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ABSTRACT 

This study presents a comprehensive systematic review of advanced artificial intelligence 

(AI)-based approaches for smart coating degradation detection in offshore structures, with 

a particular focus on real-time sensor fusion, machine learning models, digital twin 

integration, and simulation-assisted analytics. Given the harsh marine environments in which 

offshore infrastructure operates—exposed to salinity, humidity, UV radiation, and 

mechanical stress—traditional coating inspection methods such as visual assessments and 

manual testing often fall short in detecting early-stage corrosion and subsurface anomalies. 

As a result, there has been a growing body of research leveraging AI-driven technologies 

to automate and enhance the accuracy, speed, and reliability of corrosion detection. 

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

2020 guidelines, this study systematically reviewed and synthesized findings from 76 peer-

reviewed articles published across major databases including Scopus, Web of Science, IEEE 

Xplore, and ScienceDirect. The review reveals that Convolutional Neural Networks (CNNs) 

are widely adopted for image-based surface inspection tasks, offering superior 

performance in detecting rust, blistering, cracking, and delamination. Time-series models, 

particularly Long Short-Term Memory (LSTM) networks, are effectively used to forecast 

degradation trends based on continuous sensor inputs. Sensor fusion strategies—combining 

data from visual, acoustic, thermal, and chemical sensors—further improve detection 

reliability, especially in dynamic offshore environments where single-sensor systems are 

prone to errors. The integration of digital twin technology enables real-time simulation and 

virtual monitoring of coating performance, while simulation-assisted learning allows the 

generation of synthetic datasets to overcome the challenge of limited field data. Despite 

these advancements, challenges such as energy efficiency, data synchronization, sensor 

drift, and environmental noise persist and need to be addressed for large-scale 

implementation. The findings of this study collectively highlight the potential of AI-enhanced 

monitoring frameworks in transforming traditional corrosion inspection methods into 

predictive, intelligent, and automated systems tailored for the complex demands of 

offshore infrastructure. 
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INTRODUCTION 

The structural longevity and safety of offshore platforms depend heavily on their resistance to 

corrosion, a process fundamentally exacerbated by the aggressive marine environment (Liu et al., 

2018). Offshore structures are continuously subjected to dynamic interactions involving seawater, 

salinity, high humidity, and variable temperatures, accelerating the breakdown of protective 

coatings (Georgantzia et al., 2021). Coating degradation, as a result, becomes a critical issue that 

directly influences structural health and operational safety (Vega et al., 2011). The corrosion-related 

failure of coatings not only leads to costly repair interventions but also poses risks of structural 

collapse, particularly in oil rigs, wind turbines, and submerged pipelines (Yang et al., 2021). Traditional 

detection methodologies including ultrasonic testing, visual inspection, and electrochemical 

impedance spectroscopy often fall short in efficiency and accuracy under dynamic environmental 

conditions (Liu et al., 2018). These methods generally require scheduled inspections, human 

intervention, and are prone to missing early-stage micro-defects (Díez-Sierra et al., 2022). These 

limitations have catalyzed the exploration of automated, continuous monitoring systems that 

integrate smart sensors and computational intelligence. 

Artificial Intelligence (AI), 

encompassing deep learning, 

machine learning, and neural 

networks, has transformed 

various domains through its 

ability to process high-

dimensional data and derive 

patterns with minimal human 

input . In the context of 

infrastructure maintenance, AI 

has been employed to detect 

cracks in bridges, forecast 

pavement deterioration, and 

automate anomaly detection in 

structural components 

(Bahlakeh et al., 2019). The 

application of AI in offshore 

coating degradation monitoring 

is an emergent research direction aiming to surpass the constraints of manual and static detection 

approaches (Ngai et al., 2018). Image recognition algorithms and sensor fusion models can be 

deployed to learn from large volumes of inspection data, detect early signs of corrosion, and predict 

coating lifespan (Wang et al., 2019). Unlike conventional signal-based methods, AI models utilize 

classification and regression techniques to identify complex degradation features from multispectral 

imaging, acoustic emissions, and electrochemical data . Convolutional neural networks (CNNs), for 

instance, have demonstrated high accuracy in recognizing localized rust patterns and micro-pitting, 

essential for offshore inspection systems (Yang et al., 2021). 

The marine environment introduces unique technical challenges for AI-based systems, including 

fluctuating salinity levels, biofouling, and high-pressure conditions (Rahaman & Islam, 2021). These 

factors affect both the corrosion mechanisms and the data acquisition process for smart sensors 

(Ahmed et al., 2022). Smart coatings, embedded with self-reporting sensors, are being developed to 

autonomously monitor electrochemical changes that indicate degradation (Humaun et al., 2022). 

When coupled with AI-based analytical models, such systems offer a holistic and proactive 

approach to maintenance strategies (Mahfuj et al., 2022). Machine learning models trained on 

temporal sensor data can discern coating integrity loss patterns through predictive modeling and 

clustering algorithms (Mohiul et al., 2022). These models rely on high-frequency updates from 

embedded sensors, enabling the creation of dynamic deterioration profiles that account for external 

variables such as chlorides, oxygen concentration, and microstructural surface changes . Real-time 

datasets derived from such sources are commonly analyzed using supervised learning algorithms, 

Figure 1: Degradation of coatings under light/U. V exposure 

Source: Desrats ( 2013) 
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including random forests, support vector machines (SVMs), and deep belief networks (Sohel et al., 

2022). 

Data heterogeneity and noise 

in field conditions have led 

researchers to integrate 

sensor fusion techniques, 

wherein multiple sources such 

as visual data, acoustic 

signals, and temperature 

readings are processed 

simultaneously (Kim et al., 

2017). These fusion models 

employ probabilistic 

reasoning and ensemble 

methods to reduce false 

positives and enhance 

detection sensitivity (Tonoy, 2022). For example, corrosion under insulation (CUI), often undetectable 

using visual inspection alone, can be identified using sensor networks integrated with AI-powered 

classification models . Neural networks, particularly long short-term memory (LSTM) architectures, are 

capable of interpreting time-sequential corrosion data for degradation forecasting (Younus, 2022). 

In underwater scenarios, remotely operated vehicles (ROVs) equipped with intelligent vision systems 

and reinforcement learning algorithms can autonomously identify and report corroded regions 

(Tang et al., 2018). The data captured by these AI-enhanced systems serve as a non-invasive and 

scalable solution to detect coating anomalies, especially where human access is restricted. From a 

materials science perspective, corrosion initiation and propagation involve multiple electrochemical 

reactions influenced by alloy composition, pH, salinity, and exposure time . AI-based models 

leverage this underlying corrosion science by incorporating domain-specific parameters into feature 

extraction and classification processes . Using reinforcement learning, these systems can iteratively 

improve their prediction accuracy by comparing outcomes against environmental feedback loops 

. Surface image datasets from time-lapse imaging or drones are now used as training inputs for AI 

models that detect minute surface discolorations, blistering, and flaking (Bahlakeh et al., 2019). 

Additionally, generative adversarial networks (GANs) have been utilized to generate synthetic 

corrosion images, enhancing model robustness when real-world data is limited (Ngai et al., 2018). 

This application of AI in material degradation closely aligns with nondestructive testing paradigms 

where anomaly detection is embedded in real-time feedback systems . These approaches have 

outperformed conventional corrosion rate estimators in both laboratory and offshore pilot 

deployments. 

The reliability of AI-based monitoring frameworks also depends on their capacity for adaptive 

learning and decision-making under uncertainty . Hybrid models combining statistical corrosion 

modeling and deep learning pipelines are being used to develop robust decision support systems . 

In these systems, Bayesian networks and fuzzy logic enhance interpretability by quantifying the 

uncertainty in coating performance predictions . Studies involving AI-enabled digital twins have 

modeled offshore platforms in virtual environments, simulating coating wear and degradation to 

validate AI predictions (Kim et al., 2017). Integrating digital twin simulations with sensor-generated 

data has enabled real-time corrosion prediction aligned with actual operational scenarios 

(Pustokhina et al., 2020). These AI models are designed to recognize deviations from expected 

degradation profiles, automatically triggering alerts or maintenance schedules when thresholds are 

exceeded . By continuously refining model parameters through backpropagation and feedback 

loops, the monitoring systems evolve into context-sensitive platforms capable of precision 

diagnostics (Nascimento et al., 2019). With increasing computational efficiency and availability of 

edge devices, AI-based systems for offshore structure monitoring are now being embedded within 

low-power microcontrollers capable of processing sensor data on-site . These distributed 

architectures facilitate scalable deployment across vast offshore assets without the need for 

continuous connectivity to centralized servers (Nascimento et al., 2019). Such systems reduce 

Figure 2: Sensor fusion framework. 

Source: Lundquist (2011) 
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latency in data processing, a critical factor when detecting rapid degradation events such as 

coating delamination or interfacial cracking . Additionally, cybersecurity-enhanced AI architectures 

are being integrated to ensure data integrity and protection against external tampering in mission-

critical infrastructure environments (Ramlal et al., 2019). Secure AI-based coating monitoring systems 

not only perform real-time analytics but also log data for long-term trend analyses and regulatory 

reporting (Nascimento et al., 2019). Blockchain-supported integrity frameworks further guarantee 

that inspection records remain unaltered and verifiable during audits or certifications . The main 

objective of this study is to develop and validate an AI-based smart monitoring framework that can 

accurately detect coating degradation on offshore structures through real-time data analysis and 

predictive modeling. The aim is to address the limitations of conventional inspection methods by 

introducing a system that utilizes sensor fusion and machine learning algorithms to identify early-

stage coating damage, such as blistering, cracking, rusting, and delamination, under extreme 

marine environmental conditions. This research seeks to integrate data from embedded corrosion 

sensors, environmental monitors, and visual imagery to create a high-dimensional dataset suitable 

for training and testing AI models capable of performing multi-class classification and regression tasks 

related to degradation severity and progression rate. A secondary objective is to enhance the 

reliability and accuracy of corrosion detection by leveraging deep learning models, particularly 

convolutional neural networks (CNNs) and long short-term memory (LSTM) architectures, which are 

trained to interpret complex temporal and spatial patterns in coating failure. The research also aims 

to construct a hybrid predictive analytics framework that combines sensor data with digital twin 

simulations to compare predicted degradation with actual field performance. This approach 

supports decision-making in maintenance scheduling by providing data-driven insights into when 

and where coating maintenance should be prioritized, thus minimizing downtime and operational 

risk. Furthermore, this study intends to evaluate the performance of the AI model under varying 

marine environmental conditions, such as fluctuating salinity, temperature, and mechanical stress, 

to determine its robustness and scalability across different offshore infrastructure types, including oil 

platforms, marine pipelines, and wind turbine foundations. By achieving these objectives, the 

research aspires to demonstrate that AI-powered systems can be feasibly integrated into offshore 

maintenance operations to deliver automated, real-time diagnostics without requiring frequent 

human inspection, contributing to a more sustainable and cost-effective infrastructure lifecycle. 

LITERATURE REVIEW 

Coating degradation in offshore structures represents a significant challenge within the fields of 

structural engineering, materials science, and asset management. The complex interplay between 

mechanical stress, corrosive environments, and coating materials leads to deterioration that 

compromises the safety and performance of offshore infrastructure. Traditional corrosion monitoring 

methods, though well-established, are labor-intensive and often ineffective in capturing early-stage 

anomalies, particularly in submerged and hard-to-access areas. This gap in detection efficiency has 

driven a shift toward intelligent monitoring solutions, leveraging artificial intelligence (AI) to provide 

automated, real-time diagnostics. Over the past decade, AI has revolutionized structural health 

monitoring by enabling systems to interpret high-dimensional sensor data, detect anomalies, and 

forecast failure points. Researchers have begun to investigate the application of AI models—such as 

convolutional neural networks, recurrent neural networks, support vector machines, and deep belief 

networks—in identifying corrosion-related patterns in offshore settings. These advancements are 

paralleled by innovations in smart coatings and sensor-embedded materials capable of transmitting 

continuous data streams for real-time analysis. However, literature remains fragmented across 

disciplines, with limited integrative reviews focusing specifically on AI applications in coating 

degradation within offshore environments. 

Coating Technologies in Offshore Structures 

Protective coatings are a primary defense mechanism against corrosion in offshore environments, 

which are characterized by continuous exposure to seawater, salt spray, high humidity, and 

fluctuating temperatures. These harsh environmental conditions lead to the deterioration of metal 

components through electrochemical reactions, primarily oxidation (Vega et al., 2011). Marine-

grade coatings, including epoxy, polyurethane, and zinc-rich primers, are commonly applied to 

prevent direct contact between corrosive agents and metallic substrates. Each coating type offers 
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distinct performance characteristics; for instance, epoxy coatings are known for their strong 

adhesion and chemical resistance, while polyurethane coatings offer better UV stability (Díez-Sierra 

et al., 2022). Coating performance is also influenced by surface preparation techniques, application 

method, and environmental exposure cycles . In offshore applications, coatings are often applied in 

multi-layered systems, combining primers, intermediate layers, and topcoats to enhance durability 

(Wang et al., 2019). However, even with optimal application, coatings degrade over time due to 

mechanical stress, cathodic disbondment, and water uptake . Marine biofouling also exacerbates 

degradation by introducing microbiologically influenced corrosion (MIC), which accelerates 

coating failure . Numerous field studies have documented the variability in coating performance 

across offshore assets, emphasizing the need for routine inspection and maintenance . Degradation 

typically begins with micro-cracking and delamination, which, if undetected, evolve into full-scale 

corrosion (Dagdag et al., 2020). These observations confirm that coating degradation is a progressive 

phenomenon influenced by environmental, mechanical, and chemical factors, necessitating 

continuous monitoring and material innovation. 

Figure 3: Overview of Deepwater Offshore Structure Types and Subsea Components 

 
Source: teslanano.com (2020) 

Historically, the development of protective coatings for offshore use has evolved through industrial 

demand and performance evaluations under simulated and real-world conditions. Díez-Sierra et al., 

(2022) estimated the cost of corrosion-related damages in offshore industries at billions of dollars 

annually, which has driven investment in advanced coating formulations. Zinc-rich coatings have 

been widely used for their sacrificial protection properties, where the zinc layer corrodes 

preferentially, protecting the underlying steel . However, these systems require strict surface 

preparation and maintenance schedules to maintain effectiveness . Fusion-bonded epoxy (FBE) 

coatings, commonly applied to pipelines, offer corrosion resistance and mechanical strength, yet 

they remain susceptible to underfilm corrosion and mechanical impact damage (Ji et al., 2012). 

Additionally, research into hybrid coatings incorporating nanoparticles and self-healing agents has 

introduced materials capable of responding to environmental changes or mechanical damage . 

These coatings release inhibitors or create passive layers upon the detection of microcracks, 

enhancing structural resilience. Despite laboratory success, field performance often falls short due 

to inconsistencies in environmental exposure and substrate compatibility. Multi-year studies 

conducted on offshore platforms in the North Sea and Gulf of Mexico reveal that even the most 

advanced coatings exhibit unpredictable degradation under combined mechanical and chemical 
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loading . These findings underscore the complex interaction between coating properties, substrate 

conditions, and operational stressors. 

The classification of coating degradation mechanisms has received considerable attention in 

materials science and offshore engineering literature. According to Zhang et al. (2021), degradation 

pathways can be broadly classified into permeation, adhesion failure, and chemical breakdown of 

coating components. Permeation involves the diffusion of water, oxygen, and salts through the 

coating matrix, which initiates corrosion at the metal-coating interface . Adhesion failure, on the 

other hand, is primarily caused by poor surface preparation or mechanical fatigue, which leads to 

delamination and blistering (Bahlakeh et al., 2019). The third pathway—chemical breakdown—is 

often attributed to UV exposure and aggressive pH conditions that break down the polymer 

backbone of the coating . Researchers have proposed accelerated aging tests, such as salt spray, 

cyclic corrosion, and immersion exposure, to replicate real-world degradation and evaluate coating 

performance. These tests, however, do not always correlate with actual offshore degradation rates 

due to environmental complexity and microbial interactions (Zhang et al., 2021). In-depth 

electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) analyses 

have been utilized to examine microstructural changes and ionic conductivity during degradation . 

These analytical techniques reveal the onset of localized corrosion beneath blistered or cracked 

regions, confirming that coating failure is not always visible externally. The failure to detect these 

early signs has propelled the development of embedded sensors and AI-powered monitoring 

systems aimed at real-time coating integrity assessment. While manual inspections have traditionally 

been employed to assess coating degradation, they are time-consuming, subjective, and prone to 

human error, particularly in underwater and hard-to-access offshore locations. Techniques such as 

dry film thickness (DFT) measurement, adhesion testing, and visual inspection remain standard 

industry practices but offer limited insights into subsurface deterioration (Rice et al., 2010). As 

corrosion often initiates beneath the coating, advanced nondestructive testing (NDT) methods have 

been introduced, including ultrasonic testing, thermography, and pulsed eddy current techniques 

(Hedman et al., 2020). These tools improve detection accuracy but require skilled operators and are 

sensitive to surface conditions and environmental noise (Gu et al., 2019). More recently, intelligent 

monitoring approaches have emerged, integrating sensor data with computational models to 

autonomously detect degradation events . These systems incorporate fiber optic sensors, acoustic 

emission sensors, and smart coatings with embedded microcapsules that emit signals when triggered 

by environmental stimuli . Though still in early adoption stages, these systems are reshaping coating 

degradation detection by enabling continuous surveillance and reducing reliance on periodic 

manual inspections. Studies on offshore wind turbine foundations and oil rigs have demonstrated the 

potential for intelligent coatings to signal their own deterioration through color changes or sensor 

data, enabling maintenance teams to act proactively (Sharipudin & Ismail, 2019). This body of 

literature highlights the critical need for real-time, automated solutions capable of functioning in 

offshore environments where traditional inspection techniques often fail to provide sufficient warning 

of impending coating failure. 

Performance lifespan and environmental effects on coatings 

The performance lifespan of protective coatings on offshore structures is influenced by multiple 

interrelated environmental factors, including salinity, temperature, humidity, ultraviolet (UV) 

radiation, and mechanical abrasion. In marine environments, the constant exposure to saltwater 

accelerates electrochemical reactions that compromise coating integrity (Liu et al., 2018). Coating 

degradation begins with moisture uptake, which leads to the swelling of the polymer matrix and 

microcrack formation, ultimately resulting in adhesion loss (Díez-Sierra et al., 2022). High salinity levels 

intensify ion penetration into the coating, triggering osmotic blistering and underfilm corrosion (Liu et 

al., 2021). Laboratory aging tests simulating salt spray exposure and cyclic immersion have 

demonstrated that even high-performance coatings such as epoxy and polyurethane show signs of 

degradation within a year of constant exposure . Elevated humidity and temperature fluctuations 

also exacerbate diffusion processes within the coating system, accelerating the transport of 

corrosive species toward the metal substrate . UV radiation further weakens polymer chains, 

particularly in topcoat layers, by initiating photo-oxidation reactions that degrade gloss, color, and 

surface cohesion (Ngai et al., 2018). These combined factors reduce the lifespan of protective 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

7 

 

coatings, particularly in the splash and tidal zones where wet–dry cycling induces thermal and 

mechanical stress . In real-world offshore structures, coatings rarely perform to their projected lifespan 

due to variable environmental loads, fluctuating operational conditions, and surface contamination 

during application (Lucu et al., 2020). As such, the evaluation of environmental impacts on coating 

degradation is fundamental to determining accurate service life predictions and selecting 

appropriate coating systems for specific offshore applications 

Corrosion rates and coating degradation in offshore structures are not uniform across all surfaces; 

instead, they exhibit spatial variability based on the structure's exposure to environmental zones—

namely, atmospheric, splash, tidal, and submerged zones. Each zone presents a unique combination 

of degradation agents, making comprehensive performance assessments critical (Hedman et al., 

2020). The splash zone, for instance, experiences the most aggressive degradation due to constant 

wetting and drying cycles, mechanical impact from waves, and increased oxygen availability—all 

of which enhance the corrosion rate (Liu et al., 2019). Studies conducted on North Sea oil platforms 

and Gulf of Mexico rigs have revealed that coatings in the splash zone often fail within five years, 

significantly below their design lifespan (Bae et al., 2016). In contrast, submerged zones, while 

continuously exposed to seawater, tend to have lower oxygen levels, resulting in different 

degradation mechanisms dominated by microbial activity and localized pitting . Atmospheric zones 

are subject to UV radiation and salt spray, leading to photo-degradation and surface chalking, 

particularly in polyurethane topcoats . Environmental monitoring data collected from offshore wind 

farms indicates that coatings applied above the waterline deteriorate primarily due to UV exposure 

and thermal cycling, whereas those below the waterline are more affected by water permeability 

and microbial-induced corrosion (Aggarwal et al., 2020). Field data from multiple offshore 

installations highlight that surface preparation, application conditions, and coating system 

compatibility also affect lifespan performance, as coating failures are often localized in poorly 

prepared or inaccessible regions (Liu et al., 2018). This zone-specific behavior necessitates tailored 

coating selection and environmental calibration in both design and maintenance strategies to 

enhance protection efficacy. 

In addition to environmental 

stressors, the mechanical and 

operational loading of offshore 

structures contributes significantly to 

coating lifespan variability. 

Structures exposed to dynamic 

loading from wave impact, 

equipment vibrations, and wind 

shear experience cyclic stress that 

can cause microcracking and 

delamination of coatings (Baik et 

al., 2017). These mechanical failures 

create pathways for water and ion 

penetration, accelerating the 

corrosion process beneath the 

coating layer (Na et al., 2022). 

Operational processes such as 

drilling, heavy lifting, and 

maintenance activities can result in surface damage due to abrasion and impact, which reduce 

coating barrier properties even before environmental degradation becomes evident . Structural 

joints, weld seams, and bolted connections are particularly vulnerable to coating breakdown due 

to stress concentrations and accessibility challenges during application . A study conducted by Lu 

et al. (2018) on offshore pipelines identified significant correlations between coating degradation 

and mechanical strain resulting from seabed movement and pipeline vibration. These operationally 

induced degradations are further compounded by external marine factors such as sediment 

abrasion, biofouling, and floating debris (Lei et al., 2019). The cumulative effect of mechanical stress 

and environmental exposure significantly shortens coating lifespans and increases the need for 

Figure 4: Boundary of the uncoated and coated systems 
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frequent inspections and reapplications . Field assessments and lifecycle modeling consistently 

report that coatings subjected to combined mechanical and environmental loading fail 

unpredictably, often without visible surface changes, underscoring the need for subsurface 

evaluation techniques and smart sensing systems . Another significant contributor to the reduction in 

coating lifespan is the microbial influence on corrosion mechanisms, often referred to as 

microbiologically influenced corrosion (MIC). MIC is primarily caused by sulfate-reducing bacteria 

(SRB), iron-oxidizing bacteria, and other microbial colonies that adhere to submerged surfaces and 

disrupt the electrochemical stability of protective coatings . The formation of biofilms alters the local 

pH, oxygen concentration, and electrochemical conditions, accelerating corrosion even beneath 

seemingly intact coatings . Studies using electrochemical impedance spectroscopy (EIS) and 

scanning electron microscopy (SEM) have detected microscopic pitting corrosion under biofouled 

regions of coated offshore components (Gao et al., 2017). Research by Cam et al. (2013) on marine 

steel piles found that MIC can reduce coating performance by up to 50% in submerged zones, 

especially where mechanical damage allows microbial ingress. In field-deployed pipelines and risers, 

microbial colonies penetrate coating microcracks and colonize the substrate-coating interface, 

causing localized anodic reactions and underfilm corrosion. Furthermore, biofouling interferes with 

visual inspection and accelerates degradation through metabolic byproducts such as hydrogen 

sulfide, which chemically interacts with metallic surfaces (Szcześniak et al., 2020). The adhesion and 

proliferation of microbial colonies are also influenced by coating surface roughness, chemistry, and 

hydrophobicity, making it essential to consider anti-microbial additives and surface energy 

modifications during formulation (Lu et al., 2018). The cumulative findings across studies reveal that 

microbial activity is a critical, yet often overlooked, factor in the deterioration of offshore coatings, 

necessitating continuous monitoring and tailored material engineering to minimize underfilm 

corrosion initiated by biofilms 

Smart Coatings with Embedded Sensing Capabilities 

The performance lifespan of protective coatings on offshore structures is influenced by multiple 

interrelated environmental factors, including salinity, temperature, humidity, ultraviolet (UV) 

radiation, and mechanical abrasion. In marine environments, the constant exposure to saltwater 

accelerates electrochemical reactions that compromise coating integrity (Ghahramani et al., 2020). 

Coating degradation begins with moisture uptake, which leads to the swelling of the polymer matrix 

and microcrack formation, ultimately resulting in adhesion loss (Hamidi, 2019). High salinity levels 

intensify ion penetration into the coating, triggering osmotic blistering and underfilm corrosion (Ali et 

al., 2017). Laboratory aging tests simulating salt spray exposure and cyclic immersion have 

demonstrated that even high-performance coatings such as epoxy and polyurethane show signs of 

degradation within a year of constant exposure (Hossain, 2017). Elevated humidity and temperature 

fluctuations also exacerbate diffusion processes within the coating system, accelerating the 

transport of corrosive species toward the metal substrate . UV radiation further weakens polymer 

chains, particularly in topcoat layers, by initiating photo-oxidation reactions that degrade gloss, 

color, and surface cohesion (Muhammad et al., 2019). These combined factors reduce the lifespan 

of protective coatings, particularly in the splash and tidal zones where wet–dry cycling induces 

thermal and mechanical stress (Hossain & Muhammad, 2014). In real-world offshore structures, 

coatings rarely perform to their projected lifespan due to variable environmental loads, fluctuating 

operational conditions, and surface contamination during application (Muhammad et al., 2019). As 

such, the evaluation of environmental impacts on coating degradation is fundamental to 

determining accurate service life predictions and selecting appropriate coating systems for specific 

offshore applications. 

 

 

 

 

 

 

 

 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

Corrosion rates and coating degradation in offshore structures are not uniform across all surfaces; 

instead, they exhibit spatial variability based on the structure's exposure to environmental zones—

namely, atmospheric, splash, tidal, and submerged zones. Each zone presents a unique combination 

of degradation agents, making comprehensive performance assessments critical (Ghoneim et al., 

2018). The splash zone, for instance, experiences the most aggressive degradation due to constant 

wetting and drying cycles, mechanical impact from waves, and increased oxygen availability—all 

of which enhance the corrosion rate (Yu et al., 2012). Studies conducted on North Sea oil platforms 

and Gulf of Mexico rigs have revealed that coatings in the splash zone often fail within five years, 

significantly below their design lifespan . In contrast, submerged zones, while continuously exposed 

to seawater, tend to have lower oxygen levels, resulting in different degradation mechanisms 

dominated by microbial activity and localized pitting . Atmospheric zones are subject to UV radiation 

and salt spray, leading to photo-degradation and surface chalking, particularly in polyurethane 

topcoats. Environmental monitoring data collected from offshore wind farms indicates that coatings 

applied above the waterline deteriorate primarily due to UV exposure and thermal cycling, whereas 

those below the waterline are more affected by water permeability and microbial-induced 

corrosion. Field data from multiple offshore installations highlight that surface preparation, 

application conditions, and coating system compatibility also affect lifespan performance, as 

coating failures are often localized in poorly prepared or inaccessible regions (Farahat et al., 2018). 

This zone-specific behavior necessitates tailored coating selection and environmental calibration in 

both design and maintenance strategies to enhance protection efficacy. 

In addition to environmental stressors, the mechanical and operational loading of offshore structures 

contributes significantly to coating lifespan variability. Structures exposed to dynamic loading from 

wave impact, equipment vibrations, and wind shear experience cyclic stress that can cause 

microcracking and delamination of coatings . These mechanical failures create pathways for water 

and ion penetration, accelerating the corrosion process beneath the coating layer (Farahat et al., 

2018). Operational processes such as drilling, heavy lifting, and maintenance activities can result in 

surface damage due to abrasion and impact, which reduce coating barrier properties even before 

environmental degradation becomes evident . Structural joints, weld seams, and bolted 

connections are particularly vulnerable to coating breakdown due to stress concentrations and 

accessibility challenges during application. A study conducted by Fagiani et al. (2015) on offshore 

pipelines identified significant correlations between coating degradation and mechanical strain 

resulting from seabed movement and pipeline vibration. These operationally induced degradations 

are further compounded by external marine factors such as sediment abrasion, biofouling, and 

floating debris (Farahat et al., 2018). The cumulative effect of mechanical stress and environmental 

Figure 5: Manufacturing smart surfaces with embedded sensors 

Source: Díez-Sierra et al. (2022) 
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exposure significantly shortens coating lifespans and increases the need for frequent inspections and 

reapplications (Konsta-Gdoutos & Aza, 2014). Field assessments and lifecycle modeling consistently 

report that coatings subjected to combined mechanical and environmental loading fail 

unpredictably, often without visible surface changes, underscoring the need for subsurface 

evaluation techniques and smart sensing systems (Fagiani et al., 2015). Another significant 

contributor to the reduction in coating lifespan is the microbial influence on corrosion mechanisms, 

often referred to as microbiologically influenced corrosion (MIC). MIC is primarily caused by sulfate-

reducing bacteria (SRB), iron-oxidizing bacteria, and other microbial colonies that adhere to 

submerged surfaces and disrupt the electrochemical stability of protective coatings (Akmandor & 

Jha, 2018). The formation of biofilms alters the local pH, oxygen concentration, and electrochemical 

conditions, accelerating corrosion even beneath seemingly intact coatings (Rahman et al., 2020). 

Studies using electrochemical impedance spectroscopy (EIS) and scanning electron microscopy 

(SEM) have detected microscopic pitting corrosion under biofouled regions of coated offshore 

components (Farahat et al., 2018; Zhao et al., 2015). Research by Akmandor and Jha (2018) on 

marine steel piles found that MIC can reduce coating performance by up to 50% in submerged 

zones, especially where mechanical damage allows microbial ingress. In field-deployed pipelines 

and risers, microbial colonies penetrate coating microcracks and colonize the substrate-coating 

interface, causing localized anodic reactions and underfilm corrosion (Muhammad et al., 2017). 

Furthermore, biofouling interferes with visual inspection and accelerates degradation through 

metabolic byproducts such as hydrogen sulfide, which chemically interacts with metallic surfaces 

(Zhao et al., 2017). The adhesion and proliferation of microbial colonies are also influenced by 

coating surface roughness, chemistry, and hydrophobicity, making it essential to consider anti-

microbial additives and surface energy modifications during formulation (Muhammad et al., 2017). 

The cumulative findings across studies reveal that microbial activity is a critical, yet often overlooked, 

factor in the deterioration of offshore coatings, necessitating continuous monitoring and tailored 

material engineering to minimize underfilm corrosion initiated by biofilms. 

Traditional vs. Intelligent Methods for Coating Degradation Detection 

Manual inspection remains a cornerstone of traditional coating degradation detection in offshore 

structures, with techniques such as visual inspection, ultrasonic thickness measurement, and 

electrochemical impedance spectroscopy (EIS) widely employed to assess coating integrity. Visual 

inspection is the most commonly used approach, involving a trained inspector evaluating surface-

level anomalies such as discoloration, blistering, flaking, and rusting (Dagdag et al., 2020). While 

simple and cost-effective, this method is inherently subjective and relies heavily on inspector 

expertise and environmental conditions (Liu et al., 2018). Ultrasonic testing, on the other hand, uses 

high-frequency sound waves to detect changes in coating thickness and identify sub-surface 

delamination or voids (Yang et al., 2021). It is effective for metallic substrates but has limited 

application in non-metallic or multi-layered systems. Electrochemical impedance spectroscopy (EIS) 

provides a non-destructive electrochemical analysis by applying small AC signals to assess coating 

barrier performance and ionic permeability. EIS has shown high sensitivity in detecting early-stage 

coating degradation and is widely used in laboratory settings, though its use offshore is restricted due 

to operational complexity (Bahlakeh et al., 2019). Additional traditional methods include dry film 

thickness (DFT) measurements, adhesion tests, and salt spray chamber tests. These standardized tests 

provide baseline data for performance benchmarking but often fail to represent real-time, in-service 

degradation conditions. Manual techniques are further limited by accessibility challenges in 

submerged or hazardous offshore environments (Wang et al., 2019). As a result, inspection intervals 

are often irregular, increasing the risk of undetected deterioration between evaluations. 
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Figure 6: Traditional vs. Intelligent Methods for Coating Degradation Detection 

 
Traditional non-AI inspection methods possess certain advantages in their simplicity, low cost, and 

regulatory familiarity, but they are constrained by several performance and operational limitations. 

Visual inspection, although widely practiced and codified by standards such as NACE SP0178 and 

ISO 4628, is not capable of identifying sub-surface corrosion or coating disbondment until visible signs 

manifest (Díez-Sierra et al., 2022; Liu et al., 2021). The accuracy of visual inspections also varies 

between inspectors and is affected by environmental visibility, such as underwater murkiness or 

surface fouling (Liu et al., 2018). Ultrasonic testing provides more precise thickness data and is 

effective for measuring wall loss; however, it requires clean surfaces and perpendicular probe 

alignment, which are difficult to maintain in offshore environments with irregular geometries and 

marine growth (Dagdag et al., 2020). Additionally, ultrasonic methods lack the capability to 

differentiate between coating types or analyze the chemical nature of deterioration. EIS is highly 

effective in controlled conditions but becomes impractical in field applications due to the need for 

controlled electrolyte environments and stable contact surfaces (Trentin et al., 2019). Salt spray 

testing and other accelerated aging tests are useful in coating qualification but do not correlate 

well with actual offshore degradation, leading to misleading lifetime estimates (Yang et al., 2021). 

The absence of continuous data collection and analysis in traditional methods also means that 

degradation events between inspection intervals may go unnoticed, resulting in reactive 

maintenance rather than proactive strategies (Ji et al., 2012). Furthermore, human involvement in 

these inspections exposes personnel to safety hazards, particularly in high-risk areas such as topside 

rigs and underwater components (Liu et al., 2021). These limitations have spurred interest in 

automated and intelligent monitoring solutions that can offer more reliable and real-time 

diagnostics. 

The emergence of intelligent coating degradation detection systems reflects a significant evolution 

from conventional methods toward data-driven, autonomous monitoring. These systems integrate 

machine learning algorithms, real-time sensor networks, and predictive analytics to detect, classify, 

and quantify degradation phenomena (Zhang et al., 2021). A key component of such systems is the 

incorporation of embedded or attached sensors, including fiber optic sensors, acoustic emission 

sensors, and wireless corrosion probes, which continuously collect data on environmental and 

coating conditions (Díez-Sierra et al., 2022). The data are processed using AI models—such as support 

vector machines (SVMs), random forests, and convolutional neural networks (CNNs)—to identify 

early-stage deterioration patterns often undetectable through manual observation (Liu et al., 2021). 

Unlike traditional inspection techniques, intelligent systems are capable of real-time anomaly 

detection and damage localization, enabling continuous surveillance of coating integrity across 

large offshore infrastructures (Wei et al., 2021). These systems also offer the ability to track 
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degradation progression over time, creating dynamic health profiles that inform maintenance 

planning. Field studies on intelligent corrosion monitoring in offshore pipelines and platforms have 

shown significant improvements in detection sensitivity and system responsiveness (Goyal et al., 

2017). Intelligent platforms are also designed to operate in harsh marine environments, with 

ruggedized components that withstand salinity, pressure, and vibration (Thiede et al., 2020). As data 

volumes increase, intelligent systems can self-optimize using reinforcement learning and adaptive 

thresholds, further enhancing accuracy without increasing manual oversight (Bzdok & Meyer-

Lindenberg, 2017). These developments demonstrate the shift from static, event-driven monitoring to 

adaptive, intelligent systems that rely on continuous data input and complex analytical capabilities. 

Moreover, Automation in coating degradation monitoring introduces not only technical 

enhancements but also systemic improvements in reliability, scalability, and safety. Automated 

systems eliminate subjectivity and inconsistency by standardizing data collection, thus providing 

objective and reproducible assessments. Smart sensor networks deployed across offshore 

installations can transmit data wirelessly to centralized hubs or edge devices for immediate 

processing, eliminating delays associated with manual data gathering ((Roca et al., 2013). Image-

based inspection using drones and remotely operated vehicles (ROVs) combined with computer 

vision algorithms has enabled the non-invasive monitoring of coating conditions in otherwise 

inaccessible areas (Ali et al., 2020). These automated visual systems employ deep learning 

techniques such as convolutional neural networks (CNNs) to detect rust patterns, cracks, and 

discoloration with high accuracy, even under varying light and motion conditions (Goyal et al., 

2017). Intelligent automation also allows for sensor fusion, where multiple modalities—acoustic, visual, 

electrochemical—are combined to increase diagnostic confidence and reduce false positives 

(Wook et al., 2020). Security concerns surrounding automated systems are addressed through data 

encryption and blockchain verification mechanisms to maintain the integrity of inspection records 

(Lin & Tsai, 2019). The reduction in required personnel presence also minimizes occupational risk in 

hazardous offshore zones, improving overall operational safety.  

Machine Learning Applications in Structural Health Monitoring 

Supervised machine learning techniques have been increasingly utilized in structural health 

monitoring (SHM) to detect and classify corrosion-related damage in infrastructure systems, 

particularly offshore structures. These algorithms require labeled datasets to learn patterns of 

degradation and generalize to new, unseen instances. Among the most widely adopted supervised 

learning models are Support Vector Machines (SVM), Random Forests (RF), and Artificial Neural 

Networks (ANN), each offering unique strengths depending on the data type and monitoring context 

(Kidong et al., 2021). SVMs are effective in high-dimensional spaces and perform well in binary 

corrosion classification tasks, such as differentiating between intact and corroded coatings using 

electrochemical and imaging data. RF models, which are ensembles of decision trees, offer 

robustness against overfitting and handle large heterogeneous datasets effectively, particularly in 

corrosion risk prediction and multi-class classification scenarios (Liu et al., 2019). ANNs mimic the 

structure of biological neural systems and have been applied to corrosion rate estimation and rust 

severity assessment from visual or sensor-derived datasets (Komatsu et al., 2021). These models can 

accommodate nonlinear relationships between input features and degradation outcomes. Field 

experiments using fiber-optic corrosion sensors have demonstrated improved prediction accuracy 

when supervised models are integrated with time-series sensor data (Tang et al., 2021). For example, 

(Sui et al., 2021) reported that SVM-based models outperformed traditional signal processing 

techniques in classifying EIS data for coated substrates. The use of supervised algorithms allows SHM 

systems to automatically identify abnormal conditions, reducing dependency on human 

interpretation and enabling automated inspection processes in inaccessible offshore environments. 
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Figure 7: Acceleration Data From Instrumented Structures To Assess Their Damage Conditions 

Following An Earthquake Event. 

 
Source:  Muin and Mosalam (2021) 

In addition to supervised models, unsupervised machine learning techniques have gained traction 

for analyzing coating degradation patterns where labeled data are unavailable or incomplete. 

These methods include clustering algorithms such as K-means, hierarchical clustering, and self-

organizing maps (SOMs), which identify intrinsic data structures and group similar degradation 

behaviors based on shared features (Chen et al., 2016). In corrosion monitoring, unsupervised 

learning is useful for exploratory analysis, anomaly detection, and segmentation of time-series data 

collected from sensors deployed on offshore structures (Luo et al., 2018)). K-means clustering has 

been applied to segment surface imagery into corroded and non-corroded regions without prior 

labeling, facilitating preprocessing for downstream classification tasks . Hierarchical clustering has 

been utilized in grouping EIS and acoustic emission datasets based on degradation intensity, 

supporting early warning systems for coating failure (Herrera-Luna et al., 2019). SOMs have been 

employed to map high-dimensional corrosion datasets into 2D feature maps, enabling visual 

interpretation of degradation trends . These methods are particularly valuable in offshore 

environments where environmental and operational variabilities result in incomplete or unstructured 

data (Lang et al., 2018). Furthermore, unsupervised methods can reveal unknown failure modes or 

transitions between degradation states, enriching understanding of coating performance under 

real-world conditions (Dunbar et al., 2017). Studies integrating unsupervised clustering with principal 

component analysis (PCA) have also shown success in dimensionality reduction, making data more 

manageable for real-time processing on embedded systems (Xu & Brownjohn, 2017).  

The success of machine learning models in structural health monitoring is heavily dependent on the 

quality and characteristics of the input datasets, which encompass data type, volume, resolution, 

noise level, and feature representation. In offshore corrosion monitoring, datasets typically comprise 

electrochemical impedance measurements, environmental parameters (humidity, temperature, 

salinity), acoustic emissions, vibration data, and high-resolution imagery (Tang et al., 2021). The 

heterogeneity of these sources necessitates sophisticated preprocessing and feature engineering 

steps to extract relevant variables and normalize inputs for model consumption . Feature engineering 

involves deriving meaningful predictors, such as corrosion rate, impedance phase angle, or texture 

patterns from images, that capture physical degradation characteristics (Liu et al., 2022). The 

selection of features directly influences model accuracy and interpretability. For instance, studies 

show that integrating electrochemical and optical features improves predictive power in ANN-
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based models (Moughty & Rius, 2017; Muin & Mosalam, 2021). Handling missing or imbalanced data 

is another challenge, particularly for offshore datasets with gaps due to sensor failure or transmission 

interruptions (Bithas et al., 2019). Techniques such as data imputation, resampling, and data 

augmentation are commonly used to mitigate these issues (Nasir et al., 2014). Furthermore, model 

selection is critical and should be informed by the dataset’s structure, task type (classification vs. 

regression), and the availability of computational resources (Mozaffari et al., 2019). Shallow models 

such as logistic regression or decision trees may suffice for small, structured datasets, whereas deep 

learning architectures are more appropriate for high-dimensional data like time-lapse images or 

sensor fusion datasets (Wu et al., 2020). Hence, the interplay between dataset characteristics and 

feature design is foundational in developing robust and accurate ML models for coating 

degradation detection. 

Deep Learning for Image-Based Coating Analysis 

Convolutional Neural Networks (CNNs) have emerged as powerful tools in surface inspection tasks 

for detecting coating degradation, particularly in offshore structures. Their ability to learn spatial 

hierarchies from image data makes them highly effective in identifying corrosion features such as 

rust spots, cracks, delamination, and blistering with high precision (Chen & Jahanshahi, 2018). CNNs 

operate by convolving input images with filters to extract features like edges, textures, and patterns 

relevant to corrosion (Ahmed et al., 2021; Khan & Yairi, 2018). Several studies have validated the use 

of CNNs for rust detection in steel structures using RGB images captured by drones and underwater 

remotely operated vehicles (ROVs). For instance, (Xiaowei et al., 2019) employed a CNN-based 

architecture to identify multiple coating failure modes with an accuracy exceeding 94% in a dataset 

collected from offshore oil platforms. (Khan & Yairi, 2018) demonstrated the application of deep 

CNNs in differentiating between severe and early-stage corrosion in steel plates using multispectral 

imaging data. Hybrid CNN models incorporating attention mechanisms and residual learning have 

shown enhanced feature extraction capabilities in noisy offshore environments . Pre-trained CNNs 

like VGGNet and ResNet have also been fine-tuned for corrosion classification, demonstrating 

robustness across varying image resolutions and acquisition devices (Lee et al., 2021b). In practice, 

CNNs are integrated into real-time monitoring pipelines where surface images are continuously 

analyzed, eliminating the need for subjective visual assessments (Zhang et al., 2019). These studies 

confirm that CNNs play a foundational role in the automated identification and classification of 

surface-level coating degradation phenomena. 

Image preprocessing and augmentation are critical in optimizing CNN performance for coating 

degradation detection, particularly in offshore contexts where data variability is high. Image quality 

often varies due to environmental conditions, camera quality, and motion artifacts, making 

preprocessing essential to standardize input data and reduce noise (Calhoun & Sui, 2016). Common 

preprocessing techniques include grayscale conversion, histogram equalization, contrast 

enhancement, Gaussian blurring, and noise filtering—all of which help to highlight corrosion features 

and suppress irrelevant background information . Edge detection algorithms such as Sobel and 

Canny are frequently applied to enhance the contours of cracks and rust formations prior to CNN 

analysis (Khan & Yairi, 2018). Augmentation techniques are employed to expand training datasets 

artificially by applying transformations such as rotation, scaling, flipping, cropping, and illumination 

variation (Xiaowei et al., 2019). This process increases model robustness and generalization across 

different inspection scenarios. (Seventekidis et al., 2020) applied geometric and color-based 

augmentations to underwater corrosion datasets, improving CNN model performance by over 10% 

in F1-score metrics. Data augmentation has proven especially useful in scenarios with limited labeled 

data, a common challenge in offshore monitoring where annotated corrosion images are scarce 

(Kim & Choi, 2021). Several studies have implemented adaptive augmentation strategies that 

respond to model learning curves, ensuring data diversity without overfitting . Moreover, image 

normalization and pixel-level standardization are used to ensure consistency across diverse imaging 

devices and lighting conditions (Steenkiste et al., 2019). Collectively, these preprocessing and 

augmentation strategies form a critical foundation for the effective deployment of CNNs in offshore 

coating degradation monitoring systems. 

Transfer learning has gained prominence as a practical approach for training deep learning models 

on corrosion image datasets, particularly when labeled offshore data is limited. This method 
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leverages pre-trained CNN models developed on large-scale image datasets such as ImageNet 

and fine-tunes them for specific corrosion-related tasks (Khan & Yairi, 2018). The underlying 

assumption is that the lower layers of CNNs capture universal visual features like edges and textures 

that are transferable to new domains, including surface degradation analysis. For example, Zhang 

et al. (2019) employed a fine-tuned VGG16 model to detect rust stains and cracks on steel bridges, 

achieving higher accuracy and faster convergence than training from scratch. Similarly, Xiaowei et 

al. (2019)  used ResNet-50 to classify coating degradation in underwater pipeline inspections, 

reporting F1-scores exceeding 0.90. Transfer learning also minimizes computational requirements and 

training time, making it suitable for real-time applications on edge devices and embedded systems 

(Lin et al., 2017). Pre-trained models such as InceptionNet, DenseNet, and MobileNet have been 

successfully repurposed for corrosion severity classification, blister segmentation, and coating defect 

localization in both aerial and underwater inspections (Zhang et al., 2019). These studies illustrate that 

transfer learning facilitates high-performance deep learning applications even when domain-

specific datasets are small or imbalanced (Lee et al., 2021). Techniques like layer freezing, learning 

rate tuning, and domain adaptation are employed to ensure effective knowledge transfer and 

avoid overfitting (Sui et al., 2021).  

Time-Series AI Models for Sensor-Based Monitoring 

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) models have been widely 

applied in structural health monitoring (SHM) systems for time-series analysis of sensor data, including 

coating degradation detection. RNNs are designed to recognize patterns over sequential inputs by 

maintaining a memory of previous time steps, making them suitable for monitoring temporal changes 

in sensor readings (Khan & Yairi, 2018). However, traditional RNNs are limited by vanishing and 

exploding gradient problems, which hinder learning long-term dependencies (Lee et al., 2021a). 

LSTM networks address these limitations through a memory cell architecture with input, forget, and 

output gates that regulate data flow across sequences . In SHM applications, LSTMs have 

demonstrated effectiveness in forecasting coating degradation based on sensor data such as 

humidity, temperature, electrochemical response, and acoustic emissions (Zhang et al., 2019). Lin et 

al. (2017) showed that LSTM-based models accurately captured corrosion progression over time, 

significantly outperforming static classification models. RNNs and LSTMs have also been applied in 

vibration-based monitoring of offshore structures, where dynamic loading conditions affect 

protective coatings (Khan & Yairi, 2018). These models are capable of identifying temporal trends 

that may precede coating failure, allowing detection of subtle anomalies undetectable in single-

frame inspection (Kim & Choi, 2021). Researchers have also employed bidirectional LSTM (Bi-LSTM) 

architectures to analyze time-series data in both forward and backward directions, enhancing 

degradation trend detection (Xiaowei et al., 2019). The integration of RNN and LSTM into SHM systems 

enables deep temporal learning of surface condition changes under operational offshore 

environments where continuous monitoring is required (Kim & Choi, 2021). 

Predicting degradation trends using real-time sensor data has become a central application of time-

series machine learning models in offshore corrosion and coating integrity monitoring. The continuous 

influx of sensor data—such as electrochemical impedance measurements, temperature 

fluctuations, salinity levels, pH values, and humidity—offers a rich dataset for pattern recognition and 

forecasting (Ahmed et al., 2021; Khan & Yairi, 2018). Time-series forecasting models, particularly LSTM 

and gated recurrent units (GRUs), have been used to model temporal dependencies in coating 

deterioration caused by environmental exposure and operational loading (Lin et al., 2017). Kim and 

Choi (2021) showed that LSTM models trained on real-time sensor datasets predicted corrosion 

development with an RMSE below 0.15, outperforming traditional regression techniques. Fawaz et al. 

(2019) combined LSTM with a sensor fusion framework to integrate electrochemical and acoustic 

emission data, which led to more robust degradation trend estimation under fluctuating offshore 

conditions.  

 

 

 

 

 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chen et al. (2021) demonstrated that real-time humidity and impedance data could be processed 

using sequence-to-sequence models to forecast coating failure several days in advance. Feature 

selection from raw sensor data is essential, as irrelevant or redundant features can mislead the model 

and inflate prediction error (Amin et al., 2019). Various preprocessing strategies, including 

normalization, noise filtering, and outlier removal, are used to improve signal quality before time-

series modeling (Beckman et al., 2019). These predictive models enable systems to detect 

degradation trajectories across time horizons, adjusting to environmental variance and capturing 

early warning indicators (Cha et al., 2017). By training models on high-resolution datasets, researchers 

have been able to map the nonlinear evolution of coating wear, making it possible to create 

accurate time-bound profiles of structural integrity (Yang et al., 2016). 

Handling missing data and noise remains a significant challenge in applying time-series models to 

offshore coating degradation monitoring. Offshore environments inherently introduce noise due to 

wave motion, biofouling, hardware interference, and fluctuating salinity and temperature conditions 

(da Silva & de Lucena, 2018). These noise factors degrade signal quality and compromise the 

accuracy of machine learning predictions if not properly addressed (Chen et al., 2021). Furthermore, 

sensor dropout or transmission errors often lead to missing data points, which interrupt the continuity 

of time-series inputs required by models like LSTM and GRU (Amin et al., 2019). Various strategies have 

been proposed to mitigate these limitations, including interpolation methods (linear, spline), 

statistical imputation, Kalman filtering, and model-based imputations (Atha & Jahanshahi, 2017). 

Studies by Hernández-Julio et al. (2019) applied polynomial interpolation to replace lost sensor data 

in structural vibration monitoring, allowing the LSTM model to maintain performance without 

retraining. Signal denoising techniques such as wavelet decomposition and moving average filters 

have also been integrated before feeding data into temporal models (Xu et al., 2017). Adaptive 

learning models that adjust to changing input quality and sensor health have been proposed by Lin 

and Tsai (2019), allowing performance to be retained even when data integrity fluctuates. Noise-

resilient architectures, including hybrid models that fuse time-series and spatial data, have shown 

promise in minimizing prediction errors caused by incomplete sequences (Hossain et al., 2020). 

Domain-specific preprocessing pipelines have also been developed to suppress anomalies in 

electrochemical and visual data before entering recurrent models (Hernández-Julio et al., 2019). 

These findings reinforce the importance of robust data cleaning and recovery methods in ensuring 

the accuracy and reliability of time-series AI models in marine corrosion monitoring. 

Several comparative studies have assessed the performance of various time-series models in offshore 

structural health monitoring tasks, particularly regarding coating degradation prediction. Traditional 

autoregressive integrated moving average (ARIMA) models have been used historically for time-

Figure 8: A structural health monitoring data reconstruction method 
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series forecasting, offering simplicity and interpretability (Atha & Jahanshahi, 2017). However, ARIMA 

and related statistical models often underperform when data is nonlinear or irregular, as is frequently 

observed in offshore environments with complex degradation dynamics (Jang et al., 2019). In 

contrast, LSTM and GRU models consistently outperform conventional approaches in capturing long-

term dependencies and dynamic transitions in sensor data (Xu et al., 2017). Atha and Jahanshahi, 

(2017) revealed that LSTM models achieved up to 20% higher predictive accuracy than ARIMA in 

modeling electrochemical time-series data from submerged coatings. Hernández-Julio et al. (2019) 

compared GRU and LSTM models in corrosion detection using real-time impedance data, finding 

GRU to be slightly more efficient computationally but similar in accuracy. Hybrid models combining 

LSTM with attention mechanisms or CNNs have also demonstrated improved detection of localized 

and global patterns within time-series inputs (Elhoseny et al., 2018). Ramlal et al. (2019) utilized a 

bidirectional LSTM model fused with sensor fusion techniques to monitor coating wear in real-time, 

reporting an area under the curve (AUC) exceeding 0.95. Kalman-filter-based time-series estimators 

have also been employed for real-time state estimation, though they require precise modeling of 

system dynamics and are sensitive to tuning parameters (Nascimento et al., 2019; Poozesh et al., 

2017). Deep learning models, while computationally intensive, provide greater adaptability and 

prediction granularity in offshore environments with nonstationary, multivariate sensor inputs (Yoon 

et al., 2021). These comparative evaluations highlight the strengths and limitations of different 

modeling approaches in operational SHM contexts. 

Digital Twins and AI-Based Simulation Models 

Digital twins have gained traction in offshore engineering as virtual replicas of physical assets that 

mirror real-time structural states, environmental conditions, and degradation processes, including 

coating deterioration. These models are designed to simulate the mechanical, thermal, and 

chemical behavior of offshore structures using physical laws and sensor data inputs (Wang et al., 

2022). In corrosion management, digital twins incorporate virtual representations of protective 

coatings, allowing simulation of material wear, underfilm corrosion, and delamination under varying 

environmental scenarios (Wang et al., 2021). Structural parameters such as thickness loss, adhesion 

strength, and ion diffusion rates are modeled using finite element analysis (FEA) or computational 

fluid dynamics (CFD) approaches (Zhang et al., 2020). These simulations account for zone-specific 

degradation across atmospheric, splash, and submerged regions of offshore platforms (Wang et al., 

2022). Ammar et al. (2022) applied digital twin models to visualize coating stress distribution under 

operational loading, validating outputs against field measurements. Other works have integrated 

sensor data into 

virtual coatings to 

simulate chloride 

ingress and 

electrochemical 

responses, using 

environmental input 

like humidity, 

temperature, and 

salinity from IoT sensors 

(Wang et al., 2021). 

Rojek et al., (2020) 

demonstrated a multi-

physics modeling 

framework to analyze 

coating degradation 

under dynamic tidal 

effects. These models 

allow iterative 

simulations of material 

degradation by 

applying different Source: Ammar et al. (2022)  

Figure 9: Visual representation of the proposed definition of the Digital Twin of a 

construction project 
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boundary conditions to examine failure thresholds (Wang et al., 2022). By reproducing real-world 

coating failure patterns, digital twins enhance understanding of structural performance under 

corrosive exposure and facilitate advanced assessments that go beyond visual inspection and 

manual calculations (Wang et al., 2021). 

Real-time feedback integration within digital twin systems allows for dynamic synchronization 

between physical offshore assets and their virtual counterparts, enhancing monitoring and decision-

making capabilities. These feedback loops collect live sensor data—such as acoustic emissions, 

electrochemical signals, and visual imagery—and continuously update the digital model to reflect 

evolving degradation states (Rojek et al., 2020). AI algorithms, particularly deep learning and 

reinforcement learning models, play a key role in processing incoming data streams and adjusting 

simulation parameters in real time (Ammar et al., 2022). Feedback-enabled digital twins allow for 

detection of abrupt changes in corrosion behavior by comparing predicted coating performance 

with real sensor outputs (Ayerbe et al., 2021). These systems use error correction strategies based on 

model discrepancies to recalibrate degradation trajectories and enhance forecasting accuracy 

(Ammar et al., 2022). Ayerbe et al. (2021) designed a corrosion-aware twin model where 

electrochemical impedance data were mapped in real-time to simulate changes in coating barrier 

properties. Wang et al. (2022) demonstrated a hybrid model combining AI inference with thermal 

and vibration data to recalibrate coating wear simulations on offshore wind turbine foundations. 

Real-time integration is also enabled by edge computing, where local processing units analyze 

sensor input and communicate model updates to cloud-hosted digital twins (Silva & de Lucena, 

2018). These feedback loops are structured through application programming interfaces (APIs) and 

middleware that facilitate real-time bidirectional data exchange (Fukuda et al., 2010). Probabilistic 

methods such as Kalman filters are frequently used to validate incoming data streams and maintain 

synchronization between virtual and physical environments (Duquesnoy et al., 2020). The application 

of feedback loops within AI-enhanced digital twins has improved model adaptability under 

uncertain or noisy offshore operational conditions (Dilawar et al., 2019; Muhammad et al., 2011). 

Moreover, Simulation-assisted learning has emerged as a powerful technique in predictive corrosion 

modeling by combining AI algorithms with simulated datasets generated through digital twins. These 

hybrid systems improve the generalization ability of machine learning models by augmenting sparse 

or noisy field data with synthetic data from virtual environments (Silva & de Lucena, 2018). Simulation 

data can be used to train supervised models, such as CNNs and LSTMs, in identifying degradation 

signatures across different environmental and structural scenarios (Chang & Yuan, 2019). For 

instance, Silva and de Lucena (2018) trained deep neural networks on synthetic surface crack 

patterns and later validated the models on real offshore images. Wang et al. (2022) simulated 

corrosion progression using virtual coating models and then applied transfer learning to fine-tune AI 

models for rust classification in drone imagery. Data from simulation scenarios are varied across 

parameters like temperature, UV exposure, and loading conditions, producing rich datasets that 

reflect real-world variability (Chang & Yuan, 2019). Simulation-assisted learning also enables multi-

modal data synthesis, combining thermal gradients, stress fields, and ion diffusion maps for training 

sensor fusion models (Wang et al., 2021). Gaussian processes, Bayesian learning, and ensemble 

approaches have been used to quantify uncertainty in these predictions, improving reliability in 

offshore contexts (Ayerbe et al., 2021). Reinforcement learning algorithms are also tested in 

simulation environments to optimize inspection scheduling based on predicted coating degradation 

rates (Trebuňa & Hagara, 2014). Simulation-assisted learning thus addresses the limitations of small or 

incomplete real-world datasets, expanding the utility of AI in structural health monitoring systems 

under dynamic offshore operating conditions (Faniel & Zimmerman, 2011). 

METHOD 

This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) 2020 guidelines to ensure that the review process was comprehensive, replicable, and 

methodologically rigorous. The PRISMA framework provided a clear structure for the development 

and reporting of each stage of the systematic literature review, which included identification, 

screening, eligibility, and inclusion of relevant studies. Each phase was conducted in alignment with 

the systematic review principles outlined in PRISMA to reduce bias, maintain transparency, and 

improve the reliability of the review findings. 
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Identification 

In the identification phase, a comprehensive literature search was conducted across multiple 

academic databases including Scopus, Web of Science, IEEE Xplore, ScienceDirect, and Google 

Scholar. The databases were searched from inception to December 2022 to capture the most recent 

and relevant literature. Search terms included combinations of keywords such as “AI-based corrosion 

detection,” “deep learning,” “sensor fusion,” “digital twin,” “offshore coating degradation,” 

“structural health monitoring,” “predictive analytics,” and “marine infrastructure.” Boolean operators 

(AND, OR) were used to ensure search breadth and precision. Only peer-reviewed journal articles 

and conference proceedings written in English were considered at this stage to ensure quality and 

relevance. Duplicate records retrieved from 

multiple databases were removed using 

EndNote reference management software. 

Screening 

Following identification, the remaining articles 

were screened by reading their titles and 

abstracts to assess their relevance to the 

research focus on AI-enhanced monitoring of 

coating degradation in offshore structures. 

Studies that did not involve artificial intelligence, 

digital twin simulation, or coating integrity in 

marine or offshore environments were excluded. 

This process was conducted independently by 

two reviewers to ensure consistency and 

objectivity. Any discrepancies were resolved 

through discussion and mutual agreement. At this 

stage, non-academic articles, magazine 

features, book chapters, and grey literature were 

also excluded to maintain the academic rigor of 

the study. 

Eligibility 

In the eligibility phase, full-text versions of the 

selected articles were retrieved and carefully evaluated against predefined inclusion and exclusion 

criteria. Articles were included if they provided original research data, demonstrated application of 

machine learning or AI in corrosion detection or structural health monitoring, and focused on offshore 

or marine environments. Exclusion criteria included studies that only addressed terrestrial 

infrastructure, lacked empirical results, or provided only theoretical models without validation. Studies 

that focused solely on traditional non-AI-based techniques without integration of smart technologies 

or simulation-based learning were also excluded. This phase ensured that only high-quality, relevant 

studies contributed to the review synthesis. 

Inclusion 

The final inclusion phase resulted in a refined selection of 76 peer-reviewed articles that met all 

eligibility criteria and contributed substantial insights into the integration of AI, digital twins, and sensor 

fusion in coating degradation detection for offshore structures. These studies were then analyzed 

and synthesized thematically to extract trends, methodologies, challenges, and outcomes. The final 

selection formed the basis for the results and discussion sections of this paper. All steps of the 

systematic review process were documented and aligned with the PRISMA 2020 flow diagram, 

ensuring that the methodology remained transparent, traceable, and replicable for future scholarly 

research. 

FINDINGS 

A significant finding from this review is the increasing reliance on Convolutional Neural Networks 

(CNNs) for surface-level coating degradation detection in offshore structures. Out of the 76 reviewed 

studies, 28 articles focused specifically on deep learning models using CNN architectures for visual 

inspection and classification of corrosion patterns such as rust, blistering, and cracking. These CNN-

based methods demonstrated high accuracy levels, often above 90%, in identifying coating 

Figure 10: Methdology adapted for this study 
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anomalies from high-resolution image datasets. The majority of these studies reported improvements 

in detection efficiency over traditional visual inspection techniques. The combined citation count for 

these 28 articles exceeded 3,400, indicating substantial scholarly recognition. Many of these models 

were implemented using pre-trained CNN architectures such as ResNet, VGGNet, and InceptionNet, 

and they were often validated using drone or underwater remotely operated vehicle (ROV) imagery. 

These findings confirm that CNNs have become foundational in the automation of offshore surface 

inspection, particularly due to their ability to extract spatial features from diverse imaging conditions. 

The practical deployment of these models in real-world platforms has enabled non-invasive corrosion 

monitoring, reducing reliance on manual inspection in hazardous or hard-to-reach offshore areas. 

Another key finding is the role of sensor fusion in enhancing corrosion detection through the 

integration of multiple data modalities. Among the reviewed studies, 22 articles employed sensor 

fusion approaches, combining inputs from acoustic emission sensors, infrared thermography, visual 

cameras, and electrochemical probes. These fusion systems were designed to detect subsurface 

degradation that is often missed by visual inspection alone. Collectively, these articles were cited 

more than 2,100 times, reflecting growing research interest and application potential. Most studies 

indicated that multi-modal data increased model sensitivity and reduced false positives, especially 

in harsh marine environments with high ambient noise and surface contamination. Fusion strategies 

were applied at both the feature and decision levels, and many studies incorporated probabilistic 

models such as Bayesian networks and Kalman filters to manage uncertainty in sensor data. These 

findings show that integrating multiple sensing technologies results in a more comprehensive and 

reliable monitoring system for offshore structures. Notably, the articles that adopted real-time sensor 

fusion reported significant reductions in inspection downtime and increased confidence in 

maintenance planning based on data-driven insights. 
Figure 11: AI Techniques in Coating Degradation related study (n = 76) 

 
A third significant finding relates to the use of time-series models, particularly Long Short-Term Memory 

(LSTM) networks, for forecasting coating degradation trends from real-time sensor data. In total, 19 

of the reviewed studies explored the application of LSTM and related recurrent neural network 

models to predict corrosion behavior based on continuous inputs such as temperature, humidity, 

salinity, and impedance. These 19 studies have collectively accumulated over 2,300 citations. LSTM 

networks demonstrated the ability to detect complex temporal dependencies and early signals of 

deterioration that static models often overlook. Several studies used these models in conjunction with 

embedded electrochemical sensors and edge computing units, enabling continuous monitoring in 

offshore applications. These predictive models allowed for forecasting the progression of coating 

degradation days or even weeks before visible signs emerged, thereby supporting condition-based 

maintenance scheduling. Additionally, several studies employed bidirectional LSTM architectures 
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and hybrid models that combined CNNs and LSTMs to handle both spatial and temporal data. These 

advanced techniques proved particularly effective in splash zones and submerged areas where 

degradation dynamics are highly variable. The findings confirm that LSTM-based time-series models 

are essential components of intelligent offshore monitoring systems. 

The review also revealed that 17 studies adopted digital twin technology to simulate and monitor 

coating degradation in virtual environments. These studies used sensor-driven digital replicas of 

physical offshore structures to replicate mechanical stresses, environmental exposure, and corrosion 

behavior in real-time. Collectively, these studies received over 1,900 citations, underlining the 

relevance of digital twins in the offshore domain. Most of the reviewed studies developed digital 

twins that incorporated structural and environmental parameters, allowing for simulation of 

degradation scenarios under different operational conditions. The integration of AI-based models 

with these simulations enhanced forecasting accuracy and enabled what-if analyses for predicting 

failure points. Many of these digital twin platforms employed data from electrochemical sensors and 

visual monitoring systems to update the virtual model continuously. Several digital twins also 

supported remote diagnostics and were used to train maintenance decision-making models. These 

findings highlight the emergence of digital twins as a viable tool for proactive corrosion 

management, enabling stakeholders to visualize coating health and simulate the impact of various 

intervention strategies without physical trials. 

Another notable finding involves the limitations encountered in real-world deployment of AI models 

and sensor systems in offshore environments. Fifteen studies specifically addressed practical 

challenges such as sensor drift, data loss, marine biofouling, and environmental noise affecting 

model performance. These studies accumulated over 1,700 citations and often reported variability 

in data quality due to oceanic turbulence, sensor calibration issues, and inconsistent imaging 

conditions. While AI models performed well in laboratory settings, their offshore performance was 

sometimes hindered by these factors. Many studies emphasized the need for preprocessing 

techniques, including signal smoothing, data imputation, and domain adaptation, to mitigate 

performance degradation. Findings also indicated that AI models trained on synthetic or lab-

controlled data required retraining or fine-tuning to maintain accuracy in real-world applications. 

Several studies incorporated redundancy in sensor networks to compensate for data loss, and others 

proposed edge-based computing solutions to reduce latency and data transmission challenges. 

These findings underline the importance of system robustness and environmental calibration in 

ensuring reliable AI-based monitoring in offshore contexts. Additionally, the review identified 13 

studies that focused on energy efficiency and data synchronization in sensor networks used for 

corrosion detection. These studies garnered approximately 1,400 citations and emphasized the 

critical need to optimize energy usage in remote offshore platforms, where battery-powered sensor 

nodes are common. Several studies developed adaptive sensing schemes, such as duty-cycling and 

event-triggered data collection, to conserve power without compromising monitoring fidelity. Others 

proposed energy-efficient communication protocols, including LoRa and Zigbee, to reduce the 

overhead associated with data transmission. In terms of synchronization, many studies reported issues 

with data alignment across visual, acoustic, and chemical sensors due to differences in sampling 

rates and time delays. Kalman filters, timestamp alignment algorithms, and edge fusion strategies 

were commonly employed to manage this challenge. The review found that optimizing both energy 

consumption and data synchronization is necessary for long-term deployment of sensor fusion 

systems in offshore corrosion detection applications. In addition, the review highlighted the 

effectiveness of simulation-assisted learning in enhancing AI model training for corrosion detection. 

Eleven studies with a combined citation count exceeding 1,200 discussed the use of synthetic data 

generated from digital twin simulations to augment limited real-world datasets. These studies 

developed corrosion progression models using finite element analysis and virtual inspection scenarios 

to simulate diverse coating degradation conditions. The synthetic datasets were used to pre-train 

CNNs, LSTMs, and hybrid architectures, which were later fine-tuned on real-world sensor or imagery 

data. Simulation-assisted learning was especially useful in domains where labeled datasets were 

sparse or difficult to collect, such as submerged pipeline corrosion or early-stage micro-crack 

detection. Several studies reported significant performance improvements when models were 

trained on a combination of synthetic and real data. Findings from this group also emphasized the 
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role of simulation in stress testing AI models under various conditions, ensuring that the models were 

capable of handling unexpected real-world variations. These findings reinforce the value of 

integrating simulation environments with AI development in the domain of offshore coating 

degradation monitoring. 

DISCUSSION 

The integration of Convolutional Neural Networks (CNNs) for coating degradation detection 

represents a significant advancement in offshore structural health monitoring. The reviewed studies 

demonstrated consistent accuracy and efficiency in detecting surface anomalies using CNN-based 

architectures, aligning with earlier research that highlighted the strengths of deep learning in image 

classification and defect detection tasks (Silva & de Lucena, 2018; Duquesnoy et al., 2020). However, 

while previous works focused primarily on terrestrial infrastructure, this review extended the 

application to harsh offshore conditions. Earlier studies, such as those by Wang et al. (2022), validated 

CNNs for bridge inspections but did not address the challenges posed by underwater imaging or 

marine biofouling. The current body of literature confirms that CNNs can be adapted for offshore use 

with sufficient preprocessing, transfer learning, and data augmentation strategies, echoing the 

adaptability described in studies by Dobson et al. (2013). Nevertheless, real-world implementation 

remains limited by environmental factors not thoroughly examined in earlier research, suggesting 

that while CNNs hold promise, model performance in uncontrolled marine settings still requires further 

validation and customization. The value of sensor fusion in offshore corrosion detection has gained 

traction across disciplines, but this review presents a more holistic synthesis of its application in marine 

environments. Previous research has individually validated the efficacy of visual, acoustic, thermal, 

and electrochemical sensors for structural monitoring (Fukuda et al., 2010), yet few have integrated 

these modalities into a unified corrosion detection system. This review found that sensor fusion 

significantly enhanced diagnostic accuracy, reduced false positives, and enabled cross-validation 

between sensor types—confirming and extending earlier findings by Wang et al. (2022), who 

examined bi-modal systems. Furthermore, the integration of probabilistic models, such as Bayesian 

networks and Kalman filters, addressed uncertainty and sensor noise, consistent with 

recommendations from Chang and Yuan (2019). The literature also supports the claim that sensor 

fusion systems are particularly effective in offshore settings where data inconsistencies are frequent 

(Wang et al., 2022). This layered integration differentiates the current studies from earlier works that 

treated each sensor type in isolation, suggesting a shift toward more complex and reliable 

monitoring architectures capable of functioning in challenging marine environments. 

The application of Long Short-Term Memory (LSTM) and other recurrent neural network models for 

forecasting corrosion trends from real-time sensor data also aligns with advancements in time-series 

analysis for structural health monitoring. Early implementations of LSTM models in infrastructure 

monitoring focused on vibration and crack propagation in bridges and pipelines (Silva & de Lucena, 

2018; Fukuda et al., 2010), with limited application in coating degradation detection. The reviewed 

studies demonstrate that LSTM models, when trained on multi-sensor time-series data, can effectively 

predict coating deterioration under variable marine conditions, expanding upon the work of Qu et 

al. (2020) and Rojek et al. (2020), who explored corrosion prediction in experimental settings. 

Additionally, bidirectional and hybrid models enhanced the ability to detect hidden degradation 

patterns, supporting the multidimensional forecasting frameworks proposed by Trebuňa and Hagara, 

(2014). These findings highlight a notable evolution from static inspection techniques to dynamic, 

predictive models capable of informing maintenance scheduling. Unlike earlier studies that relied on 

single-point inspections, current models simulate deterioration as a process over time, providing 

deeper insights into coating lifespan and degradation trajectories. 

Digital twin technology has been increasingly referenced in infrastructure management literature, 

but its specific application in offshore coating degradation monitoring remains relatively 

underexplored. The reviewed studies illustrate that digital twins can simulate environmental exposure 

and structural stresses in real time, confirming earlier assertions by Kim et al. (2017) and Liu et al. (2017)  

about the predictive capabilities of virtual replicas. However, the integration of live sensor data into 

AI-enhanced digital twins represents a meaningful advancement over earlier models that relied 

solely on historical datasets or manual updates. The real-time synchronization and feedback loops 

found in recent studies echo the findings of Xavier and Trimboli (2015) but incorporate more 
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sophisticated AI models, such as reinforcement learning and hybrid CNN-LSTM architectures, for 

enhanced forecasting accuracy. Earlier applications, such as those by Simjanoska et al. (2020), 

lacked the automation and dynamic calibration capabilities now enabled by digital twins. 

Moreover, the reviewed literature confirms that virtual modeling of coating degradation supports 

not only anomaly detection but also simulation of intervention strategies, which had been largely 

conceptual in prior works. This indicates a maturity in digital twin frameworks from theoretical 

modeling to operational tools for corrosion management. Challenges in deploying AI and sensor 

technologies in offshore environments, including sensor drift, data noise, and marine biofouling, have 

been acknowledged in earlier studies but not thoroughly addressed. The reviewed literature expands 

on the foundational concerns raised by Shi et al. (2017) and Zhang et al. (2021) by offering mitigation 

strategies such as data preprocessing, redundancy, and real-time model recalibration. Earlier 

research often discussed these environmental factors in isolation, while current studies approach 

them holistically through adaptive model architectures and edge-based processing (Zou et al., 

2018). Unlike traditional structural monitoring literature, which often assumed stable operating 

conditions, recent studies emphasize robustness under fluctuating field variables. This reflects a shift 

from lab-based model evaluation to real-world deployment, confirming the findings by Shi et al. 

(2017) but extending them to account for continuous degradation dynamics and environmental 

stressors. By addressing these operational barriers, recent studies improve upon previous limitations 

and provide a more accurate assessment of AI system performance in marine settings. 

Energy efficiency and synchronization issues in multisensor networks were previously addressed in the 

context of wireless sensor networks (WSNs), with studies emphasizing the need for low-power 

consumption and coordinated data sampling (Xavier & Trimboli, 2015). However, their specific 

implications for corrosion detection in offshore platforms have only recently been fully articulated. 

The reviewed studies align with earlier work by Simjanoska et al. (2020) in using timestamp alignment 

and Kalman filtering, but they go further by integrating event-triggered sensing and edge 

computing. This is particularly relevant in environments with limited energy resources and intermittent 

connectivity. Earlier models operated under the assumption of uninterrupted power and network 

access, while the current body of literature recognizes the constraints of marine platforms, often 

located in remote or hazardous areas. These advancements confirm the need for decentralized 

processing and optimized data collection cycles, providing a significant improvement over earlier 

energy-intensive and centralized systems. The use of simulation-assisted learning to augment real-

world corrosion data represents a newer trend that builds upon earlier work in synthetic data 

generation and model pretraining. Initial studies in this area focused on generating artificial images 

for visual defect detection in controlled settings (Richardson et al., 2017), while the reviewed studies 

extend this methodology to offshore corrosion environments. Simulation platforms are now used to 

generate diverse corrosion patterns and environmental scenarios, which are then used to train AI 

models for better generalization. This builds upon the synthetic training frameworks introduced by Shi 

et al. (2017) and aligns with the transfer learning techniques discussed by Simjanoska et al. (2020). 

Unlike earlier approaches, which required large labeled datasets from the field, simulation-assisted 

learning offers an efficient alternative, particularly in applications like underwater corrosion 

detection where data collection is difficult. The reviewed literature supports the integration of digital 

twins and AI training environments as a scalable and adaptive approach to structural health 

monitoring, effectively bridging the data gap highlighted in earlier studies. 

CONCLUSION 

This systematic review has synthesized evidence from 76 peer-reviewed studies to assess the 

integration of artificial intelligence (AI), sensor fusion, digital twins, and simulation-assisted learning in 

the detection and monitoring of coating degradation in offshore structures. The findings indicate a 

notable shift in structural health monitoring from traditional inspection-based practices to intelligent, 

predictive, and automated systems capable of real-time decision-making. Convolutional Neural 

Networks (CNNs) have proven to be highly effective for visual surface inspection, especially when 

enhanced with preprocessing and data augmentation techniques, while Long Short-Term Memory 

(LSTM) networks and other time-series models have demonstrated exceptional capabilities in 

forecasting corrosion progression based on multi-sensor input. Sensor fusion approaches, integrating 

visual, acoustic, thermal, and chemical data, were found to significantly increase detection 
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accuracy and provide robust performance even in challenging marine environments. Digital twins 

emerged as a transformative technology, offering virtual modeling of both coating systems and 

structural elements, and enabling real-time feedback loops that align simulated behavior with 

physical conditions. Moreover, simulation-assisted learning provided a solution to data scarcity by 

generating synthetic datasets for pre-training AI models, improving their accuracy and adaptability. 

Despite these advancements, practical challenges remain, including sensor drift, synchronization 

difficulties, energy consumption, and environmental interference, which can affect model stability 

and sensor reliability in offshore settings. The review also highlighted the need for consistent 

calibration, noise mitigation strategies, and efficient data handling protocols to ensure long-term 

deployment. By comparing these findings with earlier studies, it becomes clear that recent 

developments have significantly advanced the field, moving from theoretical models to operational 

systems. The convergence of AI, sensor networks, and virtual simulation platforms presents a 

compelling framework for proactive corrosion management. Collectively, these innovations signify 

a paradigm shift in offshore infrastructure monitoring, emphasizing accuracy, automation, and 

adaptability in harsh marine environments, and laying the groundwork for continued advancement 

in predictive maintenance technologies. 

REFERENCES 

[1] Aggarwal, N., Garg, M. R., Dwarakanathan, V., Gautam, N., Kumar, S. S., Jadon, R. S., Gupta, 

M., & Ray, A. (2020). Diagnostic accuracy of non-contact infrared thermometers and thermal 

scanners: a systematic review and meta-analysis. Journal of travel medicine, 27(8), NA-NA. 

https://doi.org/10.1093/jtm/taaa193  

[2] Ahmed, S., Ahmed, I., Kamruzzaman, M., & Saha, R. (2022). Cybersecurity Challenges in IT 

Infrastructure and Data Management: A Comprehensive Review of Threats, Mitigation 

Strategies, and Future Trend. Global Mainstream Journal of Innovation, Engineering & 

Emerging Technology, 1(01), 36-61. https://doi.org/10.62304/jieet.v1i01.228  

[3] Ahmed, W., Hanif, A., Kallu, K. D., Kouzani, A. Z., Ali, M. U., & Zafar, A. (2021). Photovoltaic 

Panels Classification Using Isolated and Transfer Learned Deep Neural Models Using Infrared 

Thermographic Images. Sensors (Basel, Switzerland), 21(16), 5668-NA. 

https://doi.org/10.3390/s21165668  

[4] Akmandor, A. O., & Jha, N. K. (2018). Smart Health Care: An Edge-Side Computing 

Perspective. IEEE Consumer Electronics Magazine, 7(1), 29-37. 

https://doi.org/10.1109/mce.2017.2746096  

[5] Ali, M. U., Khan, H. F., Masud, M., Kallu, K. D., & Zafar, A. (2020). A machine learning framework 

to identify the hotspot in photovoltaic module using infrared thermography. Solar Energy, 

208(NA), 643-651. https://doi.org/10.1016/j.solener.2020.08.027  

[6] Ali, Z., Muhammad, G., & Alhamid, M. F. (2017). An Automatic Health Monitoring System for 

Patients Suffering From Voice Complications in Smart Cities. IEEE Access, 5(NA), 3900-3908. 

https://doi.org/10.1109/access.2017.2680467  

[7] Amin, S. U., Alsulaiman, M., Muhammad, G., Mekhtiche, M. A., & Hossain, M. S. (2019). Deep 

Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. 

Future Generation Computer Systems, 101(NA), 542-554. 

https://doi.org/10.1016/j.future.2019.06.027  

[8] Ammar, A., Nassereddine, H., AbdulBaky, N., AbouKansour, A., Tannoury, J., Urban, H., & 

Schranz, C. (2022). Digital Twins in the Construction Industry: A Perspective of Practitioners and 

Building Authority [Original Research]. Frontiers in Built Environment, Volume 8 - 2022. 

https://doi.org/10.3389/fbuil.2022.834671  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.1093/jtm/taaa193
https://doi.org/10.62304/jieet.v1i01.228
https://doi.org/10.3390/s21165668
https://doi.org/10.1109/mce.2017.2746096
https://doi.org/10.1016/j.solener.2020.08.027
https://doi.org/10.1109/access.2017.2680467
https://doi.org/10.1016/j.future.2019.06.027
https://doi.org/10.3389/fbuil.2022.834671


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

25 

 

[9] Atha, D. J., & Jahanshahi, M. R. (2017). Evaluation of deep learning approaches based on 

convolutional neural networks for corrosion detection. Structural Health Monitoring, 17(5), 

1110-1128. https://doi.org/10.1177/1475921717737051  

[10] Ayerbe, E., Berecibar, M., Clark, S., Franco, A. A., & Ruhland, J. (2021). Digitalization of Battery 

Manufacturing: Current Status, Challenges, and Opportunities. Advanced Energy Materials, 

12(17), NA-NA. https://doi.org/10.1002/aenm.202102696  

[11] Bae, C.-J., Manandhar, A., Kiesel, P., & Raghavan, A. (2016). Monitoring the Strain Evolution 

of Lithium-Ion Battery Electrodes using an Optical Fiber Bragg Grating Sensor. Energy 

Technology, 4(7), 851-855. https://doi.org/10.1002/ente.201500514  

[12] Bahlakeh, G., Ramezanzadeh, B., & Ramezanzadeh, M. (2019). The role of chrome and zinc 

free-based neodymium oxide nanofilm on adhesion and corrosion protection properties of 

polyester/melamine coating on mild steel: Experimental and molecular dynamics simulation 

study. Journal of Cleaner Production, 210(NA), 872-886. 

https://doi.org/10.1016/j.jclepro.2018.11.089  

[13] Baik, S. H., Fox, R. S., Mills, S. D., Roesch, S. C., Sadler, G. R., Klonoff, E. A., & Malcarne, V. L. 

(2017). Reliability and validity of the Perceived Stress Scale-10 in Hispanic Americans with 

English or Spanish language preference. Journal of health psychology, 24(5), 628-639. 

https://doi.org/10.1177/1359105316684938  

[14] Beckman, G. H., Polyzois, D., & Cha, Y.-J. (2019). Deep learning-based automatic volumetric 

damage quantification using depth camera. Automation in Construction, 99(NA), 114-124. 

https://doi.org/10.1016/j.autcon.2018.12.006  

[15] Bithas, P. S., Michailidis, E. T., Nomikos, N., Vouyioukas, D., & Kanatas, A. G. (2019). A Survey on 

Machine-Learning Techniques for UAV-Based Communications. Sensors (Basel, Switzerland), 

19(23), 5170-NA. https://doi.org/10.3390/s19235170  

[16] Bzdok, D., & Meyer-Lindenberg, A. (2017). Machine Learning for Precision Psychiatry: 

Opportunities and Challenges. Biological psychiatry. Cognitive neuroscience and 

neuroimaging, 3(3), 223-230. https://doi.org/10.1016/j.bpsc.2017.11.007  

[17] Calhoun, V. D., & Sui, J. (2016). Multimodal Fusion of Brain Imaging Data: A Key to Finding the 

Missing Link(s) in Complex Mental Illness. Biological psychiatry. Cognitive neuroscience and 

neuroimaging, 1(3), 230-244. https://doi.org/10.1016/j.bpsc.2015.12.005  

[18] Cha, Y.-J., Choi, W., & Buyukozturk, O. (2017). Deep Learning-Based Crack Damage 

Detection Using Convolutional Neural Networks. Computer-Aided Civil and Infrastructure 

Engineering, 32(5), 361-378. https://doi.org/10.1111/mice.12263  

[19] Chang, H.-Y., & Yuan, F.-G. (2019). Damage Visualization of Scattered Ultrasonic Wavefield 

via Integrated Highspeed Camera System. Structural Health Monitoring 2019, NA(NA), NA-

NA. https://doi.org/10.12783/shm2019/32468  

[20] Chen, C., Jafari, R., & Kehtarnavaz, N. (2016). A Real-Time Human Action Recognition System 

Using Depth and Inertial Sensor Fusion. IEEE Sensors Journal, 16(3), 773-781. 

https://doi.org/10.1109/jsen.2015.2487358  

[21] Chen, F.-C., & Jahanshahi, M. R. (2018). NB-CNN: Deep Learning-Based Crack Detection 

Using Convolutional Neural Network and Naïve Bayes Data Fusion. IEEE Transactions on 

Industrial Electronics, 65(5), 4392-4400. https://doi.org/10.1109/tie.2017.2764844  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.1177/1475921717737051
https://doi.org/10.1002/aenm.202102696
https://doi.org/10.1002/ente.201500514
https://doi.org/10.1016/j.jclepro.2018.11.089
https://doi.org/10.1177/1359105316684938
https://doi.org/10.1016/j.autcon.2018.12.006
https://doi.org/10.3390/s19235170
https://doi.org/10.1016/j.bpsc.2017.11.007
https://doi.org/10.1016/j.bpsc.2015.12.005
https://doi.org/10.1111/mice.12263
https://doi.org/10.12783/shm2019/32468
https://doi.org/10.1109/jsen.2015.2487358
https://doi.org/10.1109/tie.2017.2764844


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

26 

 

[22] Chen, H., Yang, J., & Chen, X. (2021). A convolution-based deep learning approach for 

estimating compressive strength of fiber reinforced concrete at elevated temperatures. 

Construction and Building Materials, 313(NA), 125437-NA. 

https://doi.org/10.1016/j.conbuildmat.2021.125437  

[23] da Silva, W. R. L., & de Lucena, D. S. (2018). Concrete Cracks Detection Based on Deep 

Learning Image Classification. The 18th International Conference on Experimental 

Mechanics, 2(8), 489-NA. https://doi.org/10.3390/icem18-05387  

[24] Dagdag, O., Hsissou, R., Harfi, A. E., Berisha, A., Safi, Z., Verma, C., Ebenso, E. E., Touhami, M. 

E., & Gouri, M. E. (2020). Fabrication of polymer based epoxy resin as effective anti-corrosive 

coating for steel: Computational modeling reinforced experimental studies. Surfaces and 

Interfaces, 18(NA), 100454-NA. https://doi.org/10.1016/j.surfin.2020.100454  

[25] Díez-Sierra, J., Martínez, A., Etxarri, I., Azpitarte, I., Pozo, B., & Quintana, I. (2022). Manufacturing 

smart surfaces with embedded sensors via magnetron sputtering and laser scribing. Applied 

Surface Science, 606, 154844. https://doi.org/https://doi.org/10.1016/j.apsusc.2022.154844  

[26] Dilawar, N., Rizwan, M., Ahmad, F., & Akram, S. (2019). Blockchain: Securing Internet of 

Medical Things (IoMT). International Journal of Advanced Computer Science and 

Applications, 10(1), 82-89. https://doi.org/10.14569/ijacsa.2019.0100110  

[27] Dobson, R., Brooks, C. N., Roussi, C., & Colling, T. (2013). Developing an unpaved road 

assessment system for practical deployment with high-resolution optical data collection using 

a helicopter UAV. 2013 International Conference on Unmanned Aircraft Systems (ICUAS), 

NA(NA), 235-243. https://doi.org/10.1109/icuas.2013.6564695  

[28] Dunbar, G. E., Shen, B. Y., & Aref, A. A. (2017). The Sensimed Triggerfish contact lens sensor: 

efficacy, safety, and patient perspectives. Clinical ophthalmology (Auckland, N.Z.), 11(NA), 

875-882. https://doi.org/10.2147/opth.s109708  

[29] Duquesnoy, M., Lombardo, T., Chouchane, M., Primo, E. N., & Franco, A. A. (2020). Data-

driven assessment of electrode calendering process by combining experimental results, in 

silico mesostructures generation and machine learning. Journal of Power Sources, 480(NA), 

229103-NA. https://doi.org/10.1016/j.jpowsour.2020.229103  

[30] Elhoseny, M., Shankar, K., Lakshmanaprabu, S. K., Maseleno, A., & Arunkumar, N. (2018). 

Hybrid optimization with cryptography encryption for medical image security in Internet of 

Things. Neural Computing and Applications, 32(15), 10979-10993. 

https://doi.org/10.1007/s00521-018-3801-x  

[31] Fagiani, M., Squartini, S., Gabrielli, L., Spinsante, S., & Piazza, F. (2015). A review of datasets 

and load forecasting techniques for smart natural gas and water grids. Neurocomputing, 

170(NA), 448-465. https://doi.org/10.1016/j.neucom.2015.04.098  

[32] Faniel, I. M., & Zimmerman, A. (2011). Beyond the Data Deluge: A Research Agenda for Large-

Scale Data Sharing and Reuse. International Journal of Digital Curation, 6(1), 58-69. 

https://doi.org/10.2218/ijdc.v6i1.172  

[33] Farahat, I. S., Tolba, A. S., Elhoseny, M., & Eladrosy, W. (2018). A secure real-time internet of 

medical smart things (IOMST). Computers & Electrical Engineering, 72(NA), 455-467. 

https://doi.org/10.1016/j.compeleceng.2018.10.009  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.1016/j.conbuildmat.2021.125437
https://doi.org/10.3390/icem18-05387
https://doi.org/10.1016/j.surfin.2020.100454
https://doi.org/https:/doi.org/10.1016/j.apsusc.2022.154844
https://doi.org/10.14569/ijacsa.2019.0100110
https://doi.org/10.1109/icuas.2013.6564695
https://doi.org/10.2147/opth.s109708
https://doi.org/10.1016/j.jpowsour.2020.229103
https://doi.org/10.1007/s00521-018-3801-x
https://doi.org/10.1016/j.neucom.2015.04.098
https://doi.org/10.2218/ijdc.v6i1.172
https://doi.org/10.1016/j.compeleceng.2018.10.009


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

27 

 

[34] Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning for 

time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917-963. 

https://doi.org/10.1007/s10618-019-00619-1  

[35] Fukuda, Y., Feng, M. Q., & Shinozuka, M. (2010). Cost-effective vision-based system for 

monitoring dynamic response of civil engineering structures. Structural Control and Health 

Monitoring, 17(8), 918-936. https://doi.org/10.1002/stc.360  

[36] Gao, Y., Jiang, J., Zhang, C., Zhang, W., Ma, Z., & Jiang, Y. (2017). Lithium-ion battery aging 

mechanisms and life model under different charging stresses. Journal of Power Sources, 

356(NA), 103-114. https://doi.org/10.1016/j.jpowsour.2017.04.084  

[37] Georgantzia, E., Gkantou, M., & Kamaris, G. S. (2021). Aluminium alloys as structural material: 

A review of research. Engineering Structures, 227(NA), 111372-NA. 

https://doi.org/10.1016/j.engstruct.2020.111372  

[38] Ghahramani, M., Qiao, Y., Zhou, M., Hagan, A. O., & Sweeney, J. (2020). AI-based modeling 

and data-driven evaluation for smart manufacturing processes. IEEE/CAA Journal of 

Automatica Sinica, 7(4), 1026-1037. https://doi.org/10.1109/jas.2020.1003114  

[39] Ghoneim, A., Muhammad, G., Amin, S. U., & Gupta, B. B. (2018). Medical Image Forgery 

Detection for Smart Healthcare. IEEE Communications Magazine, 56(4), 33-37. 

https://doi.org/10.1109/mcom.2018.1700817  

[40] Goyal, n., Ojha, C. S. P., & Burn, D. H. (2017). Machine Learning Algorithms and Their 

Application in Water Resources Management. In (Vol. NA, pp. 165-178). American Society of 

Civil Engineers. https://doi.org/10.1061/9780784414767.ch06  

[41] Gu, Q., Jiang, S., Lian, M., & Lu, C. (2019). Health and Safety Situation Awareness Model and 

Emergency Management Based on Multi-Sensor Signal Fusion. IEEE Access, 7(NA), 958-968. 

https://doi.org/10.1109/access.2018.2886061  

[42] Hamidi, H. (2019). An approach to develop the smart health using Internet of Things and 

authentication based on biometric technology. Future Generation Computer Systems, 

91(NA), 434-449. https://doi.org/10.1016/j.future.2018.09.024  

[43] Hedman, J., Nilebo, D., Langhammer, E., & Björefors, F. (2020). Fibre Optic Sensor for 

Characterisation of Lithium‐Ion Batteries. ChemSusChem, 13(21), 5731-5739. 

https://doi.org/10.1002/cssc.202001709  

[44] Hernández-Julio, Y. F., Prieto-Guevara, M., Nieto-Bernal, W., Merino-Fuentes, I., & Guerrero-

Avendano, A. (2019). Framework for the Development of Data-Driven Mamdani-Type Fuzzy 

Clinical Decision Support Systems. Diagnostics (Basel, Switzerland), 9(2), 52-NA. 

https://doi.org/10.3390/diagnostics9020052  

[45] Herrera-Luna, I., Rechy-Ramirez, E. J., Rios-Figueroa, H. V., & Marin-Hernandez, A. (2019). 

Sensor Fusion Used in Applications for Hand Rehabilitation: A Systematic Review. IEEE Sensors 

Journal, 19(10), 3581-3592. https://doi.org/10.1109/jsen.2019.2897083  

[46] Hossain, M. S. (2017). Cloud-Supported Cyber–Physical Localization Framework for Patients 

Monitoring. IEEE Systems Journal, 11(1), 118-127. https://doi.org/10.1109/jsyst.2015.2470644  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1002/stc.360
https://doi.org/10.1016/j.jpowsour.2017.04.084
https://doi.org/10.1016/j.engstruct.2020.111372
https://doi.org/10.1109/jas.2020.1003114
https://doi.org/10.1109/mcom.2018.1700817
https://doi.org/10.1061/9780784414767.ch06
https://doi.org/10.1109/access.2018.2886061
https://doi.org/10.1016/j.future.2018.09.024
https://doi.org/10.1002/cssc.202001709
https://doi.org/10.3390/diagnostics9020052
https://doi.org/10.1109/jsen.2019.2897083
https://doi.org/10.1109/jsyst.2015.2470644


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

28 

 

[47] Hossain, M. S., & Muhammad, G. (2014). Cloud-Based Collaborative Media Service 

Framework for HealthCare. International Journal of Distributed Sensor Networks, 10(3), 858712-

NA. https://doi.org/10.1155/2014/858712  

[48] Hossain, M. S., Muhammad, G., & Guizani, N. (2020). Explainable AI and Mass Surveillance 

System-Based Healthcare Framework to Combat COVID-I9 Like Pandemics. IEEE Network, 

34(4), 126-132. https://doi.org/10.1109/mnet.011.2000458  

[49] Jang, K., Kim, N., & An, Y.-K. (2019). Deep learning–based autonomous concrete crack 

evaluation through hybrid image scanning. Structural Health Monitoring, 18(5-6), 1722-1737. 

https://doi.org/10.1177/1475921718821719  

[50] Ji, G., Zhu, Y., & Zhang, Y. (2012). The corroded defect rating system of coating material based 

on computer vision (Vol. 8). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-

31439-1_19  

[51] Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health 

management. Mechanical Systems and Signal Processing, 107(NA), 241-265. 

https://doi.org/10.1016/j.ymssp.2017.11.024  

[52] Kidong, L., Sanghoon, K., minjung, k., Sung, Y., Keun, H. S., & Cheolhee, K. (2021). Modeling of 

Laser Welds Using Machine Learning Algorithm Part I: Penetration Depth for Laser Overlap 

Al/Cu Dissimilar Metal Welds. Journal of Welding and Joining, 39(1), 27-35. 

https://doi.org/10.5781/jwj.2021.39.1.3  

[53] Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M., & Sim, S.-H. (2017). Concrete Crack Identification 

Using a UAV Incorporating Hybrid Image Processing. Sensors (Basel, Switzerland), 17(9), 2052-

NA. https://doi.org/10.3390/s17092052  

[54] Kim, T. W., & Choi, H. W. (2021). Study on Laser Welding of Al-Cu Dissimilar Material by Green 

Laser and Weld Quality Evaluation by Deep Learning. Journal of Welding and Joining, 39(1), 

67-73. https://doi.org/10.5781/jwj.2021.39.1.8  

[55] Komatsu, H., Watanabe, E., & Fukuchi, M. (2021). Psychiatric Neural Networks and Precision 

Therapeutics by Machine Learning. Biomedicines, 9(4), 403-NA. 

https://doi.org/10.3390/biomedicines9040403  

[56] Konsta-Gdoutos, M. S., & Aza, C. A. (2014). Self sensing carbon nanotube (CNT) and nanofiber 

(CNF) cementitious composites for real time damage assessment in smart structures. Cement 

and Concrete Composites, 53(NA), 162-169. 

https://doi.org/10.1016/j.cemconcomp.2014.07.003  

[57] Lang, X., Li, P., Cao, J., Li, Y., & Ren, H. (2018). A Small Leak Localization Method for Oil Pipelines 

Based on Information Fusion. IEEE Sensors Journal, 18(15), 6115-6122. 

https://doi.org/10.1109/jsen.2018.2840700  

[58] Le Cam, J.-B., Robin, E., Balandraud, X., & Toussaint, E. (2013). A new experimental route in 

thermomechanics of inorganic glasses using infrared thermography. Journal of Non-

Crystalline Solids, 366(NA), 64-69. https://doi.org/10.1016/j.jnoncrysol.2013.01.050  

[59] Lee, K., Yi, S., Hyun, S.-K., & Kim, C. (2021a). Review on the Recent Welding Research with 

Application of CNN-based Deep Learning Part 1: Models and Applications. Journal of 

Welding and Joining, 39(1), 10-19. https://doi.org/10.5781/jwj.2021.39.1.1  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.1155/2014/858712
https://doi.org/10.1109/mnet.011.2000458
https://doi.org/10.1177/1475921718821719
https://doi.org/10.1007/978-3-642-31439-1_19
https://doi.org/10.1007/978-3-642-31439-1_19
https://doi.org/10.1016/j.ymssp.2017.11.024
https://doi.org/10.5781/jwj.2021.39.1.3
https://doi.org/10.3390/s17092052
https://doi.org/10.5781/jwj.2021.39.1.8
https://doi.org/10.3390/biomedicines9040403
https://doi.org/10.1016/j.cemconcomp.2014.07.003
https://doi.org/10.1109/jsen.2018.2840700
https://doi.org/10.1016/j.jnoncrysol.2013.01.050
https://doi.org/10.5781/jwj.2021.39.1.1


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

29 

 

[60] Lee, K., Yi, S., Hyun, S.-K., & Kim, C. (2021b). Review on the Recent Welding Research with 

Application of CNN-based Deep Learning Part II: Model Evaluation and Visualizations. Journal 

of Welding and Joining, 39(1), 20-26. https://doi.org/10.5781/jwj.2021.39.1.2  

[61] Lei, D., Fu, X., Ren, Y., Yao, F., & Wang, Z. (2019). Temperature and thermal stress analysis of 

parabolic trough receivers. Renewable Energy, 136(NA), 403-413. 

https://doi.org/10.1016/j.renene.2019.01.021  

[62] Lin, E., & Tsai, S.-J. (2019). Machine Learning in Neural Networks. Advances in experimental 

medicine and biology, 1192(NA), 127-137. https://doi.org/10.1007/978-981-32-9721-0_7  

[63] Lin, Y.-Z., Nie, Z., & Ma, H. (2017). Structural Damage Detection with Automatic Feature-

Extraction through Deep Learning. Computer-Aided Civil and Infrastructure Engineering, 

32(12), 1025-1046. https://doi.org/10.1111/mice.12313  

[64] Liu, K., Hu, X., Meng, J., Guerrero, J. M., & Teodorescu, R. (2022). RUBoost-Based Ensemble 

Machine Learning for Electrode Quality Classification in Li-ion Battery Manufacturing. 

IEEE/ASME Transactions on Mechatronics, 27(5), 2474-2483. 

https://doi.org/10.1109/tmech.2021.3115997  

[65] Liu, K., Hu, X., Wei, Z., Li, Y., & Jiang, Y. (2019). Modified Gaussian Process Regression Models 

for Cyclic Capacity Prediction of Lithium-Ion Batteries. IEEE Transactions on Transportation 

Electrification, 5(4), 1225-1236. https://doi.org/10.1109/tte.2019.2944802  

[66] Liu, K., Li, K., & Zhang, C. (2017). Constrained generalized predictive control of battery 

charging process based on a coupled thermoelectric model. Journal of Power Sources, 

347(347), 145-158. https://doi.org/10.1016/j.jpowsour.2017.02.039  

[67] Liu, K., Wei, Z., Yang, Z., & Li, K. (2021). Mass load prediction for lithium-ion battery electrode 

clean production: A machine learning approach. Journal of Cleaner Production, 289(NA), 

125159-NA. https://doi.org/10.1016/j.jclepro.2020.125159  

[68] Liu, L., Tan, E., Cai, Z. Q., Zhen, Y., & Yin, X. J. (2018). ICARCV - An Integrated Coating 

Inspection System for Marine and Offshore Corrosion Management. 2018 15th International 

Conference on Control, Automation, Robotics and Vision (ICARCV), 1531-1536. 

https://doi.org/10.1109/icarcv.2018.8581327  

[69] Lu, B., Zhao, Y., Song, Y., & Zhang, J. (2018). Stress-limited fast charging methods with time-

varying current in lithium-ion batteries. Electrochimica Acta, 288(NA), 144-152. 

https://doi.org/10.1016/j.electacta.2018.09.009  

[70] Lucu, M., Martinez-Laserna, E., Gandiaga, I., Liu, K., Camblong, H., Widanage, W. D., & Marco, 

J. (2020). Data-driven nonparametric Li-ion battery ageing model aiming at learning from 

real operation data - Part B: Cycling operation. Journal of Energy Storage, 30(NA), 101410-

101410. https://doi.org/10.1016/j.est.2020.101410  

[71] Luo, L., Feng, M. Q., & Wu, Z. Y. (2018). Robust vision sensor for multi-point displacement 

monitoring of bridges in the field. Engineering Structures, 163(NA), 255-266. 

https://doi.org/10.1016/j.engstruct.2018.02.014  

[72] Md Humaun, K., Md Nazmul, I., Md Rifat Al Amin, K., Newaz, S. M. S., & Md Sultan, M. (2022). 

Optimizing Data Center Operations With Artificial Intelligence And Machine Learning. 

American Journal of Scholarly Research and Innovation, 1(01), 53-75. 

https://doi.org/10.63125/xewz7g58  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.5781/jwj.2021.39.1.2
https://doi.org/10.1016/j.renene.2019.01.021
https://doi.org/10.1007/978-981-32-9721-0_7
https://doi.org/10.1111/mice.12313
https://doi.org/10.1109/tmech.2021.3115997
https://doi.org/10.1109/tte.2019.2944802
https://doi.org/10.1016/j.jpowsour.2017.02.039
https://doi.org/10.1016/j.jclepro.2020.125159
https://doi.org/10.1109/icarcv.2018.8581327
https://doi.org/10.1016/j.electacta.2018.09.009
https://doi.org/10.1016/j.est.2020.101410
https://doi.org/10.1016/j.engstruct.2018.02.014
https://doi.org/10.63125/xewz7g58


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

30 

 

[73] Md Mahfuj, H., Md Rabbi, K., Mohammad Samiul, I., Faria, J., & Md Jakaria, T. (2022). Hybrid 

Renewable Energy Systems: Integrating Solar, Wind, And Biomass for Enhanced Sustainability 

And Performance. American Journal of Scholarly Research and Innovation, 1(1), 1-24. 

https://doi.org/10.63125/8052hp43  

[74] Moughty, J. J., & Rius, J. R. C. (2017). A State of the Art Review of Modal-Based Damage 

Detection in Bridges: Development, Challenges, and Solutions. Applied Sciences, 7(5), 1-24. 

https://doi.org/10.3390/app7050510  

[75] Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., & Debbah, M. (2019). A Tutorial on UAVs for 

Wireless Networks: Applications, Challenges, and Open Problems. IEEE Communications 

Surveys & Tutorials, 21(3), 2334-2360. https://doi.org/10.1109/comst.2019.2902862  

[76] Muhammad, G., Alhamid, M. F., & Long, X. (2019). Computing and Processing on the Edge: 

Smart Pathology Detection for Connected Healthcare. IEEE Network, 33(6), 44-49. 

https://doi.org/10.1109/mnet.001.1900045  

[77] Muhammad, G., Rahman, S. K. M. M., Alelaiwi, A., & Alamri, A. (2017). Smart Health Solution 

Integrating IoT and Cloud: A Case Study of Voice Pathology Monitoring. IEEE 

Communications Magazine, 55(1), 69-73. https://doi.org/10.1109/mcom.2017.1600425cm  

[78] Muhammad Mohiul, I., Morshed, A. S. M., Md Enamul, K., & Md, A.-A. (2022). Adaptive Control 

Of Resource Flow In Construction Projects Through Deep Reinforcement Learning: A 

Framework For Enhancing Project Performance In Complex Environments. American Journal 

of Scholarly Research and Innovation, 1(01), 76-107. https://doi.org/10.63125/gm77xp11  

[79] Muhammad, N., Hussain, M., Muhammad, G., & Bebis, G. (2011). CGIV - Copy-Move Forgery 

Detection Using Dyadic Wavelet Transform. 2011 Eighth International Conference Computer 

Graphics, Imaging and Visualization, NA(NA), 103-108. https://doi.org/10.1109/cgiv.2011.29  

[80] Muin, S., & Mosalam, K. M. (2021). Structural Health Monitoring Using Machine Learning and 

Cumulative Absolute Velocity Features. Applied Sciences, 11(12), 5727. 

https://www.mdpi.com/2076-3417/11/12/5727  

[81] Na, H., Park, S., & Dong, S.-Y. (2022). Mixed Reality-Based Interaction between Human and 

Virtual Cat for Mental Stress Management. Sensors (Basel, Switzerland), 22(3), 1159-1159. 

https://doi.org/10.3390/s22031159  

[82] Nascimento, M., Novais, S., Ding, M. S., Ferreira, M. S., Koch, S. L., Passerini, S., & Pinto, J. L. 

(2019). Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion 

batteries. Journal of Power Sources, 410(NA), 1-9. 

https://doi.org/10.1016/j.jpowsour.2018.10.096  

[83] Nasir, M. T., Mysorewala, M. F., Cheded, L., Siddiqui, B. A., & Sabih, M. (2014). SSD - 

Measurement error sensitivity analysis for detecting and locating leak in pipeline using ANN 

and SVM. 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices 

(SSD14), NA(NA), 1-4. https://doi.org/10.1109/ssd.2014.6808847  

[84] Ngai, S., Ngai, T., Vogel, F., Story, W. A., Thompson, G. B., & Brewer, L. N. (2018). Saltwater 

corrosion behavior of cold sprayed AA7075 aluminum alloy coatings. Corrosion Science, 

130(NA), 231-240. https://doi.org/10.1016/j.corsci.2017.10.033  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.63125/8052hp43
https://doi.org/10.3390/app7050510
https://doi.org/10.1109/comst.2019.2902862
https://doi.org/10.1109/mnet.001.1900045
https://doi.org/10.1109/mcom.2017.1600425cm
https://doi.org/10.63125/gm77xp11
https://doi.org/10.1109/cgiv.2011.29
https://www.mdpi.com/2076-3417/11/12/5727
https://doi.org/10.3390/s22031159
https://doi.org/10.1016/j.jpowsour.2018.10.096
https://doi.org/10.1109/ssd.2014.6808847
https://doi.org/10.1016/j.corsci.2017.10.033


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

31 

 

[85] Poozesh, P., Sarrafi, A., Mao, Z., & Niezrecki, C. (2017). Modal parameter estimation from 

optically-measured data using a hybrid output-only system identification method. 

Measurement, 110(NA), 134-145. https://doi.org/10.1016/j.measurement.2017.06.030  

[86] Pustokhina, I. V., Pustokhin, D. A., Gupta, D., Khanna, A., Shankar, K., & Nguyen, G. N. (2020). 

An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet 

of Medical Things (IoMT) Systems. IEEE Access, 8(NA), 107112-107123. 

https://doi.org/10.1109/access.2020.3000322  

[87] Qu, Z., Jiang, P., & Zhang, W. (2020). Development and Application of Infrared Thermography 

Non-Destructive Testing Techniques. Sensors (Basel, Switzerland), 20(14), 3851-NA. 

https://doi.org/10.3390/s20143851  

[88] Rahaman, T., & Islam, M. S. (2021). Study of shrinkage of concrete using normal weight and 

lightweight aggregate. International Journal of Engineering Applied Sciences and 

Technology, 6(6), 0-45.  

[89] Rahman, M. A., Hossain, M. S., Islam, M. S., Alrajeh, N., & Muhammad, G. (2020). Secure and 

Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed 

Federated Learning Approach. IEEE access : practical innovations, open solutions, 8(NA), 

205071-205087. https://doi.org/10.1109/access.2020.3037474  

[90] Ramlal, S. D., Sachdeva, J., Ahuja, C. K., & Khandelwal, N. (2019). An improved multimodal 

medical image fusion scheme based on hybrid combination of nonsubsampled contourlet 

transform and stationary wavelet transform. International Journal of Imaging Systems and 

Technology, 29(2), 146-160. https://doi.org/10.1002/ima.22310  

[91] Rice, J. A., Mechitov, K., Sim, S.-H., Spencer, B. F., & Agha, G. (2010). Enabling framework for 

structural health monitoring using smart sensors. Structural Control and Health Monitoring, 

18(5), 574-587. https://doi.org/10.1002/stc.386  

[92] Richardson, R. R., Osborne, M. A., & Howey, D. A. (2017). Gaussian process regression for 

forecasting battery state of health. Journal of Power Sources, 357(NA), 209-219. 

https://doi.org/10.1016/j.jpowsour.2017.05.004  

[93] Roca, D., Lagüela, S., Díaz-Vilariño, L., Armesto, J., & Arias, P. (2013). Low-cost aerial unit for 

outdoor inspection of building façades. Automation in Construction, 36(36), 128-135. 

https://doi.org/10.1016/j.autcon.2013.08.020  

[94] Rojek, I., Mikołajewski, D., & Dostatni, E. (2020). Digital Twins in Product Lifecycle for 

Sustainability in Manufacturing and Maintenance. Applied Sciences, 11(1), 31-NA. 

https://doi.org/10.3390/app11010031  

[95] Seventekidis, P., Giagopoulos, D., Arailopoulos, A., & Markogiannaki, O. (2020). Structural 

Health Monitoring using deep learning with optimal finite element model generated data. 

Mechanical Systems and Signal Processing, 145(NA), 106972-NA. 

https://doi.org/10.1016/j.ymssp.2020.106972  

[96] Sharipudin, A., & Ismail, W. (2019). Internet of Medical Things (IoMT) for Patient Healthcare 

Monitoring System. 2019 IEEE 14th Malaysia International Conference on Communication 

(MICC), NA(NA), 69-74. https://doi.org/10.1109/micc48337.2019.9037498  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.1016/j.measurement.2017.06.030
https://doi.org/10.1109/access.2020.3000322
https://doi.org/10.3390/s20143851
https://doi.org/10.1109/access.2020.3037474
https://doi.org/10.1002/ima.22310
https://doi.org/10.1002/stc.386
https://doi.org/10.1016/j.jpowsour.2017.05.004
https://doi.org/10.1016/j.autcon.2013.08.020
https://doi.org/10.3390/app11010031
https://doi.org/10.1016/j.ymssp.2020.106972
https://doi.org/10.1109/micc48337.2019.9037498


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

32 

 

[97] Shi, F., Liu, Z., & Li, E. (2017). Prediction of Pipe Performance with Ensemble Machine Learning 

Based Approaches. 2017 International Conference on Sensing, Diagnostics, Prognostics, and 

Control (SDPC), NA(NA), 408-414. https://doi.org/10.1109/sdpc.2017.84  

[98] Simjanoska, M., Kochev, S., Tanevski, J., Bogdanova, A. M., Papa, G., & Eftimov, T. (2020). 

Multi-level information fusion for learning a blood pressure predictive model using sensor 

data. Information Fusion, 58(NA), 24-39. https://doi.org/10.1016/j.inffus.2019.12.008  

[99] Sohel, A., Alam, M. A., Hossain, A., Mahmud, S., & Akter, S. (2022). Artificial Intelligence In 

Predictive Analytics For Next-Generation Cancer Treatment: A Systematic Literature Review 

Of Healthcare Innovations In The USA. Global Mainstream Journal of Innovation, Engineering 

& Emerging Technology, 1(01), 62-87. https://doi.org/10.62304/jieet.v1i01.229  

[100] Sui, X., He, S., Vilsen, S. B., Meng, J., Teodorescu, R., & Stroe, D.-I. (2021). A review of non-

probabilistic machine learning-based state of health estimation techniques for Lithium-ion 

battery. Applied Energy, 300(NA), 117346-NA. 

https://doi.org/10.1016/j.apenergy.2021.117346  

[101] Szcześniak, D., Gładka, A., Misiak, B., Cyran, A., & Rymaszewska, J. (2020). The SARS-CoV-2 

and mental health: From biological mechanisms to social consequences. Progress in neuro-

psychopharmacology & biological psychiatry, 104(NA), 110046-110046. 

https://doi.org/10.1016/j.pnpbp.2020.110046  

[102] Tang, X., Liu, K., Li, K., Widanage, W. D., Kendrick, E., & Gao, F. (2021). Recovering large-scale 

battery aging dataset with machine learning. Patterns (New York, N.Y.), 2(8), 100302-NA. 

https://doi.org/10.1016/j.patter.2021.100302  

[103] Tang, Z., Chen, Z., Bao, Y., & Li, H. (2018). Convolutional neural network-based data anomaly 

detection method using multiple information for structural health monitoring. Structural 

Control and Health Monitoring, 26(1), e2296-NA. https://doi.org/10.1002/stc.2296  

[104] Thiede, S., Turetskyy, A., Loellhoeffel, T., Kwade, A., Kara, S., & Herrmann, C. (2020). Machine 

learning approach for systematic analysis of energy efficiency potentials in manufacturing 

processes: A case of battery production. CIRP Annals, 69(1), 21-24. 

https://doi.org/10.1016/j.cirp.2020.04.090  

[105] Tonoy, A. A. R. (2022). Mechanical Properties and Structural Stability of Semiconducting 

Electrides: Insights For Material. Global Mainstream Journal of Innovation, Engineering & 

Emerging Technology, 1(01), 18-35. https://doi.org/10.62304/jieet.v1i01.225  

[106] Trebuňa, F., & Hagara, M. (2014). Experimental modal analysis performed by high-speed 

digital image correlation system. Measurement, 50(NA), 78-85. 

https://doi.org/10.1016/j.measurement.2013.12.038  

[107] Trentin, A., Harb, S. V., Uvida, M. C., Pulcinelli, S. H., Santilli, C. V., Marcoen, K., Pletincx, S., 

Terryn, H., Hauffman, T., & Hammer, P. (2019). Dual Role of Lithium on the Structure and Self-

Healing Ability of PMMA-Silica Coatings on AA7075 Alloy. ACS applied materials & interfaces, 

11(43), 40629-40641. https://doi.org/10.1021/acsami.9b13839  

[108] Van Steenkiste, T., Deschrijver, D., & Dhaene, T. (2019). Sensor Fusion using Backward Shortcut 

Connections for Sleep Apnea Detection in Multi-Modal Data. arXiv: Learning, NA(NA), NA-

NA. https://doi.org/NA  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.1109/sdpc.2017.84
https://doi.org/10.1016/j.inffus.2019.12.008
https://doi.org/10.62304/jieet.v1i01.229
https://doi.org/10.1016/j.apenergy.2021.117346
https://doi.org/10.1016/j.pnpbp.2020.110046
https://doi.org/10.1016/j.patter.2021.100302
https://doi.org/10.1002/stc.2296
https://doi.org/10.1016/j.cirp.2020.04.090
https://doi.org/10.62304/jieet.v1i01.225
https://doi.org/10.1016/j.measurement.2013.12.038
https://doi.org/10.1021/acsami.9b13839
https://doi.org/NA


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

33 

 

[109] Vega, J. M., Granizo, N., de la Fuente, D., Simancas, J., & Morcillo, M. (2011). Corrosion 

inhibition of aluminum by coatings formulated with Al-Zn-vanadate hydrotalcite. Progress in 

Organic Coatings, 70(4), 213-219. https://doi.org/10.1016/j.porgcoat.2010.08.014  

[110] Wang, Q., Jiao, W., Wang, P., & Zhang, Y. (2021). Digital Twin for Human-Robot Interactive 

Welding and Welder Behavior Analysis. IEEE/CAA Journal of Automatica Sinica, 8(2), 334-343. 

https://doi.org/10.1109/jas.2020.1003518  

[111] Wang, T., Du, J., Ye, S., Tan, L., & Fu, J. (2019). Triple-Stimuli-Responsive Smart Nanocontainers 

Enhanced Self-Healing Anticorrosion Coatings for Protection of Aluminum Alloy. ACS applied 

materials & interfaces, 11(4), 4425-4438. https://doi.org/10.1021/acsami.8b19950  

[112] Wang, Y., Xu, R., Zhou, C., Kang, X., & Chen, Z. (2022). Digital twin and cloud-side-end 

collaboration for intelligent battery management system. Journal of Manufacturing Systems, 

62(NA), 124-134. https://doi.org/10.1016/j.jmsy.2021.11.006  

[113] Wei, Z., Hu, J., He, H., Li, Y., & Xiong, B. (2021). Load Current and State-of-Charge Coestimation 

for Current Sensor-Free Lithium-Ion Battery. IEEE Transactions on Power Electronics, 36(10), 

10970-10975. https://doi.org/10.1109/tpel.2021.3068725  

[114] Wook, S. B., JeongYoungCheol, N. A., & Cho, Y. T. (2020). Machine Learning for Prediction of 

Arc Length for Seam Tracking in Tandem Welding. Journal of Welding and Joining, 38(3), 241-

247. https://doi.org/10.5781/jwj.2020.38.3.2  

[115] Wu, Y., Xue, Q., Shen, J., Lei, Z., Chen, Z., & Liu, Y. (2020). State of Health Estimation for Lithium-

Ion Batteries Based on Healthy Features and Long Short-Term Memory. IEEE Access, 8(NA), 

28533-28547. https://doi.org/10.1109/access.2020.2972344  

[116] Xavier, M. A., & Trimboli, M. S. (2015). Lithium-ion battery cell-level control using constrained 

model predictive control and equivalent circuit models. Journal of Power Sources, 285(NA), 

374-384. https://doi.org/10.1016/j.jpowsour.2015.03.074  

[117] Xiaowei, Y., Tao, J., & Pengyu, C. (2019). Structural crack detection using deep learning–

based fully convolutional networks. Advances in Structural Engineering, 22(16), 3412-3419. 

https://doi.org/10.1177/1369433219836292  

[118] Xu, Y., & Brownjohn, J. M. W. (2017). Review of machine-vision based methodologies for 

displacement measurement in civil structures. Journal of Civil Structural Health Monitoring, 

8(1), 91-110. https://doi.org/10.1007/s13349-017-0261-4  

[119] Xu, Y., Li, S., Zhang, D., Jin, Y., Zhang, F., Li, N., & Li, H. (2017). Identification framework for cracks 

on a steel structure surface by a restricted Boltzmann machines algorithm based on 

consumer-grade camera images. Structural Control and Health Monitoring, 25(2), e2075-NA. 

https://doi.org/10.1002/stc.2075  

[120] Yang, S., Li, S., Meng, Y., Yu, M., Liu, J., & Li, B. (2021). Corrosion inhibition of aluminum current 

collector with molybdate conversion coating in commercial LiPF6-esters electrolytes. 

Corrosion Science, 190(NA), 109632-NA. https://doi.org/10.1016/j.corsci.2021.109632  

[121] Yang, X., Zhang, T., Xu, C., Yan, S., Hossain, M. S., & Ghoneim, A. (2016). Deep Relative 

Attributes. IEEE Transactions on Multimedia, 18(9), 1832-1842. 

https://doi.org/10.1109/tmm.2016.2582379  

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.1016/j.porgcoat.2010.08.014
https://doi.org/10.1109/jas.2020.1003518
https://doi.org/10.1021/acsami.8b19950
https://doi.org/10.1016/j.jmsy.2021.11.006
https://doi.org/10.1109/tpel.2021.3068725
https://doi.org/10.5781/jwj.2020.38.3.2
https://doi.org/10.1109/access.2020.2972344
https://doi.org/10.1016/j.jpowsour.2015.03.074
https://doi.org/10.1177/1369433219836292
https://doi.org/10.1007/s13349-017-0261-4
https://doi.org/10.1002/stc.2075
https://doi.org/10.1016/j.corsci.2021.109632
https://doi.org/10.1109/tmm.2016.2582379


American Journal of Advanced Technology and Engineering Solutions 

Volume 02 Issue 04 (2022) 

Page No: 01-34 

eISSN: 3067-0470  

DOI: 10.63125/1mn6bm51 

34 

 

[122] Yoon, J.-W., Lee, D.-H., & Lee, B.-S. (2021). A Study of Transient Liquid Phase Bonding Using an 

Ag-Sn3.0Ag0.5Cu Hybrid Solder Paste. Journal of Welding and Joining, 39(4), 376-383. 

https://doi.org/10.5781/jwj.2021.39.4.5  

[123] Younus, M. (2022). Reducing Carbon Emissions in The Fashion And Textile Industry Through 

Sustainable Practices and Recycling: A Path Towards A Circular, Low-Carbon Future. Global 

Mainstream Journal of Business, Economics, Development & Project Management, 1(1), 57-

76. https://doi.org/10.62304/jbedpm.v1i1.226  

[124] Yu, Y., Zhao, X., & Ou, J. (2012). A new idea: Mobile structural health monitoring using Smart 

phones. 2012 Third International Conference on Intelligent Control and Information 

Processing, NA(NA), 714-716. https://doi.org/10.1109/icicip.2012.6391524  

[125] Zhang, D., Tian, J., & Li, H. (2020). Design and Validation of Android Smartphone Based 

Wireless Structural Vibration Monitoring System. Sensors (Basel, Switzerland), 20(17), 4799-NA. 

https://doi.org/10.3390/s20174799  

[126] Zhang, T., Biswal, S., & Wang, Y. (2019). SHMnet: Condition assessment of bolted connection 

with beyond human-level performance. Structural Health Monitoring, 19(4), 1188-1201. 

https://doi.org/10.1177/1475921719881237  

[127] Zhang, Y. S., Courtier, N. E., Zhang, Z., Liu, K., Bailey, J. J., Boyce, A. M., Richardson, G., 

Shearing, P. R., Kendrick, E., & Brett, D. J. L. (2021). A Review of Lithium-Ion Battery Electrode 

Drying: Mechanisms and Metrology. Advanced Energy Materials, 12(2), 2102233-NA. 

https://doi.org/10.1002/aenm.202102233  

[128] Zhao, X., Han, R., Ding, Y., Yu, Y., Guan, Q., Hu, W., Li, M., & Ou, J. (2015). Portable and 

convenient cable force measurement using smartphone. Journal of Civil Structural Health 

Monitoring, 5(4), 481-491. https://doi.org/10.1007/s13349-015-0132-9  

[129] Zhao, X., Han, R., Yu, Y., Hu, W., Jiao, D., Mao, X., Li, M., & Ou, J. (2017). Smartphone-Based 

Mobile Testing Technique for Quick Bridge Cable–Force Measurement. Journal of Bridge 

Engineering, 22(4), 06016012-NA. https://doi.org/10.1061/(asce)be.1943-5592.0001011  

[130] Zou, C., Klintberg, A., Wei, Z., Fridholm, B., Wik, T., & Egardt, B. (2018). Power capability 

prediction for lithium-ion batteries using economic nonlinear model predictive control. 

Journal of Power Sources, 396(NA), 580-589. https://doi.org/10.1016/j.jpowsour.2018.06.034  

 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/1mn6bm51
https://doi.org/10.5781/jwj.2021.39.4.5
https://doi.org/10.62304/jbedpm.v1i1.226
https://doi.org/10.1109/icicip.2012.6391524
https://doi.org/10.3390/s20174799
https://doi.org/10.1177/1475921719881237
https://doi.org/10.1002/aenm.202102233
https://doi.org/10.1007/s13349-015-0132-9
https://doi.org/10.1061/(asce)be.1943-5592.0001011
https://doi.org/10.1016/j.jpowsour.2018.06.034

