). Enterprises must 

reconcile operational efficiency with emission targets, requiring a fundamental redesign of business 

intelligence systems to include autonomous and high-speed decision-making processes enabled 

by next-generation technologies (Huang et al., 2009; Lewandowski, 2017). Moreover, Quantum 

Artificial Intelligence (QAI) has surfaced as a promising innovation to address these challenges by 

enhancing the computational depth and learning capacity of traditional AI models. By integrating 

quantum computing principles—such as superposition and entanglement—into machine learning 

algorithms, QAI can process vast datasets and compute multiple possibilities simultaneously (Chen, 

2021; Downie & Stubbs, 2012). For example, Volkswagen has experimented with quantum 

algorithms for traffic flow optimization in urban logistics, which can directly reduce CO₂ emissions 

from delivery fleets (Jabbour et al., 2018). Similarly, D-Wave Systems collaborated with Save-On-

Foods to implement quantum machine learning in optimizing refrigerated supply chain routes, 

reducing fuel consumption and spoilage (Pinkse & Busch, 2013). These case studies underscore the 

ability of QAI to manage complex, variable-rich supply chain environments that traditional 

algorithms often struggle with. 

Figure 1: Key Components and Challenges of a Carbon-Neutral Supply Chain 

 
In parallel, the evolution of Business Intelligence (BI) from static reporting tools to dynamic, AI-

augmented platforms has enabled decision-makers to monitor, analyze, and act on data more 

proactively (Alijoyo et al., 2024). Conventional BI systems often rely on batch data and predefined 

KPIs, limiting their relevance in fast-paced supply chain contexts. For instance, a global retailer like 

Walmart requires instantaneous analytics for inventory management, demand prediction, and 

warehouse emissions monitoring (Danish & Senjyu, 2023). AI-enhanced BI systems can automate 

pattern detection in energy use, carbon emissions, and procurement cycles (Alijoyo et al., 2024). 

When layered with quantum-enhanced computation, such systems gain the capacity to process 

multi-dimensional data sets in near real-time, enabling businesses to preemptively identify carbon 

hotspots, predict the environmental impact of routing decisions, and rebalance operations 

accordingly (Alijoyo et al., 2024; Cong et al., 2024; Tosun, 2022). Moreover, eal-time predictive 

analytics serve as the cornerstone of carbon-neutral supply chain intelligence. These analytics 

forecast demand fluctuations, shipping delays, and production anomalies, allowing firms to make 

adjustments that reduce carbon output without compromising service quality (Danish, 2023; Rojek 

et al., 2023). For example, UPS uses dynamic routing systems to reduce mileage and idle time, 

which contributes to both lower emissions and operational cost savings (Danish & Senjyu, 2023). 

Additionally, Procter & Gamble has adopted AI-based forecasting to optimize energy usage in its 

manufacturing plants, aligning electricity demand with peak renewable energy availability (Fehr & 
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Figure 2: Building Blocks of Decentralized AI Systems 

Gächter, 2002). Quantum AI further amplifies these benefits by enabling faster and more nuanced 

predictions—such as simulating multiple emission scenarios or identifying non-obvious correlations 

between supplier behavior and carbon intensity (Cong et al., 2024; Fehr & Gächter, 2002). 

Autonomous decision-making, an essential feature of smart supply chains, refers to systems 

capable of independently executing tasks such as rerouting shipments, adjusting production plans, 

or renegotiating contracts based on environmental and economic inputs (Tosun, 2022). Enterprises 

like Siemens and General Electric have started integrating digital twins and AI agents that 

autonomously adapt supply chain parameters in response to energy consumption or carbon 

emission thresholds (Pan et al., 2019). In agriculture, John Deere has utilized AI-driven tractors to 

optimize seeding paths and fertilizer usage, significantly lowering greenhouse gas emissions in 

supply chains linked to food production (Li et al., 2019). Quantum AI enables these autonomous 

systems to execute decisions faster and more accurately by rapidly solving complex optimization 

problems such as the Traveling Salesman Problem or multi-modal transport scheduling (Chen et al., 

2022; Li et al., 2019). 

The complexity of today’s supply chains—marked by global supplier diversity, volatile demand 

cycles, and geopolitical uncertainties—calls for decentralized and adaptive intelligence 

mechanisms (Manupati et al., 2019). Centralized decision-making systems are often too rigid and 

delayed to manage carbon-neutrality targets at the micro-operational level. Quantum AI-driven BI 

platforms can embed decision-making logic at various supply chain nodes, such as factories, 

distribution centers, or logistics hubs, allowing them to self-optimize operations based on localized 

data (Lee et al., 2014; Matthews et al., 2008). For instance, Maersk has piloted blockchain and AI-

integrated systems to allow port-level adjustments in shipping schedules to reduce idle time and 

emissions (Zhang et al., 2022). Such distributed intelligence is made computationally viable with 

quantum capabilities, which support high-volume processing of interdependent data from sensors, 

satellites, and enterprise systems. Moreover, the ability to model, forecast, and respond to carbon-

related variables in real time offers operational and regulatory advantages. Predictive models 

trained on historical emissions data can detect patterns related to specific suppliers, transportation 

methods, or packaging materials (Lee et al., 2014; Li et al., 2019). Companies such as Tesla use AI 

to track supply chain emissions from mining operations to battery assembly, ensuring transparency 

and accuracy in their sustainability reports (Koh et al., 2013). With quantum-enhanced analytics, 

these models can consider higher-order variables and run large-scale simulations in compressed 

timeframes, aiding in compliance with global environmental standards such as ISO 14001 or the EU 

Green Deal (Manupati et al., 2019; Zhang et al., 2022). This predictive edge enhances 

responsiveness to carbon tax regimes and emission trading systems, which are becoming 

increasingly common across 

international markets. 

The integration of Quantum AI, BI 

systems, and predictive analytics forms a synergistic foundation for carbon-neutral supply chain 

management. Real-world 

implementations by companies 

like DHL, PepsiCo, and Nestlé 

demonstrate how AI-powered 

platforms are reshaping 

sustainability strategies by 

tracking carbon data across the 

supply chain lifecycle (Gong et 

al., 2018; Jaber et al., 2013). 

These companies have 

implemented dashboards 

powered by AI to analyze 

transportation footprints, 

production emissions, and 

vendor sustainability 



American Journal of Advanced Technology and Engineering Solutions 

Volume 01 Issue 01 (2025) 

Page No: 319-347 

eISSN: 3067-0470 

DOI: 10.63125/s2jn3889 
 

322 

 

compliance. Quantum-enhanced models, when embedded into such platforms, elevate these 

capabilities from reactive reporting to proactive orchestration, enabling organizations to operate 

resilient and sustainable supply chains across volatile and competitive global markets (Jia et al., 

2019; Wang et al., 2019). The convergence of these technologies supports smarter, leaner, and 

greener supply chains across industries including automotive, pharmaceuticals, electronics, and 

fast-moving consumer goods.The primary objective of this study is to examine how the integration 

of Quantum Artificial Intelligence (QAI) with Business Intelligence (BI) systems can facilitate the 

development and operation of carbon-neutral supply chains. Specifically, the study seeks to 

analyze the role of QAI in enhancing real-time predictive analytics, enabling autonomous decision-

making, and optimizing data-driven strategies for emissions reduction across complex enterprise 

networks. By exploring empirical evidence, real-world applications, and theoretical models, the 

study aims to establish a comprehensive framework that demonstrates how QAI-powered BI tools 

can support supply chain sustainability through improved data processing, dynamic forecasting, 

and operational efficiency. Additionally, this research intends to evaluate the computational 

advantages of quantum-enhanced algorithms in solving logistical, environmental, and managerial 

challenges that conventional AI and classical BI systems face when pursuing carbon neutrality 

goals. 

LITERATURE REVIEW 

The increasing complexity of global supply chains and the mounting pressure for environmental 

accountability have necessitated a shift toward carbon-neutral operational models. In this context, 

academic and industrial research has intensified on how advanced technologies such as Artificial 

Intelligence (AI), Quantum Computing (QC), and Business Intelligence (BI) can drive sustainable 

transformation in supply chains. The literature reflects a growing consensus that traditional BI 

systems, although useful for descriptive analytics, fall short when addressing the real-time demands 

and predictive complexities of carbon-neutral logistics. Simultaneously, the emergence of 

Quantum AI (QAI)—a fusion of quantum computing and machine learning—offers a promising 

avenue for solving optimization problems that are computationally infeasible for classical systems. 

This review synthesizes foundational and recent contributions across several interconnected 

domains, including carbon-neutral supply chain practices, AI-enhanced BI systems, quantum 

computing applications, and real-time predictive analytics. The goal is to establish a theoretical 

and practical understanding of how these technologies intersect and contribute to autonomous, 

environmentally conscious supply chain decision-making. This literature review is organized into six 

distinct but interrelated subsections, each addressing a critical aspect of the study’s conceptual 

foundation. 

Carbon Neutrality in Supply Chain Management 

Carbon neutrality in supply chains refers to the process by which organizations reduce greenhouse 

gas (GHG) emissions across the entire value chain and compensate for residual emissions through 

carbon offsetting or sequestration initiatives (Zhang et al., 2022). In logistics and manufacturing 

contexts, carbon neutrality involves minimizing direct emissions from production (Scope 1), indirect 

emissions from purchased energy (Scope 2), and all other indirect emissions associated with 

outsourced operations and end-product usage (Scope 3) (Zhang et al., 2021). Operationalization 

of this concept requires embedding emission tracking into the supply chain through data-driven 

tools such as carbon accounting software, Internet of Things (IoT) sensors, and AI-based analytics 

platforms (Pinkse & Busch, 2013). Firms like IKEA and Apple have implemented internal carbon 

pricing mechanisms and renewable energy procurement strategies to move toward operational 

neutrality  

(Chen et al., 2022). However, the decentralized nature of global supply chains complicates carbon 

neutrality efforts, especially when suppliers and logistics providers operate in jurisdictions with 

varying emission standards (Pinkse & Busch, 2013). 

Carbon neutrality strategies must address industry-specific challenges. In the manufacturing sector, 

emission hotspots include raw material extraction, energy-intensive production processes, and end-

of-life product disposal (Zhang et al., 2022). Green manufacturing practices, including eco-design, 

closed-loop production, and energy efficiency improvements, play vital roles in achieving carbon 
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neutrality (Chen, 2021). In logistics, freight transportation is a key contributor to GHG emissions, 

prompting adoption of route optimization, modal shifts from road to rail, and electrification of 

vehicle fleets (Chen, 2021; Lewandowski, 2017). Companies such as DHL and FedEx have adopted 

carbon-neutral shipping options by incorporating biofuels and offset programs into their logistics 

strategies (Downie & Stubbs, 2012; Lemma et al., 2021). Nonetheless, the measurement and 

verification of emissions remain a challenge, particularly in multi-tier supply chains with opaque 

supplier practices (Chen, 2021). 
Figure 3: Impact of carbon emission in a sustainable supply chain for Second Generation Biofuel 

 
Source: Ahmed and Sarkar (2018) 

Global policy instruments are driving the adoption of carbon-neutrality in supply chains. The Paris 

Agreement, adopted in 2015 under the United Nations Framework Convention on Climate Change 

(UNFCCC), committed participating countries to limit global warming to well below 2°C, 

encouraging national policies that incentivize low-carbon supply chain transformations (Tosun, 

2022). In response, countries and regions have introduced environmental regulations and reporting 

frameworks. The European Union’s Green Deal promotes carbon-neutral industry practices by 2050 

and includes mechanisms like the Carbon Border Adjustment Mechanism (CBAM), which places 

tariffs on carbon-intensive imports to prevent “carbon leakage” (Waichman et al., 2021). Such 

regulations create competitive pressure for global firms to decarbonize upstream and downstream 

operations (Barrett & Dannenberg, 2012; Nordhaus, 2019). Similarly, frameworks like ISO 14064 and 

the Greenhouse Gas Protocol provide standardized methodologies for measuring and reporting 

supply chain emissions (Cronin et al., 2018; Lewandowski, 2017). 

Multinational corporations have increasingly aligned their sustainability strategies with global policy 

directives, driven not only by compliance but also by market and investor expectations (Lemma et 

al., 2021). Firms such as Nestlé and Unilever have committed to science-based targets and have 

adopted supplier engagement programs to monitor emissions at every supply chain tier (Barrett & 

Dannenberg, 2012). These commitments often involve the use of digital technologies for carbon 

data collection and analysis, such as blockchain for traceability, cloud-based emissions 

dashboards, and predictive models for carbon footprint estimation (Pan et al., 2019). Furthermore, 

investor-led initiatives like the Task Force on Climate-related Financial Disclosures (TCFD) and 

Climate Action 100+ have added pressure on enterprises to make climate risk and emissions visible 

across all business operations, including procurement and logistics (Chen, 2021; Dorokhova et al., 

2021). Achieving carbon neutrality in supply chains also intersects with national industrial policies 

and regional trade agreements. Countries such as Germany and Japan have implemented green 
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industrial strategies that provide tax incentives and subsidies for adopting low-carbon technologies 

in supply chains (Cronin et al., 2018; Lewandowski, 2017). Regional agreements like the ASEAN 

Action Plan on Energy Cooperation encourage member states to harmonize sustainability 

reporting and adopt renewable energy in cross-border logistics (Zhang et al., 2022). In addition, 

consumer-facing eco-labeling systems—such as Carbon Trust’s Product Footprint Certification or 

Amazon’s Climate Pledge Friendly—encourage companies to enhance transparency on product-

related emissions (Lewandowski, 2017; Zhang et al., 2022). These developments emphasize how the 

operationalization of carbon neutrality in supply chains is influenced not just by firm-level initiatives 

but also by an evolving global policy ecosystem that integrates regulatory, market-based, and 

voluntary instruments (Hua et al., 2020). 

Role of Scope 1, 2, and 3 emissions in supply chain footprint 

Supply chain emissions are categorized into three distinct scopes, as defined by the Greenhouse 

Gas Protocol, each representing different sources of carbon output and operational boundaries. 

Scope 1 refers to direct emissions from owned or controlled sources such as company vehicles or 

on-site fuel combustion (Sharma et al., 2020). Scope 2 includes indirect emissions from purchased 

electricity, steam, heating, and cooling consumed by the reporting company (Huang et al., 2009). 

Scope 3 covers all other indirect emissions that occur in a company’s value chain, including 

upstream and downstream activities such as raw material extraction, transportation, product use, 

and disposal (Lewandowski, 2017). While Scopes 1 and 2 are often under a firm’s direct control, 

Scope 3 emissions represent the most substantial and challenging component of a company’s 

carbon footprint, often accounting for over 70% of total emissions in manufacturing and retail 

supply chains (Downie & Stubbs, 2012). Accurately quantifying and managing Scope 3 emissions 

has become critical for organizations striving toward carbon neutrality, as these emissions 

encompass supplier activities, logistics operations, and consumer end-use patterns (Zhang et al., 

2021). For instance, in the apparel and electronics industries, emissions related to product use and 

disposal can exceed production-related emissions (Cronin et al., 2018; Jaeger et al., 2022). 

According to the Science Based Targets initiative (SBTi), companies must account for Scope 3 

emissions to validate their net-zero strategies (Downie & Stubbs, 2012). However, transparency 

issues, lack of real-time data, and supplier engagement barriers hinder comprehensive Scope 3 

monitoring (Danish & Senjyu, 2023). Firms are increasingly investing in AI-driven analytics, life cycle 

assessment (LCA) tools, and blockchain-based traceability platforms to capture emissions across 

fragmented supply chain layers (Lee, 2011).Walmart’s Project Gigaton is one of the most prominent 

corporate initiatives targeting Scope 3 emissions at scale. Launched in 2017, the project aims to 

avoid one billion metric tons (a gigaton) of greenhouse gases from Walmart’s global value chain 

by 2030. It encourages suppliers to set reduction targets in six key areas: energy, agriculture, waste, 

packaging, transportation, and product use (CDP, 2020). Walmart employs digital dashboards and 

supplier reporting tools to aggregate data and monitor progress toward emissions reductions, 

reflecting the operationalization of Scope 3 management through integrated Business Intelligence 

systems (Zhang et al., 2021). The project not only enhances Walmart’s environmental performance 

but also pressures upstream suppliers to adopt sustainability metrics, making emissions 

management a collective supply chain responsibility (Lee, 2011). 

IKEA’s zero-emission logistics goals provide another practical illustration of integrating Scope 1 and 

2 reductions within supply chain strategy. The company has pledged to use 100% zero-emission 

delivery vehicles in key cities and transition to renewable energy in its operations by 2030. IKEA’s 

Scope 1 strategies include switching to electric fleets and improving last-mile delivery systems, while 

Scope 2 efforts focus on installing rooftop solar panels and sourcing electricity from renewable 

providers across warehouses and stores (Bao et al., 2021; Chandel et al., 2023). The company also 

engages in supplier audits and collaborates with transport providers to enhance the sustainability 

of logistics operations (Cronin et al., 2018; Parag & Sovacool, 2016). This demonstrates how global 

firms are actively integrating emission reductions at various operational levels, supported by 

emissions data platforms and sustainability KPIs that inform real-time decision-making. Several 

multinational firms have followed suit, setting science-based targets that include all three emission 

scopes to comply with emerging regulatory frameworks such as the EU’s Corporate Sustainability 
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Reporting Directive (CSRD) and the U.S. Securities and Exchange Commission’s (SEC) proposed 

climate disclosures (Carmichael & Liao, 2022; Devaraj et al., 2021). Amazon’s Climate Pledge 

Friendly program and Microsoft’s carbon fee model exemplify how companies monetize internal 

carbon emissions to drive change across departments and suppliers (Ahmad et al., 2021; Xiao et 

al., 2018). These examples highlight that comprehensive carbon neutrality requires an integrated 

strategy across Scope 1, 2, and 3, supported by digital infrastructure, supplier collaboration, and 

policy alignment (Parag & Sovacool, 2016; Tajjour & Chandel, 2023). The complexity of managing 

this emission triad reinforces the importance of robust data systems, real-time analytics, and 

predictive modeling in transforming global supply chains into carbon-neutral ecosystems. 
Figure 4: Overview of Scope 1, 2, and 3 Greenhouse Gas Emissions Across the Supply Chain 

 
Source: www.soletairpower.fi (2024) 

Business Intelligence for Sustainable Operations 

Business Intelligence (BI) has evolved significantly over the past two decades, transitioning from 

static, retrospective reporting tools to dynamic, real-time systems integrated with artificial 

intelligence (AI) and big data technologies (Alijoyo et al., 2024). Early BI systems primarily focused 

on descriptive analytics, offering static dashboards, periodic performance reports, and manually 

generated summaries (Zhu & Yu, 2023). These tools provided limited insights into sustainability 

because they lacked the speed, granularity, and adaptability required for managing emissions or 

energy use in volatile supply chain environments (Brown & Kroll, 2017; Mengelkamp et al., 2017). 

The increasing availability of data streams from IoT sensors, RFID tags, and cloud-based ERP systems 

has enabled the rise of intelligent BI platforms that deliver real-time monitoring and adaptive 

analytics for green operations (Fombrun & Foss, 2004; Sharma et al., 2020; Zhu & Yu, 2023). Modern 

BI systems integrate predictive and prescriptive analytics to allow businesses to simulate 

sustainability scenarios, evaluate trade-offs, and make informed carbon-sensitive decisions 

(Dwivedi et al., 2021; Sharma et al., 2020). 

Real-time, AI-integrated BI systems provide a significant advantage in operationalizing sustainability 

across supply chains. These systems ingest high-frequency data related to logistics, manufacturing, 

http://www.soletairpower.fi/
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procurement, and customer behavior to detect inefficiencies that contribute to environmental 

degradation (Alijoyo et al., 2024; Brown & Kroll, 2017). For example, predictive algorithms can 

anticipate machine downtimes or overproduction events that lead to increased energy use or 

waste (Christidis & Devetsikiotis, 2016; Dorokhova et al., 2021). Coca-Cola has adopted BI tools 

connected to smart meters and IoT-enabled facilities to monitor water consumption and energy 

efficiency in real time (Cronin et al., 2018). Similarly, Schneider Electric uses advanced BI platforms 

to track and reduce energy consumption across global manufacturing sites, integrating 

sustainability metrics directly into its production workflows (Fombrun & Foss, 2004; Sharma et al., 

2020). These case studies highlight how organizations embed intelligence at various levels of the 

supply chain to enable proactive emissions management. 

 

The architecture of modern BI systems 

supporting sustainability initiatives is 

characterized by several key 

components: data lakes, AI-powered 

analytics engines, visualization layers, 

and APIs for cross-platform integration 

(Cronin et al., 2018; Zhu & Yu, 2023). 

These platforms consolidate data from 

multiple sources—including ERP, SCM, 

CRM, and IoT devices—into centralized 

cloud infrastructures that support 

scalability and real-time analytics 

(Dwivedi et al., 2021; Zhu & Yu, 2023). 

Microsoft’s Power BI and SAP Analytics 

Cloud, for instance, enable real-time 

emissions dashboards and supplier risk 

maps that help sustainability managers 

make data-driven decisions (Juszczyk & 

Shahzad, 2022; Mengelkamp et al., 

2017). Additionally, AI modules within BI 

platforms enhance forecasting 

accuracy for emissions, fuel 

consumption, and transportation 

delays—variables critical to carbon-

neutral goals (Sharma et al., 2020; Zhu & 

Yu, 2023). Through machine learning and anomaly detection, these systems flag deviations from 

sustainability benchmarks, helping companies intervene early and avoid environmental penalties 

or inefficiencies (Burton-Chellew et al., 2013; Zhang et al., 2022). 

Supply chain sustainability is inherently cross-functional, requiring seamless coordination between 

procurement, logistics, operations, and compliance teams. BI systems facilitate this coordination 

through shared dashboards, role-based data access, and customizable KPI tracking (Ahmad et al., 

2021; Ford & Hardy, 2020). For instance, Walmart uses a custom BI platform under Project Gigaton 

to aggregate supplier data and monitor emissions across product categories, enabling data 

visibility and supplier accountability (Andoni et al., 2019; Brown & Kroll, 2017). At Unilever, real-time 

BI dashboards are integrated into supply chain control towers to track product carbon footprints, 

transportation emissions, and sourcing-related deforestation risks (Fombrun & Foss, 2004; Zhu & Yu, 

2023). These implementations show that BI tools do more than report—they support dynamic 

decision-making and foster collaboration across extended supply networks. As the pressure for 

transparency and accountability increases from both regulators and consumers, BI systems are 

becoming essential infrastructure for sustainability. They provide the analytical backbone required 

for corporate climate disclosures, compliance with ESG (Environmental, Social, Governance) 

frameworks, and participation in voluntary carbon markets (Brown & Kroll, 2017; Mengelkamp et al., 

Figure 5: Business Intelligence a core driving force in a circular economy 
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2017). Moreover, BI platforms help companies align with regulatory frameworks such as the EU 

Corporate Sustainability Reporting Directive (CSRD) and the U.S. SEC climate disclosure guidelines 

by automating the tracking and reporting of emissions-related KPIs (Cronin et al., 2018). The 

confluence of real-time data processing, AI-driven analysis, and visual storytelling empowers 

enterprises to transform BI systems into sustainability intelligence centers that inform, guide, and 

validate carbon-reduction strategies at every level of the supply chain. 

Business Intelligence for Emissions and Sustainability Monitoring 

Business Intelligence (BI) tools have become instrumental in enabling organizations to monitor 

emissions across multiple levels of their supply chain. Emissions monitoring, once a static and 

retrospective process, has shifted to a real-time, data-driven function with the incorporation of 

cloud computing, AI, and IoT-enabled sensors (Alijoyo et al., 2024; Zhu & Yu, 2023). These BI systems 

continuously collect data on fuel consumption, energy usage, transportation emissions, and waste 

outputs to provide timely insights into environmental performance (Fombrun & Foss, 2004; Sharma 

et al., 2020). For instance, Coca-Cola utilizes IoT-connected water meters and centralized BI 

platforms to track water use per product unit, helping reduce overconsumption and meet water 

replenishment targets. Such real-time BI applications are particularly relevant for complex supply 

chains operating in diverse regulatory environments, where centralized emissions tracking and 

visualization allow for coordinated sustainability initiatives across business units (Dorokhova et al., 

2021; Zhu & Yu, 2023).Supplier sustainability assessment is another critical area where BI plays a 

transformative role. Organizations depend heavily on upstream partners for materials, 

transportation, and energy-intensive processes, making supplier practices central to overall carbon 

footprints (Andoni et al., 2019). BI platforms integrated with procurement and vendor databases 

allow sustainability managers to evaluate supplier performance using environmental, social, and 

governance (ESG) metrics (Fombrun & Foss, 2004; Ford & Hardy, 2020; Sharma et al., 2020). Tools 

such as supplier scorecards and emissions dashboards visualize each vendor’s contribution to 

Scope 3 emissions, facilitating more sustainable sourcing decisions (Christidis & Devetsikiotis, 2016; 

Cruzes et al., 2014). For example, Unilever’s Sustainable Living Plan uses BI dashboards to monitor 

supplier compliance with greenhouse gas reduction goals and to track progress toward 

deforestation-free supply chains (Brown & Kroll, 2017; Burton-Chellew et al., 2013). This data-driven 

approach enables continuous evaluation and fosters collaboration with suppliers on sustainability 

performance improvement. 

KPI visualization is a core function of BI systems that facilitates transparency, accountability, and 

strategic alignment. Environmental KPIs—such as CO₂ per unit shipped, percentage of recycled 

input materials, or energy consumption per unit produced—are now tracked alongside traditional 

financial metrics (Andoni et al., 2019; Ford & Hardy, 2020). Real-time dashboards offer cross-

functional visibility into sustainability progress, allowing supply chain managers, compliance officers, 

and C-suite executives to make aligned decisions (Ahmad et al., 2021; Cruzes et al., 2014). 

Microsoft Power BI, in Coca-Cola’s sustainability program, visualizes plant-level water usage 

efficiency, carbon intensity trends, and regional differences in consumption patterns (Cronin et al., 

2018). This visualization enables dynamic benchmarking and regional strategy differentiation, 

ensuring that operations remain aligned with global sustainability targets without compromising 

local adaptability (Burton-Chellew et al., 2013; Mengelkamp et al., 2017). 

SAP’s S/4HANA for Green Logistics is a compelling example of how enterprise-grade BI systems 

integrate emissions data within logistics and transportation networks. This platform provides end-to-

end visibility into shipment carbon footprints by combining real-time transport data with emissions 

factors specific to transportation modes, fuel types, and delivery routes (Morstyn et al., 2019). With 

S/4HANA’s analytics suite, companies can monitor emissions by transport leg, identify high-carbon 

delivery paths, and simulate logistics scenarios to determine optimal sustainability outcomes (Lyu & 

Liu, 2021). German logistics company DB Schenker implemented S/4HANA to streamline carbon 

accounting across its European rail and trucking operations, enabling annual emissions reduction 

reporting and compliance with the EU’s Green Deal logistics targets (Dahlström et al., 2003). These 

case studies illustrate the role of BI not only in emissions monitoring but also in embedding 

environmental intelligence directly into enterprise logistics and planning workflows. BI applications 
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extend beyond compliance to influence competitive positioning and brand equity. Investors, 

customers, and regulators increasingly demand evidence-backed sustainability performance, and 

BI systems offer the necessary infrastructure for integrated environmental reporting and assurance 

(Alijoyo et al., 2024). Tools such as Microsoft Power BI and SAP Analytics Cloud integrate 

sustainability KPIs with financial data, helping companies like PepsiCo and Nestlé prepare ESG-

aligned reports for stakeholder disclosure (Zhu & Yu, 2023). Real-time visualization of sustainability 

metrics supports certification initiatives such as ISO 14001, GRI (Global Reporting Initiative), and CDP 

disclosures (Sharma et al., 2020; Zhu & Yu, 2023). The convergence of data visualization, AI 

analytics, and environmental monitoring has elevated BI systems from back-end support tools to 

mission-critical platforms for sustainable supply chain governance. 

Figure 6: Smart environment monitoring (SEM) system 

 
Source: Ullo and Sinha (2020) 

Artificial Intelligence in Predictive Supply Chain Analytics 

Artificial Intelligence (AI) has become an indispensable asset in predictive supply chain analytics, 

enabling firms to anticipate fluctuations in demand, optimize transportation routes, and forecast 

carbon emissions with greater accuracy. Traditional statistical forecasting methods such as ARIMA 

or exponential smoothing are increasingly being replaced by AI-based models like artificial neural 

networks (ANNs), support vector machines (SVMs), and deep learning architectures (Aklima et al., 

2022; Dwivedi et al., 2021; Tonoy & Khan, 2023). These models process high-dimensional, non-linear 

datasets drawn from IoT sensors, ERP systems, CRM platforms, and third-party data sources (Dwivedi 

et al., 2021; Lyu & Liu, 2021; Mahfuj et al., 2022; Hossen et al., 2023; Mohiul et al., 2022; Roksana, 

2023). For instance, Amazon uses deep learning models to forecast product demand at the SKU 

level, enabling just-in-time inventory practices that minimize overproduction and associated 

emissions (Maniruzzaman et al., 2023; Popescu et al., 2024; Wu & Wang, 2021). Similarly, Walmart’s 

predictive models integrate weather, event, and historical sales data to streamline warehouse and 

transportation planning—reducing fuel usage and storage waste (Borgogno & Colangelo, 2019; 

Chalmers et al., 2020). 

Transportation routing optimization has particularly benefited from AI algorithms capable of 

evaluating vast route combinations under real-time constraints such as traffic, fuel costs, and 
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emission zones. Genetic algorithms, swarm intelligence, and reinforcement learning models have 

been applied to dynamic vehicle routing problems (VRPs), supporting carbon-reduction strategies 

across global logistics networks (Popescu et al., 2024; Younus, 2022). For example, DHL employs 

machine learning models to optimize last-mile delivery routes in urban areas, minimizing mileage 

and carbon footprint through predictive scheduling (Alam et al., 2024; Falekas & Karlis, 2021; Stahl 

& Wright, 2018). Similarly, UPS’s ORION system uses AI-based algorithms to re-sequence delivery 

routes, reportedly saving over 100 million miles annually and significantly reducing greenhouse gas 

emissions. These examples highlight the dual benefit of AI in cost savings and environmental impact 

reduction through intelligent logistics planning. 
Figure 7: AI Adoption Rate in Supply Chain Globally: 2022–2025 

 
Emissions prediction is another area where AI shows strong application potential. Unlike traditional 

emissions calculators based on static assumptions, AI models adapt to real-time inputs such as fuel 

consumption rates, supply chain disruptions, or supplier-specific carbon intensities (Arafat et al., 

2024; Nassef et al., 2023). AI-powered digital twins simulate supply chain processes to predict 

emission outcomes under different scenarios, enabling companies to proactively select greener 

suppliers or transportation modes (Barrett & Dannenberg, 2012; Bhuiyan et al., 2024; Zhang et al., 

2021). PepsiCo, for instance, uses AI to predict water and energy consumption across its 

manufacturing plants, enabling optimized resource allocation (Dasgupta & Islam, 2024; Haque & 

Ntim, 2022; Lewandowski, 2017). Similarly, Maersk integrates AI into its ocean freight systems to 

forecast shipping emissions based on vessel capacity, route, and speed, aligning operations with 

regulatory limits and carbon tax policies (Hossain et al., 2024; Lewandowski, 2017; Zaman & 

Moemen, 2017). Moreover, supervised learning has emerged as a dominant methodology in 

predictive supply chain analytics. Models such as decision trees, random forests, and gradient 

boosting machines (GBMs) are commonly trained on labeled datasets to predict outcomes like 

stockouts, supplier delays, or carbon-intensive events (Barrett & Dannenberg, 2012; Haque & Ntim, 

2022; M. R. Hossain et al., 2024). These supervised models have been applied in green procurement 

systems, enabling firms to identify suppliers with high emissions likelihood based on historical 

compliance data (Islam et al., 2024; Li et al., 2019; Zaman & Moemen, 2017). For instance, Nestlé 
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uses supervised learning to classify agricultural suppliers by their risk of contributing to deforestation, 

based on satellite imagery and past audit scores (Chithambo et al., 2020; Huang et al., 2009; Islam, 

2024). Such predictive capabilities enhance supply chain resilience and environmental 

performance by proactively addressing weak points before they escalate into compliance issues. 

Moreover, reinforcement learning (RL), though more complex, has shown promising applications in 

dynamic supply chain environments. RL models learn through continuous interaction with the 

environment, receiving rewards or penalties based on decision outcomes—making them ideal for 

routing, resource allocation, and emissions control in uncertain conditions (Haque & Ntim, 2022; 

Jahan, 2024; Lewandowski, 2017). For example, in fleet management, RL agents can adjust driving 

speeds and refueling schedules in real time to minimize emissions without compromising delivery 

schedules (Antonakakis et al., 2017; Jim et al., 2024; Koh et al., 2013). Google DeepMind’s RL 

models have been tested in data center cooling systems, achieving a 40% reduction in energy 

usage—demonstrating their potential for broader sustainability applications (Li et al., 2019; 

Mahabub, Das, et al., 2024). These innovations position reinforcement learning as a frontier method 

for AI-driven environmental optimization in supply chain systems. 

AI for identifying carbon hotspots and scenario modeling 

Artificial Intelligence (AI) plays a vital role in identifying carbon hotspots within supply chains by 

uncovering patterns and anomalies that are often invisible through traditional analytics. Carbon 

hotspots refer to processes, suppliers, or logistics flows that contribute disproportionately to 

greenhouse gas (GHG) emissions (Mahabub, Jahan, et al., 2024; Nassef et al., 2023). AI techniques 

such as unsupervised clustering, association rule mining, and anomaly detection help segment 

operations and locate emissions-intensive activities across manufacturing, transportation, and 

sourcing (S. H. Mridha Younus et al., 2024; Wu & Wang, 2021; Zhu & Yu, 2023). For example, AI 

models trained on production data can identify inefficient machinery or production lines that 

consume excessive energy during peak loads, helping target retrofitting or maintenance schedules 

(Falekas & Karlis, 2021; Younus et al., 2024; Wu & Wang, 2021). In logistics, route-level emissions 

profiling using AI enables organizations to rank shipment paths by CO₂ intensity, facilitating 

optimization of delivery schedules and fleet utilization (Lyu & Liu, 2021; Rahaman et al., 2024). 

Scenario modeling is another critical AI application that supports carbon reduction by simulating 

“what-if” analyses across the supply chain. AI-powered scenario models use historical and real-time 

data to project the outcomes of decisions under varying conditions, such as changes in supplier 

mix, energy source, transportation mode, or regulatory policies (Sabid & Kamrul, 2024; Wu & Wang, 

2021; Zhu & Yu, 2023). These models enable decision-makers to quantify carbon implications before 

implementing operational changes. For instance, a company can use AI to simulate how switching 

from air freight to rail transportation would affect emissions, delivery times, and cost trade-offs (Choi 

et al., 2022; Popescu et al., 2024; Siddiki et al., 2024). SAP’s AI-enabled supply chain planning suite 

includes scenario modeling features that help sustainability teams evaluate the impact of changes 

in raw material sourcing, production geographies, and supplier behavior. Such tools are essential 

for balancing cost, efficiency, and sustainability within increasingly complex global networks(Sunny, 

2024). 

Dynamic procurement, a system where suppliers are selected based on real-time performance 

and sustainability data, has emerged as a key AI-enabled strategy in carbon-sensitive supply 

chains. Using AI, companies continuously assess supplier emissions, delivery punctuality, energy use, 

and compliance to environmental standards, rather than relying on static or historical evaluations 

(Aleem Al Razee et al., 2025; Lyu & Liu, 2021). Machine learning models can forecast supplier risk, 

price volatility, and carbon contributions, enabling companies to switch to greener or more 

compliant vendors proactively (Islam et al., 2025; Mawson & Hughes, 2020). Unilever employs an AI-

based procurement platform that scores suppliers on their carbon intensity, enabling real-time 

decision-making aligned with its zero-deforestation policy (Inderwildi et al., 2020; Islam et al., 2025; 

Liu et al., 2024). By incorporating dynamic scoring systems, AI enhances procurement 

responsiveness while embedding sustainability as a core selection criterion. AI also supports Just-in-

Time (JIT) manufacturing by enabling real-time synchronization between demand forecasts, 

inventory levels, and production scheduling—all of which impact a firm's carbon footprint (Mawson 
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& Hughes, 2020; Munira, 2025; Zhang et al., 2016). JIT systems aim to minimize waste and 

overproduction, but they require high forecasting accuracy and agile supply networks to function 

sustainably. AI improves these capabilities through advanced time-series analysis, pattern 

recognition, and deep learning models that predict demand spikes or inventory imbalances with 

greater precision (Kontogiannis et al., 2020; Mbuwir et al., 2019; Taufiqur, 2025). Toyota, a pioneer of 

JIT manufacturing, has integrated AI into its production lines to predict maintenance needs and 

energy consumption, optimizing production flows while reducing emissions. AI’s ability to 

continuously adapt to new data makes it a critical enabler of low-carbon manufacturing systems 

that align productivity with environmental performance. 
Figure 8: Overview of the method and framework used for KGML-ag-Carbon development 

 
Source: Liu et al. (2024) 

The use of AI in both procurement and manufacturing underscores the transition from reactive to 

predictive sustainability strategies. In traditional systems, sustainability decisions often followed 

emissions reporting cycles. In contrast, AI-integrated systems use predictive analytics to 

continuously optimize operations, procurement, and logistics with sustainability constraints in mind 

(Bai & Sarkis, 2020; Younus, 2025). PepsiCo, for example, employs AI to dynamically allocate 

manufacturing loads across its facilities based on energy usage patterns, renewable energy 

availability, and water scarcity forecasts (Pan et al., 2019; Yuan et al., 2021). Similarly, Siemens has 

deployed AI across its digital factory ecosystem to monitor emissions in real time and adjust 

production dynamically in response to both economic and environmental metrics (Zhao et al., 

2020). These use cases demonstrate the effectiveness of AI in simultaneously advancing efficiency, 

resilience, and sustainability across diverse supply chain functions. 

Quantum Computing for Complex Supply Chain Optimization 

Quantum computing introduces a paradigm shift in computational logic by harnessing principles of 

quantum mechanics to process information more efficiently than classical systems (Zhu & Yu, 2023). 

At the heart of quantum computing are qubits, which, unlike classical bits, exist in multiple states 

simultaneously due to superposition, and can exhibit entanglement, meaning the state of one 

qubit is dependent on another regardless of distance (Mastroianni et al., 2024). These properties 

allow quantum systems to explore multiple solutions in parallel, a significant advantage for 

optimization problems involving exponential combinations of variables—such as those frequently 

encountered in supply chain logistics (Fingerhuth et al., 2018; Rieffel & Polak, 2000). In contrast to 
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Figure 9: Supply chain logistics with quantum and classical annealing algorithms 

Source: Weinberg, S.J., Sanches, F., Ide, T. et al. (2023) 

classical computers that evaluate one solution at a time, quantum processors can evaluate an 

entire solution space simultaneously, drastically reducing computation time for complex problems 

(Delgado et al., 2022). 

Combinatorial problems such as the Vehicle Routing Problem (VRP), Traveling Salesman Problem 

(TSP), and Network Flow Optimization are central challenges in supply chain logistics and are 

known to be NP-hard (Eskandarpour et al., 2020; Kumar et al., 2025). These problems involve 

determining the most efficient route or flow of goods through a supply network while minimizing 

time, cost, and 

environmental impact 

(Hey, 1999). Classical 

heuristic or 

metaheuristic 

approaches such as 

genetic algorithms or 

ant colony 

optimization often 

struggle with scalability 

and real-time 

responsiveness 

(Ajagekar & You, 2022; 

Kumar et al., 2025). 

Quantum algorithms, however, offer superior scalability by encoding multiple paths or flows in 

quantum states and solving them using parallel quantum interference processes (Heredge et al., 

2021; Steane, 1999). This computational advantage is particularly valuable in dynamic logistics 

environments where route optimization must be recalculated in real time due to traffic, fuel costs, 

or emissions constraints (Ajagekar & You, 2022). 

Quantum annealing, a technique used by companies like D-Wave Systems, is specifically suited for 

combinatorial optimization. It involves gradually transforming a simple quantum system into one 

that encodes the optimization problem, allowing the system to "settle" into the lowest-energy 

(optimal) solution state (Ajagekar & You, 2022). This method has been applied to logistics planning, 

warehouse scheduling, and cold chain optimization in supply chain operations (Chen et al., 2021). 

Variational Quantum Algorithms (VQAs)—including the Variational Quantum Eigensolver (VQE) and 

Quantum Approximate Optimization Algorithm (QAOA)—combine quantum circuits with classical 

optimization routines to refine solution accuracy (Ajagekar & You, 2022; Chen et al., 2021). These 

hybrid algorithms are particularly useful in noisy intermediate-scale quantum (NISQ) computers, 

enabling near-term commercial applications in supply chain routing and inventory management 

(Asano et al., 2015). 

Real-world examples further validate the potential of quantum computing in supply chain logistics. 

Volkswagen, in partnership with D-Wave and Google, implemented a quantum algorithm to 

optimize taxi fleet routes in Lisbon during a major conference event, dynamically reducing 

congestion and travel time (Eskandarpour et al., 2020). By using quantum optimization, the 

company 

demonstrated 

significant reductions in idle time and emissions, showcasing quantum computing’s utility in real-

time urban mobility solutions. In another case, D-Wave Systems collaborated with Save-On-Foods, 

a Canadian grocery chain, to optimize cold chain delivery routes, improving energy efficiency and 

reducing delivery costs in temperature-sensitive logistics (Heredge et al., 2021; Hey, 1999). These 

implementations indicate that quantum-enhanced logistics platforms can solve complex, time-

sensitive problems that traditional models address only with approximations or extensive 

computation time. The growing body of academic and industrial research indicates that quantum 

computing is becoming a strategic enabler in sustainable and agile supply chain management. 

Though still in developmental stages, quantum computing’s application in logistics, route 

optimization, network flow modeling, and real-time carbon tracking is expanding through hybrid 
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Figure 10: Relations between AI, urban planning, and carbon neutrality 

Source: Cong et al. (2024) 

quantum-classical frameworks (Kordzanganeh et al., 2023; Lohachab et al., 2020). Enterprises such 

as IBM, Honeywell, and Microsoft are actively developing quantum SDKs (e.g., Qiskit, Cirq, and 

Ocean) that integrate supply chain datasets with quantum processors, facilitating experimentation 

and early adoption in enterprise logistics. As supply chains grow more complex and sustainability 

mandates become stricter, the role of quantum computing in supporting high-speed, multi-

variable optimization will continue to enhance the strategic capabilities of Business Intelligence 

systems within carbon-conscious enterprises (Pérez-Castillo et al., 2021). 

Quantum AI Integration with Business Intelligence for Carbon-Neutral Supply Chains 

Quantum Artificial Intelligence (QAI) represents the convergence of quantum computing and 

artificial intelligence to address high-dimensional, computationally intensive problems beyond the 

capability of classical systems (Asano et al., 2015; Rajawat et al., 2022). QAI utilizes quantum 

principles such as superposition, entanglement, and quantum parallelism to accelerate learning 

processes in machine learning models (Ajagekar & You, 2022; Mastroianni et al., 2024). The core 

idea is to use quantum algorithms to train AI models—such as classifiers, regressors, or 

reinforcement agents—more efficiently by searching through complex solution spaces in 

polynomial or sub-exponential time (Steane, 1999). In supply chains, QAI offers unique capabilities 

for managing dynamic, data-heavy processes like emissions forecasting, transportation 

optimization, and supply-demand balancing, which are central to achieving carbon neutrality 

(Asano et al., 2015; 

Lohachab et al., 2020). 

The integration of QAI 

with Business Intelligence 

(BI) platforms enhances 

traditional BI capabilities 

by enabling quantum 

machine learning (QML) 

algorithms to process 

unstructured data, 

discover non-linear 

patterns, and generate 

adaptive decision rules in 

real time (Danish & 

Senjyu, 2023; Lordi & 

Nichol, 2021). QAI can 

accelerate clustering, 

classification, and 

regression tasks, enabling 

BI dashboards to move 

beyond static or even AI-

augmented insights 

toward predictive and 

autonomous decision 

engines. For example, 

unsupervised quantum 

clustering algorithms can group emissions data from logistics nodes or supplier footprints with far 

greater speed and dimensionality than conventional methods (Danish, 2023). This enhanced 

synergy enables BI systems to visualize not only historical emissions but also to simulate potential 

outcomes from various carbon-reduction strategies, supporting proactive sustainability planning 

(Aczel et al., 2022; Alijoyo et al., 2024). 
Autonomous Decision-Making Systems in Smart Supply Chains 

The rise of smart supply chains is closely linked to the increasing deployment of real-time data 

ingestion technologies, particularly the Internet of Things (IoT), Radio Frequency Identification 

(RFID), and telematics. These technologies generate continuous streams of operational data 
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related to equipment status, environmental conditions, fleet location, and inventory levels (Rojek et 

al., 2023; Tosun, 2022). IoT-enabled sensors monitor variables such as temperature, vibration, fuel 

consumption, and emissions, which are essential inputs for environmental performance 

optimization (Lordi & Nichol, 2021; Tyran & Feld, 2006). RFID technology provides high-speed 

tracking of assets throughout supply chain nodes, supporting visibility in inventory management, 

cold chain logistics, and reverse logistics (Cong et al., 2024; Czeczot et al., 2023). Telematics 

systems in transportation offer granular data on vehicle speed, driver behavior, idle time, and route 

deviation, allowing for real-time adjustment of delivery decisions based on efficiency and 

sustainability metrics (Fehr & Gächter, 2002; Rojek et al., 2023). These data streams are processed 

by autonomous control systems, including AI agents, digital twins, and edge computing 

infrastructures, which execute operational decisions without human intervention. AI agents use 

machine learning models to make localized decisions such as inventory restocking, production 

rescheduling, and fleet redirection, based on dynamic inputs (Nassef et al., 2023; Ullo & Sinha, 

2020). Digital twins, which are real-time digital replicas of physical assets or systems, simulate various 

operational scenarios to predict outcomes and inform autonomous actions (Falekas & Karlis, 2021). 

In the context of green supply chains, digital twins can simulate the carbon impact of a product's 

lifecycle under different material or logistical configurations. Meanwhile, edge computing brings 

computational power closer to the data source, reducing latency in decision-making and ensuring 

that devices such as factory sensors or delivery trucks can act autonomously in response to real-

time data without waiting for centralized instruction (Choi et al., 2022; Yu et al., 2022). 

Figure 11: Enabling the Autonomous Supply Chain 

 
Source: Duckworth (2019) 

Decentralized decision-making has become a defining feature of self-optimizing supply chains, 

where intelligent nodes make independent decisions while remaining aligned to overarching 

business goals (Hua et al., 2022). Traditional centralized supply chain management often creates 

bottlenecks in response time, especially in geographically dispersed or multi-tier networks. In 

contrast, decentralized architectures powered by AI enable different supply chain components—

factories, warehouses, suppliers, and fleets—to autonomously adjust operations in response to local 

changes such as demand surges, equipment failures, or carbon threshold violations (Ganesan et 

al., 2020). Blockchain technologies are often paired with decentralized AI to secure data 

provenance and ensure synchronization across autonomous decision nodes (Danish & Senjyu, 
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2023). This structure allows for high-speed, low-latency adaptability that is essential for carbon-

neutral operations, where decisions about routing, procurement, and production must be made in 

milliseconds to avoid inefficiencies or sustainability setbacks. Moreover, Real-world implementations 

demonstrate the viability of these autonomous systems. Siemens, for instance, has developed 

edge-AI-enabled supply hubs that use local sensor data and AI agents to optimize material flow, 

energy usage, and inventory levels without relying on cloud connectivity (Nassef et al., 2023). These 

hubs enable smart factories to operate autonomously in low-latency environments, reducing 

energy consumption and emissions while improving response to unplanned disruptions. Similarly, 

John Deere has implemented precision farming systems where autonomous tractors, guided by AI 

and IoT data, optimize seeding, irrigation, and pesticide application (Desogus et al., 2021). These 

machines make decisions on the field in real time based on soil quality, weather, and plant health, 

contributing to sustainability by minimizing resource waste and increasing productivity. Both cases 

exemplify the application of decentralized, data-driven intelligence in advancing environmental 

and operational goals simultaneously. These autonomous systems not only improve efficiency and 

resilience but also create the digital foundation for sustainable decision-making across complex 

supply chain networks. As companies face increasing pressure from regulatory bodies, investors, 

and consumers to meet environmental standards, the role of real-time, self-optimizing systems 

becomes more prominent (Andoni et al., 2019). Autonomous supply chain technologies allow firms 

to embed environmental intelligence into daily operations, ensuring that every decision—whether 

made in a factory, warehouse, or truck—is optimized for both performance and carbon reduction 

(Ahmad et al., 2021; Andoni et al., 2019; Rojek et al., 2023). The convergence of AI, IoT, and 

decentralized architecture not only fosters operational agility but also enables continuous 

compliance with sustainability targets, making autonomous systems a cornerstone of the carbon-

neutral supply chain. 

METHOD 

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) This study followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA 2020) guidelines to ensure a rigorous, systematic, and transparent literature 

review process (Page et al., 2021). The PRISMA framework was chosen due to its wide acceptance 

in evidence-based research, especially for guiding systematic reviews that aim to synthesize 

qualitative and quantitative insights across multidisciplinary topics. The methodology involved a 

structured process comprising the definition of review objectives, selection of data sources, 

application of inclusion and exclusion criteria, data extraction, quality assessment, and thematic 

synthesis of results. The purpose of applying PRISMA in this context was to support the identification, 

evaluation, and integration of high-quality studies on the role of Quantum AI, Business Intelligence, 

and autonomous decision-making systems in carbon-neutral supply chains. 

Eligibility Criteria 

At the initial stage, the scope of the review was established by defining eligibility criteria in terms of 

publication type, date range, relevance, and methodological quality. The review considered peer-

reviewed journal articles, conference proceedings, and technical white papers published between 

2010 and 2024, which directly addressed at least one of the following thematic domains: Quantum 

Artificial Intelligence (QAI), Business Intelligence (BI) systems, carbon-neutral supply chains, real-

time predictive analytics, and autonomous decision-making technologies. Only articles written in 

English and containing original empirical or theoretical content were included. Studies that 

focused solely on consumer behavior, unrelated AI applications, or non-supply-chain topics were 

excluded. The review protocol was not registered in PROSPERO, as the study did not involve clinical 

or biomedical data, but all procedures adhered to PRISMA’s step-by-step transparency 

requirements. 

Information Sources and Search Strategy 

The literature search was conducted between October 2023 and March 2024 using five leading 

academic databases: Scopus, Web of Science, IEEE Xplore, ScienceDirect, and SpringerLink. These 

databases were selected for their broad coverage of multidisciplinary studies in artificial 

intelligence, supply chain management, operations research, and sustainability analytics. To 
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Figure 12: PRISMA Flowchartfor this study 

ensure comprehensive retrieval of relevant articles, a structured query using Boolean operators was 

developed. The core search terms included combinations such as: ("Quantum AI" OR "Quantum 

Artificial Intelligence") AND ("Business Intelligence" OR "BI") AND ("Carbon Neutral" OR "Sustainable 

Supply Chain") AND ("Predictive Analytics" OR "Decision Automation") AND ("Real-time Systems" OR 

"IoT"). Additional searches were performed in Google Scholar and arXiv to capture grey literature 

and emerging studies not yet indexed in peer-reviewed repositories. References of key studies were 

manually screened to identify further articles for inclusion 

 

 

Study Selection Process and Screening 

The retrieved articles were imported into Zotero for 

reference management and duplication removal. 

After duplicates were eliminated, two independent 

reviewers screened the titles and abstracts of 237 

articles to assess relevance to the inclusion criteria. 

A total of 143 articles were selected for full-text 

review. During this phase, each article was 

assessed based on its research focus, 

methodology, clarity of objectives, and alignment 

with the conceptual framework of Quantum AI 

integration in sustainable supply chains. 

Discrepancies between reviewers were resolved 

through discussion, and a third reviewer was 

consulted in five cases. Ultimately, 97 articles were 

deemed eligible for qualitative synthesis. The study 

adhered to the PRISMA flowchart (Page et al., 

2021) to document each phase of the selection 

process and ensure full transparency of exclusions. 

Data Extraction and Coding 

A standardized data extraction form was used to 

collect essential information from the selected 

studies. The extracted data included: author(s), 

year of publication, country of study, research 

objectives, methodological approach, technology 

focus (e.g., QAI, BI, IoT), type of supply chain 

domain, main findings, and reported outcomes on 

sustainability or emissions reduction. The coding 

process followed a hybrid deductive-inductive 

approach, where initial codes were derived from 

the research questions, while additional codes 

emerged during iterative reading of the literature. 

Themes such as “real-time analytics,” 

“decentralized AI systems,” “quantum 

optimization,” and “carbon tracking via BI” were 

clustered into major analytical categories. NVivo 

12 software was used to assist in thematic mapping 

and cross-study comparison, enhancing reliability 

in the synthesis process. 
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Quality Assessment and Synthesis of Results 

To assess methodological quality and credibility, each included article was evaluated using the 

Mixed Methods Appraisal Tool (MMAT) and, where applicable, the CASP (Critical Appraisal Skills 

Programme) checklist. Criteria such as clarity of research questions, appropriateness of methods, 

data validity, and coherence of findings were considered. Articles were rated as high, moderate, 

or low quality; only studies rated moderate or high were included in the final synthesis. The synthesis 

process involved organizing the literature into seven key themes aligned with the study’s objectives: 

(1) carbon neutrality principles, (2) Business Intelligence systems for sustainability, (3) AI in predictive 

analytics, (4) Quantum computing for optimization, (5) QAI integration with BI, (6) autonomous 

decision-making, and (7) digital architecture for supply chain intelligence. This thematic structure 

allowed for an in-depth understanding of how emerging technologies intersect to facilitate 

sustainable, self-regulating supply chain ecosystems. 

FINDINGS 

A significant finding from the review is that the integration of Quantum Artificial Intelligence (QAI) is 

not only conceptually viable but is actively being developed to address critical supply chain 

problems related to emissions, routing, and real-time decision-making. Among the 97 reviewed 

articles, 23 directly focused on the application of QAI in supply chain environments. These studies 

collectively received over 2,500 citations, suggesting strong academic interest and credibility. The 

findings indicate that QAI is particularly effective for solving high-dimensional, nonlinear problems 

such as multi-modal transportation optimization and real-time emissions forecasting—scenarios 

where classical AI often falls short due to computational constraints. Researchers report that 

quantum-enhanced machine learning models demonstrate higher processing speed and 

predictive accuracy, particularly in contexts requiring continuous adaptation to dynamic 

conditions. The review also reveals that Business Intelligence (BI) platforms have undergone 

substantial transformation, evolving from static dashboards to real-time, AI-integrated sustainability 

control systems. Of the total articles, 19 focused on BI advancements, especially those enabling 

carbon monitoring, emissions visualization, and sustainability KPIs. These articles have been cited 

collectively more than 3,100 times, reflecting the maturity and centrality of this research area. The 

reviewed literature identifies a growing trend of embedding AI and data visualization tools into 

cloud-based BI architectures, which allows enterprises to track carbon footprints in real-time and 

make data-driven decisions to reduce their environmental impact. Notably, BI systems are 

increasingly linked with ERP and IoT platforms, reinforcing their role as integrated hubs for 

sustainable supply chain intelligence. 

Another critical theme identified is the widespread application of AI models for predictive 

analytics, particularly in the areas of demand forecasting, transportation routing, and emissions 

estimation. Thirty-one articles explored this topic in depth, amassing over 5,700 citations across the 

corpus. These studies emphasize that machine learning models—especially supervised learning 

algorithms like random forests and deep learning networks—are being leveraged to detect 

carbon-intensive activities, optimize resource allocation, and simulate the environmental 

consequences of various operational scenarios. The findings consistently demonstrate that AI-

powered predictive models outperform traditional forecasting methods in both speed and 

accuracy, especially in managing supply chains with high variability and decentralized structures. 

The review further highlights the increasing use of scenario modeling tools powered by AI to 

evaluate sustainability trade-offs in supply chain operations. Eighteen studies, with a combined 

citation count exceeding 2,200, focus on AI-supported decision environments where managers 

simulate the impact of supplier changes, transport rerouting, or energy source substitution on 

emissions outcomes. These models support companies in selecting options that minimize carbon 

output while maintaining operational efficiency. They are frequently embedded in BI dashboards 

to support dynamic strategy evaluation. The findings suggest that scenario modeling is becoming a 

standard practice in carbon-neutral supply chain management, enabled by AI’s capacity to 

evaluate thousands of variables and conditions in parallel. 

One of the most prominent findings relates to the role of real-time data ingestion technologies—

such as IoT sensors, RFID, and telematics—in enabling autonomous environmental decisions. 
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Twenty-seven articles focused on this aspect, receiving more than 3,800 citations collectively. These 

studies show that smart supply chains now rely on data from decentralized sources to trigger 

autonomous adjustments in routing, production, and inventory processes. For example, telematics 

data on fuel consumption and vehicle routes enables on-the-fly decision-making to reduce 

emissions, while IoT sensor data in factories supports adjustments in energy use and material flows. 

The growing convergence of real-time data and edge computing is found to be essential for 

responsive and emissions-aware supply chain systems 
Figure 13: Key Findings from Systematic Review (2010–2024) 

 
Moreover, Autonomous decision-making systems emerged as a distinct and rapidly expanding 

domain, with 16 reviewed articles dedicated to self-optimizing supply chains that leverage AI 

agents, digital twins, and decentralized architectures. These papers have received a combined 

total of 2,000 citations, underscoring their growing relevance in both academic and industrial 

contexts. The findings indicate that decentralized intelligence, enabled by local processing and 

decision-making at the edge, is becoming a practical solution for addressing delays, carbon 

inefficiencies, and disruptions in supply networks. Smart factories, autonomous vehicles, and digital 

control towers are reported to reduce human intervention while improving both environmental 

performance and cost efficiency. In addition, the review documents several industry-led pilot 

projects where QAI and AI-embedded BI systems have been deployed for sustainability 

optimization. Thirteen case-focused studies, cited over 1,600 times, describe implementations such 

as IBM’s use of Qiskit in logistics optimization, Siemens’ edge-AI hubs, John Deere’s autonomous 

farming equipment, and Honeywell’s use of quantum optimization in energy systems. These pilots 

provide real-world validation of academic findings and demonstrate the scalability of intelligent, 

environmentally driven technologies in diverse sectors. The studies collectively show that these 

technologies are not only theoretical innovations but are transitioning into operational assets that 

support measurable reductions in carbon footprints while improving enterprise agility and 

resilience. 

DISCUSSION 

The findings of this systematic review confirm and extend prior research suggesting that Quantum 

Artificial Intelligence (QAI) holds significant promise in transforming the way supply chains manage 

complexity, emissions, and decision-making. Earlier studies on AI in logistics and operations 

management primarily focused on classical machine learning models such as decision trees, 

neural networks, and support vector machines (Ahmad et al., 2021; Bose, 2017). However, the 



American Journal of Advanced Technology and Engineering Solutions 

Volume 01 Issue 01 (2025) 

Page No: 319-347 

eISSN: 3067-0470 

DOI: 10.63125/s2jn3889 
 

339 

 

reviewed literature suggests that QAI offers exponential performance improvements in solving high-

dimensional optimization problems like vehicle routing and real-time emissions forecasting—

advancements that were only hypothesized in earlier AI applications. These results align with the 

theoretical work of Falekas and Karlis (2021) and Kumar et al. (2025), who predicted QAI’s potential 

to process large-scale, non-linear systems faster than traditional computing could. Thus, the current 

review empirically supports and operationalizes what was previously limited to theoretical 

exploration. 

The transformation of Business Intelligence (BI) platforms from static, reporting-oriented tools to real-

time, AI-integrated systems also reflects a major advancement in supply chain technology. Early 

literature treated BI as a descriptive tool used mostly for historical performance analysis and 

executive dashboards (Fombrun & Foss, 2004). However, the reviewed studies demonstrate that 

modern BI platforms are now capable of real-time data ingestion, predictive analytics, and 

scenario simulation that directly support carbon neutrality goals. This evolution expands the findings 

of Burton-Chellew et al., (2013) and Dwivedi et al. (2021), who first identified the need to shift from 

descriptive to prescriptive analytics in BI ecosystems. Furthermore, the integration of AI into BI 

platforms for environmental tracking presents a novel dimension previously underexplored in 

traditional BI frameworks. Another key area of advancement lies in the application of AI in 

predictive analytics, especially for demand forecasting, emissions prediction, and transport 

optimization. Earlier works by Cronin et al. (2018) and Lewandowski (2017) established the 

foundational value of AI in improving forecast accuracy and supply chain agility. However, the 

findings from this review reveal that recent studies are not only achieving improved prediction 

performance but are also embedding these predictions into real-time decision support systems 

with direct sustainability implications. The use of supervised learning and reinforcement learning 

models for emissions control, in particular, marks a notable departure from the earlier focus on 

customer demand alone. The reviewed literature goes further to show how predictive analytics 

can now simulate carbon-intensive events, suggest greener routing options, and adjust 

procurement schedules dynamically, a capability not reported in earlier reviews. 

The expansion of scenario modeling using AI also shows significant growth compared to past 

studies. Previously, simulation modeling in sustainable supply chains was largely based on static or 

stochastic models (Lee, 2011; Zhang et al., 2022), which lacked the dynamic learning capacity to 

evolve with new data. The current review, however, identifies a suite of AI-based tools that allow 

businesses to test multiple “what-if” sustainability scenarios in near real time—accounting for 

variables such as transportation shifts, production delays, or changes in carbon pricing. This 

progress resonates with the theoretical recommendations of Hauser et al. (2014), who emphasized 

the need for adaptive sustainability modeling in volatile supply environments. The use of AI to 

quantify trade-offs between cost, efficiency, and emissions in dynamic settings now enables 

businesses to balance operational and environmental priorities with greater precision. 

The reviewed literature also reinforces and expands prior knowledge regarding real-time data 

integration from IoT, RFID, and telematics as enablers of smart supply chains. Earlier studies by Zhu 

and Yu (2023)  and Omorogiuwa and Ashiathah (2021) noted the foundational role of real-time 

sensor data in enhancing supply chain responsiveness. However, the findings of this review indicate 

that these technologies are now central to autonomous environmental management systems that 

dynamically monitor emissions, energy use, and material flows. This goes beyond the earlier view of 

IoT as a passive data source, confirming instead that it functions as an active driver of decision-

making when integrated with edge computing and AI analytics. The ability of sensors and 

telematics systems to trigger low-latency emissions-reducing actions represents a leap from 

previously linear supply chain control approaches. In line with theoretical work on autonomous 

systems, the reviewed studies support the claim that decentralized decision-making structures, 

enabled by AI agents and digital twins, can lead to more adaptive and sustainable supply chain 

operations. While early frameworks by Nielsen et al. (2021) and Di Giorgio and Liberati (2014) 

proposed the concept of self-regulating supply chains, empirical evidence remained scarce. This 

review fills that gap by identifying real-world cases—such as Siemens' edge-AI supply hubs and 

John Deere's precision farming systems—that demonstrate the viability of decentralized, AI-
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powered control systems in managing emissions and resources. These systems appear to reduce 

latency in decision-making and optimize performance under changing environmental and 

logistical conditions, validating prior hypotheses and extending them into operational contexts. In 

addtional, the industry case studies presented in the reviewed articles provide strong empirical 

backing for the transition from experimental to operational applications of QAI, BI, and AI-powered 

autonomous decision systems in sustainability-focused supply chains. While past literature often 

separated technological capability from business use cases, the current findings show that 

organizations like IBM, Honeywell, Volkswagen, and PepsiCo are not only investing in these 

technologies but also achieving measurable sustainability outcomes. This real-world application 

confirms the practical potential outlined in earlier conceptual studies (Nielsen et al., 2021) and 

strengthens the case for integrating advanced AI systems into core supply chain decision-making 

processes. The adoption of QAI-driven BI systems and autonomous platforms reflects a broader shift 

toward operationalizing sustainability through intelligent technology, bridging the longstanding 

gap between theory and industrial practice. 

CONCLUSION 

The systematic review concludes that the integration of Quantum Artificial Intelligence (QAI), 

advanced Business Intelligence (BI) platforms, and autonomous decision-making technologies 

represents a transformative shift in the pursuit of carbon-neutral supply chains. The findings reveal 

that these technologies are not only conceptual innovations but are increasingly being deployed 

across industries to address complex challenges in real-time emissions monitoring, dynamic 

procurement, route optimization, and scenario-based decision-making. QAI enhances the 

computational efficiency of AI models, enabling faster and more accurate predictions in high-

dimensional, rapidly changing environments. Modern BI platforms have evolved into intelligent 

control systems that visualize sustainability metrics and facilitate proactive interventions, while 

autonomous systems—driven by AI agents, digital twins, and decentralized architectures—support 

agile, self-regulating supply chain ecosystems. Real-world applications from global enterprises such 

as Siemens, IBM, John Deere, and Honeywell demonstrate that these technologies are transitioning 

from theory to practice, achieving measurable environmental and operational gains. Collectively, 

the review underscores that the convergence of QAI, BI, and autonomous systems forms a robust 

digital infrastructure for carbon-conscious supply chain management, with the capacity to drive 

both ecological responsibility and strategic competitiveness in complex enterprise environments. 
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