
 

American Journal of Advanced Technology and Engineering Solutions 
Volume 01 Issue 01 (2025) 

Page No: 1-19 

 

1 

 

Article 

SMART ENVIRONMENTAL MONITORING SYSTEMS FOR AIR AND WATER 

QUALITY MANAGEMENT 
 
Taufiqur Rahaman1 

 
1. Civil and Environmental Engineering, College of Engineering, Lamar University, Texas, USA 

Email: ruetrony@gmail.com 

https://orcid.org/0009-0004-7116-7403 

 

ABSTRACT 
Environmental pollution, particularly air and water contamination, has become a critical global 

challenge, necessitating the adoption of advanced monitoring and management strategies. 

Traditional environmental monitoring approaches often rely on periodic sampling and laboratory 

analysis, which are time-consuming, resource-intensive, and lack real-time insights. In response, 

Smart Environmental Monitoring Systems (SEMS) have emerged as an innovative solution by 

integrating Internet of Things (IoT) sensors, Artificial Intelligence (AI), Machine Learning (ML), and 

Blockchain technology to enhance pollution detection, predictive modeling, and regulatory 

compliance. These technologies enable continuous, real-time tracking of environmental 

parameters, improving decision-making in pollution control and environmental sustainability efforts. 

This study employs a case study approach, examining three real-world implementations of SEMS: 

urban air quality monitoring in Beijing, China; industrial pollution monitoring in Rotterdam, 

Netherlands; and water quality management in the Ganges River, India. By analyzing these diverse 

cases, the study highlights the impact of SEMS in improving pollution forecasting, facilitating 

regulatory enforcement, enhancing public engagement, and mitigating environmental health risks. 

The findings demonstrate that SEMS significantly improve environmental governance by providing 

reliable, transparent, and high-resolution pollution data, leading to more informed policy 

interventions and sustainable urban planning. Additionally, the study identifies key challenges such 

as sensor interoperability, data security, cost constraints, and regulatory standardization, which need 

to be addressed for the broader adoption of SEMS. Overall, this study contributes to the growing 

body of research on technology-driven environmental management, offering insights into how 

smart monitoring systems can enhance global pollution control efforts and support long-term 

ecological sustainability. 
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INTRODUCTION 

Environmental pollution has become a significant challenge, impacting ecosystems, 

human health, and overall sustainability. Air and water pollution, in particular, have been 

linked to respiratory diseases, cardiovascular conditions, and waterborne illnesses, making 

effective monitoring systems crucial (Shetty et al., 2020). Traditional environmental 

monitoring approaches rely on manual sampling and laboratory analysis, which are time-

consuming, labor-intensive, and often fail to provide real-time insights (Leal et al., 2016). 

In response, Smart Environmental Monitoring Systems (SEMS) have emerged as a 

technologically advanced solution that integrates sensors, data analytics, and 

automated processes to track pollution levels continuously (Simbeye et al., 2014). These 

systems leverage the Internet of Things (IoT), Artificial Intelligence (AI), and Big Data 

Analytics to enhance the efficiency of environmental management (Kortazar et al., 2014). 

The adoption of SEMS has gained attention in recent years due to their ability to provide 

high-resolution spatial and temporal data for air and water quality monitoring (Dang et 

al., 2008). 

Air quality monitoring using smart technologies has become essential for assessing 

pollutants such as particulate matter (PM2.5 and PM10), nitrogen oxides (NOx), sulfur 

dioxide (SO₂), and volatile organic compounds (VOCs) (Ullo et al., 2018). IoT-based air 

monitoring systems employ low-cost wireless sensor networks to capture and transmit real-

time data to cloud platforms, enabling authorities to implement timely interventions (Saha 

et al., 2018).
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AI-powered models, including machine learning algorithms, facilitate predictive 

analytics to forecast pollution trends based on historical data (Kortazar et al., 2014). The 

integration of deep learning techniques further improves the accuracy of pollution 

classification and anomaly detection in urban environments (Kortazar et al., 2014). 

Studies have demonstrated that SEMS-based air monitoring systems provide more 

comprehensive pollution assessments compared to traditional monitoring stations, which 

are often sparsely distributed (Kortazar et al., 2014; Simbeye et al., 2014). Furthermore, 

mobile sensor networks and citizen science initiatives using SEMS contribute to extensive 

pollution mapping, improving environmental decision-making (Budiarti et al., 2019). 

Similarly, smart water quality monitoring systems have been developed to detect 

contaminants such as heavy metals, nitrates, phosphates, and microbial pathogens in 

various water sources (Sarkar et al., 2025; Shetty et al., 2020). IoT-enabled water sensors 

continuously measure parameters like pH, turbidity, dissolved oxygen, and temperature, 

transmitting data to cloud-based dashboards for real-time visualization and analysis (Ullo 

et al., 2018). AI-driven anomaly detection techniques assist in identifying pollution events 

such as industrial discharges, agricultural runoff, and wastewater leakages (Faisal, 2023; 

Saha et al., 2018). Researchers have highlighted the role of SEMS in improving water 

management policies by enabling early warnings and response mechanisms for water 

contamination (Li et al., 2016). Advanced monitoring systems have been implemented 

in smart cities, demonstrating their effectiveness in mitigating waterborne diseases and 

ensuring safe drinking water (Al-Arafat et al., 2025; Saha et al., 2018). Additionally, 

blockchain-based data management solutions have been integrated into SEMS to 

enhance data security, transparency, and regulatory compliance in water quality 

monitoring (Nahid et al., 2024; Ullo et al., 2018). 

Figure 1: Smart Technologies in Environmental Monitoring 

The effectiveness of SEMS in environmental monitoring is further supported by their 

capacity to integrate satellite remote sensing and Geographic Information Systems (GIS) 

for large-scale pollution assessments (Rosero-Montalvo et al., 2018). Satellite-based air 

and water quality observations, combined with ground-level IoT sensor data, provide a 

multi-scale approach to environmental monitoring (Simbeye et al., 2014). Cloud 

computing platforms facilitate the storage and processing of vast datasets, allowing 

policymakers and researchers to derive meaningful insights from historical and real-time 

data (Rosero-Montalvo et al., 2018). Studies have also emphasized the importance of 

edge computing in reducing latency and improving data transmission efficiency in smart 

environmental systems (Mois et al., 2017). Additionally, the integration of 5G technology 

enhances connectivity and enables seamless communication between remote sensors 

and central processing units (Budiarti et al., 2019). The fusion of these technologies 

enables high-frequency pollution tracking, leading to more informed environmental 

governance (Ullo et al., 2019). Several studies have also investigated the application of 

SEMS in industrial zones, where air and water pollution levels are significantly higher due 

to emissions and effluents from manufacturing processes (Mois et al., 2017: Corbellini et 

al., 2018). Smart monitoring frameworks have been deployed in industrial regions to 

enforce regulatory compliance, ensuring that emissions do not exceed permissible limits 

(Corbellini et al., 2018). AI-driven environmental compliance systems utilize real-time 

monitoring data to detect violations and trigger automated alerts for corrective actions 
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(Ullo & Sinha, 2020). Furthermore, industrial wastewater monitoring using smart sensors 

enables the identification of toxic contaminants before they reach natural water bodies 

(Ameer etal., 2019).  

In addition to regulatory compliance, SEMS supports sustainable industrial practices by 

optimizing resource utilization and minimizing environmental footprints (Gaglio et al., 

2014). The adoption of SEMS in industrial settings highlights their potential to balance 

economic growth with environmental responsibility (Ameer et al., 2019). In addition to 

their industrial applications, SEMS have been deployed in urban settings to monitor 

pollution exposure in residential areas, schools, and healthcare facilities (Okafor & 

Delaney, 2019). These systems help assess the impact of air pollution on vulnerable 

populations, such as children, elderly individuals, and individuals with respiratory 

conditions (Ameer et al., 2019). Studies have shown that smart environmental monitoring 

contributes to improved public awareness and community engagement in pollution 

control efforts (Ameer et al., 2019; Li et al., 2016). The data generated by SEMS can be 

used to develop localized air quality indices, helping residents make informed decisions 

about outdoor activities (Santos et al., 2019). The proliferation of SEMS across different 

environments demonstrates their versatility and transformative impact on environmental 

monitoring and public health (Blythe & Johnson, 2018).The primary objective of this study 

is to examine the role of Smart Environmental Monitoring Systems (SEMS) in air and water 

quality management by analyzing their technological components, operational 

mechanisms, and effectiveness in pollution monitoring. This study aims to assess how IoT-

enabled sensors, AI-driven analytics, and cloud computing facilitate real-time 

environmental monitoring and enhance data-driven decision-making. Additionally, it 

seeks to evaluate the impact of SEMS on regulatory compliance, public health, and 

industrial pollution control by synthesizing findings from existing literature. A critical aspect 

of this research is identifying the strengths and limitations of SEMS, including issues related 

to data accuracy, sensor calibration, and cybersecurity. Furthermore, this study aims to 

highlight case studies demonstrating the practical applications of SEMS in urban and 

industrial settings, emphasizing their role in mitigating pollution-related risks. By 

systematically reviewing at least 20 scholarly sources, this research intends to provide a 

comprehensive understanding of how SEMS contribute to sustainable environmental 

governance and improved ecological resilience. 

LITERATURE REVIEW 

Smart Environmental Monitoring Systems (SEMS) have emerged as a transformative 

approach for tracking and managing air and water quality using advanced 

technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Big Data 

Analytics. The increasing environmental concerns and regulatory demands have driven 

researchers to explore how these systems contribute to effective pollution control and 

sustainable environmental management (Erger & Schmidt, 2014). The literature on SEMS 

covers multiple aspects, including system architecture, sensor technologies, data 

processing methodologies, and their impact on environmental governance. Various 

studies have investigated the integration of real-time monitoring with predictive analytics 

to assess pollution trends and develop early warning systems (Ameer et al., 2019). 

Furthermore, researchers have examined the challenges associated with SEMS 

implementation, such as data accuracy, sensor calibration, cybersecurity risks, and cost 

constraints (Okafor & Delaney, 2019). This section reviews existing research on SEMS, 

categorizing key contributions into distinct subfields to provide a structured 

understanding of their development and application. It begins with an overview of the 

technological foundations of SEMS, focusing on IoT sensor networks, cloud computing, 

and AI-based analytics. The next sections discuss air quality monitoring systems, 

highlighting specific pollutants, real-time tracking methods, and machine learning 

applications in air pollution prediction. Similarly, water quality monitoring systems are 

examined in terms of contamination detection, real-time sensing techniques, and 

automated control mechanisms. The role of SEMS in industrial environmental 

management is then explored, emphasizing pollution control in manufacturing zones 

and industrial wastewater monitoring. Additionally, the literature on regulatory 
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frameworks and policy implications related to SEMS adoption is reviewed. Finally, this 

section discusses the limitations and future research directions that need to be addressed 

to enhance the efficiency and scalability of SEMS. 

IoT Sensors for Air and Water Quality Monitoring 

The integration of Internet of Things (IoT) sensor networks has significantly improved 

environmental monitoring by enabling real-time air and water quality assessment. IoT 

sensors detect various pollutants and transmit data to cloud-based platforms for analysis 

and visualization (Blythe & Johnson, 2018). Air quality monitoring systems commonly 

employ electrochemical sensors for gases like carbon monoxide (CO), nitrogen dioxide 

(NO₂), and sulfur dioxide (SO₂), along with optical sensors for particulate matter (PM2.5 

and PM10) (Erger & Schmidt, 2014). In water quality monitoring, sensors measure 

parameters such as pH, turbidity, dissolved oxygen, and conductivity, providing 

continuous assessment of aquatic environments (Santos et al., 2019). The miniaturization 

of sensors and advancements in wireless communication protocols, such as LoRaWAN 

and Zigbee, have further improved the efficiency and scalability of IoT-based 

environmental monitoring systems (Blythe & Johnson, 2018). Unlike traditional sampling 

and laboratory analysis, IoT-enabled networks offer higher temporal and spatial 

resolution, making pollution detection more responsive and actionable (Addabbo et al., 

2016). Various types of IoT sensors are deployed based on environmental monitoring 

requirements, with optical, electrochemical, and solid-state sensors being widely used 

for air and water quality assessment. Optical sensors, including laser-based systems, 

measure particulate matter and turbidity by analyzing light scattering patterns (Imen et 

al., 2018). Electrochemical sensors detect gaseous pollutants through chemical reactions 

that generate measurable electrical signals, making them highly effective for urban air 

quality monitoring (Erger & Schmidt, 2014). In water quality monitoring, ion-selective 

electrodes (ISEs) are used to measure specific contaminants such as nitrates and 

phosphates, while biosensors detect biological pollutants like bacteria and viruses 

(Vlasov et al., 2002). Multi-parameter sensors integrate multiple detection mechanisms 

to provide comprehensive pollution assessments in both air and water environments 

(Imen et al., 2018). The growing adoption of nano-sensors has further enhanced sensitivity 

and detection limits, allowing for the identification of trace pollutants that were 

previously difficult to measure using conventional methods (Silva & Panella, 

2018).Moreover, the accuracy and reliability of IoT sensors in environmental monitoring 

depend on calibration, environmental conditions, and sensor degradation over time. 

Calibration is a critical process that ensures sensors maintain precision by comparing their 

readings with reference instruments under controlled conditions (Addabbo et al., 2016). 

Factors such as temperature, humidity, and cross-sensitivity to non-target pollutants can 

impact sensor accuracy, leading to measurement drift and data inconsistencies 

(Duisebekova et al., 2019). Studies have shown that field-deployed air quality sensors 

require frequent recalibration to mitigate sensor drift and ensure data validity (Imen et 

al., 2018). Similarly, water quality sensors exposed to biofouling and chemical 

interferences need routine maintenance to sustain their performance (Blythe & Johnson, 

2018). Researchers have explored the use of AI-driven sensor calibration techniques that 

leverage machine learning algorithms to correct sensor inaccuracies and improve long-

term stability (Stergiou & Psannis, 2017). These advancements contribute to enhancing 

the reliability of IoT-enabled pollution monitoring networks in diverse environmental 

conditions. 

https://americanscholarly.us/
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Figure 2: Architecture of the drinking water monitoring system 

 
 

 

 

 

 

 

 

 

 

 

 

Source: Wiryasaputra et al. (2024).  

AI and Machine Learning in Environmental Analytics 

Artificial intelligence (AI) and machine learning (ML) have revolutionized environmental 

analytics by improving predictive modeling, anomaly detection, and pollution 

forecasting. Traditional environmental monitoring approaches often fail to provide 

accurate and timely predictions due to the complexity and variability of pollution 

patterns (Mazare et al., 2018). Machine learning models, including support vector 

machines (SVM), random forests, and artificial neural networks (ANN), have been widely 

adopted to analyze vast environmental datasets and predict pollution trends (Kazemi et 

al., 2020). Time-series forecasting techniques using recurrent neural networks (RNN) and 

long short-term memory (LSTM) networks enable more precise air and water quality 

predictions by capturing temporal dependencies in environmental data (Shaban et al., 

2016). Additionally, hybrid AI models that integrate deep learning and statistical methods 

have demonstrated improved accuracy in forecasting pollutant dispersion in urban and 

industrial areas (Liu et al., 2019). These models enhance decision-making by providing 

early warnings for pollution spikes, allowing policymakers and regulatory bodies to take 

preventive measures (Mazare et al., 2018). Anomaly detection in environmental 

analytics has been significantly enhanced by AI-based techniques, which identify 

deviations from normal pollution levels caused by industrial emissions, chemical spills, or 

extreme weather events (Wiryasaputra et al., 2024). Traditional threshold-based 

detection methods often struggle with dynamic environmental conditions, leading to 

false alarms or undetected pollution anomalies (Liu et al., 2019). Unsupervised machine 

learning algorithms, such as k-means clustering and autoencoders, improve anomaly 

detection by automatically learning normal pollution patterns and flagging unusual 

deviations (Wiryasaputra et al., 2024). Advanced deep learning models, including 

convolutional neural networks (CNN), have been employed to analyze satellite imagery 

and detect large-scale environmental anomalies such as algal blooms, oil spills, and 

deforestation (Ragi et al., 2019). AI-driven anomaly detection systems have been 

deployed in smart cities, where real-time IoT sensor data is continuously analyzed to 

detect pollution sources and optimize environmental mitigation strategies (Mukherji et 

al., 2019). These systems improve responsiveness in environmental monitoring by 

identifying pollution events as they occur, reducing the impact of hazardous emissions 

on public health and ecosystems (Kazemi et al., 2020). 

Further, deep learning applications have further improved pollution forecasting by 

processing large-scale environmental datasets collected from IoT sensors, remote 

https://americanscholarly.us/
https://ajates-scholarly.com/index.php/ajates


 

6 

 

www. ajates-scholarly.com 

sensing satellites, and meteorological stations (Mukherjee et al., 2022). Convolutional 

neural networks (CNN) and generative adversarial networks (GAN) have been utilized to 

enhance the spatial resolution of air and water quality predictions, making them more 

effective for localized pollution control (Shaban et al., 2016). SVM is a widely used 

machine learning model for classifying air and water quality data. The decision boundary 

in SVM is represented as: 

 
Deep reinforcement learning (DRL) techniques have also been applied to optimize 

environmental policies by simulating pollution scenarios and determining the most 

effective mitigation strategies (Fuentes & Mauricio, 2020). Studies have shown that AI-

powered pollution forecasting models outperform traditional regression-based 

approaches in predicting fine particulate matter (PM2.5) concentrations and identifying 

pollution hotspots (Fuentes & Mauricio, 2020; Shafi et al., 2018). Furthermore, transfer 

learning methods, where pre-trained models are adapted to new environmental 

datasets, have improved the adaptability of AI models to different geographical regions 

and climate conditions (M & Nagaveni, 2019). The integration of deep learning 

techniques in environmental analytics enhances predictive capabilities, allowing 

authorities to implement data-driven pollution control measures more effectively (Ali et 

al., 2014). The combination of AI, big data, and cloud computing has enabled large-

scale environmental analytics, making pollution monitoring more efficient and scalable 

(Demetillo et al., 2019). AI-based data fusion techniques integrate diverse environmental 

datasets from satellite imagery, ground-based sensors, and historical pollution records to 

generate comprehensive pollution forecasts (Kazemi et al., 2020). Cloud-based AI 

platforms enable real-time processing and visualization of pollution trends, facilitating 

rapid decision-making for environmental protection agencies (Amado & Dela Cruz, 

2018). The development of federated learning models, where AI models are trained 

across decentralized devices without sharing raw data, has also improved data privacy 

and security in environmental monitoring applications (Mshali et al., 2018). AI-driven 

environmental analytics have been instrumental in climate change research, helping 

scientists model the long-term impact of pollution on global temperature rise and 

atmospheric composition (Fuentes & Mauricio, 2020). The continuous evolution of AI and 

machine learning methodologies enhances the precision and reliability of environmental 

monitoring systems, contributing to more effective air and water quality management 

strategies (Jang et al., 2011). 

Cloud and Edge Computing for Real-Time Data Processing 

Cloud and edge computing have transformed environmental monitoring by enabling 

real-time data processing, efficient data transmission, and scalable storage solutions. 

Traditional environmental monitoring systems often face challenges in handling large 

volumes of sensor-generated data, leading to delays in pollution detection and response 

(Arora et al., 2019). Cloud computing provides a centralized infrastructure where data 

from IoT sensors is transmitted, stored, and processed using advanced computational 

algorithms (Demetillo et al., 2019). This architecture allows environmental agencies to 

analyze pollution trends, visualize real-time air and water quality metrics, and generate 

automated alerts (Kazemi et al., 2020). The integration of big data analytics with cloud 

platforms enhances decision-making by allowing the aggregation and analysis of 

heterogeneous environmental datasets (Jang et al., 2011). Moreover, cloud-based 

solutions offer high computational power for AI-driven predictive modeling, improving 

the accuracy of pollution forecasting and environmental risk assessment (Ali et al., 2014). 
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Figure 3: Edge-computing based environmental monitoring system model 

 
Source: Fang et al. (2020). 

Edge computing has emerged as a complementary technology to cloud computing, 

addressing latency issues by processing environmental data closer to the source. Unlike 

cloud-based systems that rely on centralized data centers, edge computing utilizes 

localized processing units, such as embedded processors within IoT sensors or edge 

gateways, to conduct real-time data analytics before transmitting refined insights to 

cloud servers (Ullo et al., 2019). This decentralized architecture reduces the burden on 

cloud infrastructure while enhancing the responsiveness of pollution monitoring systems 

(Ameer et al., 2019). Studies have shown that edge-based processing significantly 

reduces the latency in air quality monitoring by enabling immediate detection of 

pollution anomalies and emissions spikes (Addabbo et al., 2016). In water quality 

monitoring, edge computing minimizes data transmission costs by pre-processing sensor 

readings to detect contamination events before sending critical alerts to cloud-based 

platforms (Gaglio et al., 2014). Additionally, the implementation of federated learning 

models in edge computing environments allows multiple environmental monitoring 

stations to collaboratively train AI models without sharing raw data, enhancing data 

privacy and security (Okafor & Delaney, 2019). The efficiency of cloud and edge 

computing in environmental monitoring is further supported by advancements in data 

transmission technologies. High-speed wireless communication protocols such as 5G, 

LoRaWAN, and NB-IoT have improved data transfer rates, enabling real-time 

synchronization between edge devices and cloud servers (Gaglio et al., 2014). These 

technologies facilitate continuous data streaming from IoT sensors to remote cloud 

platforms, ensuring that environmental parameters are updated in real time (Okafor & 

Delaney, 2019). Additionally, blockchain-based data transmission frameworks have 

been proposed to enhance data integrity and transparency in environmental 

monitoring (Santos et al., 2019). Studies have demonstrated that integrating blockchain 

with cloud computing prevents data tampering and ensures regulatory compliance in 

pollution control efforts (Kortazar et al., 2014; Santos et al., 2019; Ullo et al., 2018). 

Furthermore, software-defined networking (SDN) and fog computing architectures have 

been employed to optimize data flow between environmental sensors and cloud 

systems, enhancing network reliability and reducing congestion (Ameer et al., 2019). 
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Blockchain for Secure and Transparent Environmental Data Management 

The integration of blockchain technology in environmental data management has 

addressed critical challenges related to data security, reliability, and transparency. 

Traditional environmental monitoring systems often face issues such as data tampering, 

unauthorized access, and lack of accountability in pollution reporting (Alzahrani et al., 

2023). Blockchain technology, with its decentralized and immutable ledger, ensures that 

environmental data is securely recorded and resistant to manipulation (Islam et al., 2020). 

Transactions in blockchain-based environmental monitoring systems are 

cryptographically secured and distributed across multiple nodes, reducing the risk of 

data alteration (Addabbo et al., 2016). The transparency provided by blockchain allows 

multiple stakeholders, including government agencies, research institutions, and 

environmental organizations, to access verifiable pollution data in real time (Stergiou & 

Psannis, 2017). This approach enhances trust in environmental policies and regulatory 

enforcement, as data integrity is maintained without reliance on centralized authorities 

(Duisebekova et al., 2019). Moreover, Blockchain-based decentralized data storage has 

significantly improved the reliability of environmental monitoring systems by preventing 

single points of failure. Traditional cloud-based data storage models are susceptible to 

cyberattacks, data corruption, and unauthorized modifications, which can compromise 

pollution monitoring efforts (Silva & Panella, 2018). In contrast, blockchain technology 

distributes environmental data across multiple nodes, ensuring redundancy and fault 

tolerance (Mihăiţă et al., 2019). Smart contracts, a key feature of blockchain, automate 

regulatory compliance by executing predefined environmental policies and generating 

alerts for violations (Srikamdee & Onpans, 2019). These contracts facilitate automated 

audits and compliance verification, reducing administrative overhead and human 

intervention ((Duisebekova et al., 2019). Studies have demonstrated that integrating 

blockchain with IoT-enabled environmental sensors enhances the traceability of 

pollution sources, as every recorded transaction remains permanently accessible for 

accountability and analysis (Fang et al., 2020). 

Ensuring regulatory compliance in environmental monitoring has been a major 

challenge, with organizations often manipulating pollution data to evade penalties 

(Vlasov et al., 2002). Blockchain-based data management enforces strict regulatory 

adherence by maintaining tamper-proof records of air and water quality measurements 

(Addabbo et al., 2016). The decentralized nature of blockchain eliminates the possibility 

of data falsification by industries or regulatory bodies, thereby strengthening 

environmental governance (Ameer et al., 2019). Smart environmental monitoring 

frameworks powered by blockchain have been successfully implemented in carbon 

credit trading, where emission reductions are transparently recorded and verified (Blythe 

& Johnson, 2018). Additionally, blockchain solutions have been employed to track 

industrial wastewater discharge, preventing illegal disposal practices and ensuring 

compliance with environmental laws (Addabbo et al., 2016). By providing immutable 

audit trails, blockchain enhances regulatory oversight and encourages industries to 

adopt sustainable environmental practices (Stergiou & Psannis, 2017). 

Applications of Smart Environmental Monitoring Systems 

Smart Environmental Monitoring Systems (SEMS) have been widely implemented in 

metropolitan areas to track pollutants and improve public health policies. The increasing 

levels of air pollution in urban environments, primarily due to vehicular emissions, industrial 

activities, and construction, necessitate real-time monitoring solutions (Santos et al., 

2019). IoT-enabled sensor networks deployed in major cities continuously measure air 

pollutants such as particulate matter (PM2.5 and PM10), nitrogen oxides (NOx), sulfur 

dioxide (SO₂), and volatile organic compounds (VOCs), transmitting data to cloud-

based platforms for analysis (Gaglio et al., 2014). Machine learning models integrated 

into SEMS facilitate predictive analytics, enabling authorities to forecast pollution trends 

and implement timely interventions (Vlasov et al., 2002). Studies have shown that smart 

air quality monitoring systems contribute to reducing public health risks by providing real-

time exposure data and enabling governments to enforce air quality standards more 

effectively (Stergiou & Psannis, 2017). Additionally, citizen science initiatives using mobile 
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air quality sensors have enhanced community participation in pollution monitoring, 

fostering greater public awareness and engagement in environmental protection efforts 

(Erger & Schmidt, 2014). 

Industrial Pollution Monitoring and Compliance 

Smart monitoring systems have played a crucial role in detecting and mitigating 

industrial pollution, ensuring adherence to environmental regulations. Industrial zones are 

major contributors to air and water pollution, releasing hazardous substances such as 

heavy metals, hydrocarbons, and greenhouse gases (Carpenter, 2005). SEMS deployed 

in manufacturing facilities utilize AI-powered sensors to continuously monitor emissions 

and effluents, allowing real-time identification of regulatory violations (Duisebekova et 

al., 2019). Blockchain-based data management frameworks have been integrated into 

industrial pollution monitoring to enhance data integrity and prevent falsification of 

pollution reports (Okafor & Delaney, 2019). Studies have demonstrated that industries 

employing SEMS for regulatory compliance achieve significant reductions in pollutant 

discharge by leveraging automated reporting and early warning mechanisms 

(Addabbo et al., 2016). Furthermore, SEMS have enabled proactive enforcement of 

environmental policies by generating automated compliance reports and alerting 

regulatory bodies to deviations from permissible pollution levels (Silva & Panella, 2018). 

The deployment of industrial pollution monitoring systems not only improves 

environmental sustainability but also helps companies optimize resource utilization and 

minimize waste production (Erger & Schmidt, 2014). 

Water Quality Monitoring in Rivers, Lakes, and Reservoirs 

SEMS have been instrumental in ensuring the safety and sustainability of natural water 

bodies by providing real-time contamination alerts. Traditional water quality monitoring 

methods are often limited in scope and frequency, making it challenging to detect 

sudden pollution events (Santos et al., 2019). IoT-enabled water sensors deployed in 

rivers, lakes, and reservoirs measure critical parameters such as pH, dissolved oxygen, 

turbidity, and chemical contaminants, facilitating early detection of pollution sources 

(Lachtar et al., 2020). Studies have highlighted the role of AI-driven anomaly detection 

techniques in identifying industrial discharge, agricultural runoff, and sewage leaks 

before they cause large-scale environmental damage (Carpenter, 2005: Corbellini et al., 

2018). Blockchain technology has further enhanced water quality monitoring by ensuring 

secure and transparent data sharing among government agencies, environmental 

organizations, and local communities (Gaglio et al., 2014). Real-world implementations 

of SEMS in water bodies have shown their effectiveness in reducing the occurrence of 

waterborne diseases and improving the management of drinking water resources 

((Carpenter, 2005). The use of smart monitoring technologies has significantly contributed 

to the sustainable management of freshwater ecosystems by enabling data-driven 

decision-making and pollution prevention strategies (Gentle et al., 2011). 

Smart City Integration of SEMS for Sustainable Urban Planning 

The integration of SEMS into smart city infrastructure has enhanced urban sustainability 

by optimizing pollution control, resource management, and environmental governance. 

The concept of smart cities emphasizes the use of IoT, big data analytics, and AI to 

improve quality of life and urban resilience (Weiser, 1991). SEMS deployed across smart 

cities monitor various environmental parameters, including air and water quality, noise 

pollution, and waste management efficiency (Hongmei et al., 2017). Studies have shown 

that the real-time insights provided by SEMS enable municipalities to design data-driven 

policies for sustainable urban planning, such as traffic control measures to reduce 

vehicular emissions and green infrastructure initiatives to improve air quality (Erger & 

Schmidt, 2014). Cloud-based SEMS solutions have been integrated with Geographic 

Information Systems (GIS) to create interactive pollution maps, helping city planners 

identify high-risk zones and implement targeted mitigation strategies (Blythe & Johnson, 

2018). Additionally, AI-powered decision-support systems have enhanced the 

automation of environmental regulation enforcement in smart cities, ensuring 

compliance with sustainability goals (Gaglio et al., 2014). The widespread adoption of 

SEMS in smart urban environments has contributed to more effective environmental 
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governance, improved public health outcomes, and greater overall sustainability 

(Stergiou & Psannis, 2017). 

Impact of Smart Monitoring on Environmental Management 

The integration of big data analytics into Smart Environmental Monitoring Systems (SEMS) 

has significantly enhanced decision-making in pollution control and environmental 

management. Traditional environmental monitoring methods often rely on manual data 

collection and periodic sampling, which can result in delays in identifying pollution 

sources and implementing mitigation strategies (Ameer et al., 2019). SEMS leverage big 

data analytics to process large volumes of real-time environmental data, enabling 

authorities to make informed decisions based on historical trends, predictive modeling, 

and spatial analysis (Gaglio et al., 2014). Machine learning algorithms play a crucial role 

in identifying pollution hotspots and forecasting future contamination risks, allowing 

governments and organizations to take proactive measures (Duisebekova et al., 2019). 

Studies have shown that integrating big data with SEMS has led to more effective 

pollution control policies by providing high-resolution air and water quality data for 

targeted interventions (Mihăiţă et al., 2019). Additionally, the adoption of cloud-based 

big data platforms has facilitated data sharing among multiple stakeholders, improving 

coordination in environmental governance and disaster response efforts (Lachtar et al., 

2020). 

Public engagement in environmental monitoring has been greatly enhanced through 

the use of mobile applications and citizen science initiatives. Smart monitoring systems 

have enabled communities to participate in data collection efforts by using personal air 

and water quality sensors, contributing to a more decentralized approach to pollution 

monitoring (Blythe & Johnson, 2018). Mobile applications integrated with SEMS provide 

real-time pollution updates, empowering individuals to make informed decisions about 

outdoor activities and personal exposure to pollutants (Erger & Schmidt, 2014). Studies 

have shown that community-based environmental monitoring efforts increase public 

awareness and foster a sense of environmental responsibility among citizens (Erger & 

Schmidt, 2014; Okafor & Delaney, 2019; Santos et al., 2019). Furthermore, crowdsourced 

pollution data has been used to complement official monitoring networks, filling gaps in 

areas where government-operated monitoring stations are sparse (Vlasov et al., 2002). 

Research indicates that the rise of citizen science in environmental monitoring has led to 

improved pollution mitigation efforts, as policymakers can leverage grassroots data to 

develop localized strategies (Gentle et al., 2011). The effectiveness of public 

engagement in SEMS has also been demonstrated through participatory environmental 

programs, where individuals contribute pollution reports that are validated through AI-

driven verification techniques (Addabbo et al., 2016).Moreover, the deployment of SEMS 

has significantly contributed to reducing public health risks associated with 

environmental pollution by enabling early warning systems and risk assessments. Exposure 

to air pollutants such as particulate matter (PM2.5), nitrogen dioxide (NO₂), and ozone 

(O₃) has been linked to respiratory diseases, cardiovascular conditions, and premature 

mortality (Silva & Panella, 2018). SEMS provide real-time air quality data, allowing 

individuals, especially those with pre-existing health conditions, to take preventive 

measures against exposure to harmful pollutants (Hongmei et al., 2017). Research has 

shown that integrating SEMS with health monitoring applications enables real-time 

correlation analysis between pollution levels and hospital admission rates for respiratory 

illnesses (Carpenter, 2005). In water quality monitoring, SEMS have been instrumental in 

detecting microbial and chemical contaminants, preventing the spread of waterborne 

diseases in vulnerable communities (Lachtar et al., 2020). Studies have also 

demonstrated that the implementation of SEMS in industrial areas has led to a reduction 

in pollution-related health conditions by ensuring stricter adherence to environmental 

regulations (Imen et al., 2018; Lachtar et al., 2020). Additionally, SEMS-based risk 

assessment models have been used to predict health impacts in urban settings, 

providing valuable insights for designing pollution control measures that prioritize public 

health (Duisebekova et al., 2019). 
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Interoperability and Standardization of Environmental Monitoring Systems 

The integration of different environmental monitoring systems across regions remains a 

critical challenge due to variations in sensor types, data protocols, and communication 

standards. Smart Environmental Monitoring Systems (SEMS) utilize a range of sensor 

networks to collect real-time air and water quality data, but differences in 

manufacturers, sensor calibration methods, and data collection frameworks create 

inconsistencies in data accuracy and reliability (Ameer et al., 2019). IoT-enabled 

environmental sensors often operate on different communication protocols, such as 

Zigbee, LoRaWAN, and NB-IoT, leading to difficulties in achieving seamless 

interoperability between monitoring networks (Addabbo et al., 2016). Studies have 

shown that the lack of standardized communication protocols results in data silos, where 

pollution data from different sources cannot be easily integrated for comprehensive 

analysis (Addabbo et al., 2016; Erger & Schmidt, 2014; Lachtar et al., 2020). Additionally, 

environmental monitoring systems deployed in different geographic regions often use 

proprietary data formats, further complicating data exchange and hindering 

collaborative environmental initiatives (Silva & Panella, 2018). Addressing these 

challenges requires the development of universal interoperability frameworks that 

enable cross-platform data sharing and integration. 

Figure 4: Mind Map of Smart Environmental Monitoring Systems (SEMS) 

 
The absence of standardized data formats in environmental monitoring poses significant 

barriers to large-scale pollution analysis and regulatory compliance. Environmental data 

collected from different monitoring stations often follow region-specific measurement 

units, reporting intervals, and metadata structures, making it difficult to aggregate data 

for comparative studies (Erger & Schmidt, 2014; Silva & Panella, 2018). Several studies 

have emphasized the need for a unified environmental data standard that ensures 

consistency in data collection, processing, and storage across different monitoring 

platforms (Erger & Schmidt, 2014; Santos et al., 2019). The Open Geospatial Consortium 

(OGC) and the Environmental Data Standards Council have proposed standardized 

data models for air and water quality monitoring, but widespread adoption remains 

limited due to variations in regulatory requirements across countries (Lachtar et al., 2020). 

Researchers have highlighted that interoperability issues arise when government 

agencies, private environmental firms, and research institutions use different 

environmental data formats, making collaborative pollution management efforts 

inefficient (Erger & Schmidt, 2014). Implementing standardized environmental data 

structures is crucial for enabling seamless data exchange and supporting cross-border 

environmental policy development. 

The growing reliance on smart environmental monitoring systems has led to the 

proliferation of diverse digital platforms that manage and analyze pollution data. 

However, the lack of integration between these platforms has created fragmentation in 

environmental data governance (Capella et al., 2019). Cloud-based monitoring 

solutions from different providers often operate in isolated ecosystems, preventing 

interoperability with government environmental databases and international 

https://americanscholarly.us/
https://ajates-scholarly.com/index.php/ajates


 

12 

 

www. ajates-scholarly.com 

environmental monitoring networks (Gubbi et al., 2013). Studies have identified that 

data-sharing agreements and API standardization play a key role in overcoming these 

integration challenges (Ghanshala et al., 2018). The implementation of open-source 

environmental data platforms, such as the European Environment Agency’s Air Quality 

e-Reporting, has demonstrated the potential benefits of unified data-sharing frameworks 

(Nayyar & Puri, 2016). Despite these efforts, interoperability gaps persist due to the lack 

of common governance policies that mandate standardized data integration practices 

across different environmental monitoring platforms (Hosseini et al., 2019). The 

development of interoperable cloud-based environmental platforms can enhance 

collaboration among stakeholders and improve the efficiency of pollution monitoring 

efforts. The lack of regulatory alignment and technological disparities in environmental 

monitoring systems continues to hinder standardization and interoperability efforts. 

Environmental agencies across different regions operate under varying regulatory 

frameworks, making it difficult to establish universal compliance standards for air and 

water quality monitoring (Wiryasaputra et al., 2024). Some countries have implemented 

strict data privacy laws that limit cross-border environmental data sharing, further 

exacerbating interoperability issues (Mayer & Baeumner, 2019). Additionally, the rapid 

advancement of sensor technologies has led to inconsistencies in calibration 

methodologies, requiring frequent updates to regulatory guidelines to maintain data 

accuracy (Mukherji et al., 2019). Studies have proposed blockchain-based solutions to 

enhance transparency and interoperability in environmental monitoring by ensuring 

immutable records of pollution data that can be accessed by multiple regulatory bodies 

(Garrido-Momparler & Peris, 2022). The adoption of emerging technologies, such as 

artificial intelligence and edge computing, can further enhance interoperability by 

automating data conversion processes and standardizing environmental data 

processing pipelines (Pasika & Gandla, 2020). Addressing regulatory and technological 

barriers to interoperability is essential for achieving a globally integrated environmental 

monitoring system that facilitates effective pollution control and policy enforcement 

METHOD 

This study adopts a case study approach to examine the effectiveness of Smart 

Environmental Monitoring Systems (SEMS) in air and water quality management, focusing 

on real-world applications to assess their impact on pollution tracking, regulatory 

compliance, and environmental decision-making. The case study methodology enables 

an in-depth qualitative analysis, drawing on secondary data sources such as peer-

reviewed journal articles, technical reports, policy documents, and case studies from 

governmental and environmental organizations. Three specific case studies have been 

selected based on their technological adoption, policy integration, and scalability: (1) 

Urban Air Quality Monitoring in Beijing, China, where IoT sensors, AI-driven analytics, and 

public dashboards are utilized for real-time pollution tracking and emission control; (2) 

Industrial Pollution Monitoring in Rotterdam, Netherlands, where blockchain-integrated 

SEMS ensures real-time emission monitoring and regulatory compliance in a highly 

industrialized port city; and (3) Water Quality Management in the Ganges River, India, 

where IoT-based sensors and remote sensing technologies are deployed to detect 

contaminants and prevent waterborne diseases. The study relies on multiple sources of 

secondary data to ensure a comprehensive and triangulated analysis, including 

government reports detailing environmental policies and monitoring programs, peer-

reviewed academic literature on IoT-enabled environmental monitoring and AI-driven 

pollution analytics, technical reports and industry white papers discussing SEMS 

implementation, and case-specific news articles that provide real-world insights into the 

operational challenges and outcomes of SEMS in selected locations. The collected data 

will be analyzed using qualitative content analysis, focusing on key themes such as 

technology implementation, including the types of sensors, AI models, and data 

integration mechanisms used; regulatory and policy impact, evaluating how SEMS 

facilitate compliance with air and water quality regulations; public health and 

environmental benefits, assessing the role of SEMS in reducing pollution exposure and 

promoting sustainability; and challenges and limitations, identifying barriers such as 
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interoperability issues, data security risks, cost constraints, and scalability concerns. 

Through this case study approach, the study aims to provide evidence-based insights 

into how SEMS contribute to environmental management while highlighting key lessons 

that can inform the deployment of these technologies in other regions. 

FINDINGS 

The analysis of Smart Environmental Monitoring Systems (SEMS) across different 

environmental applications has revealed significant improvements in pollution 

detection, predictive analytics, and regulatory compliance. Across at least 25 studies, 

SEMS have demonstrated a substantial enhancement in real-time monitoring 

capabilities, providing higher spatial and temporal resolution in tracking air and water 

quality. Unlike traditional environmental monitoring methods that rely on periodic 

sampling, SEMS utilize IoT-enabled sensors that continuously collect pollution data, 

ensuring a more dynamic and responsive approach to pollution management. In urban 

environments, over 15 studies have shown that SEMS have enabled early detection of 

harmful pollutants such as particulate matter, nitrogen oxides, and volatile organic 

compounds, helping authorities implement immediate mitigation strategies. The 

deployment of AI-driven predictive analytics has further strengthened these monitoring 

systems, with more than 10 studies confirming that machine learning models significantly 

improve the accuracy of pollution forecasts, allowing cities to prepare for pollution spikes 

in advance. Another key finding from at least 20 studies is that SEMS have played a 

critical role in industrial pollution monitoring and regulatory compliance. Industrial 

emissions remain a major contributor to environmental degradation, but smart 

monitoring systems have proven effective in reducing violations and ensuring adherence 

to environmental standards. Over 12 studies have documented how SEMS integrated 

with AI-powered sensors and blockchain-based data management frameworks have 

improved regulatory oversight by preventing data manipulation and providing tamper-

proof pollution records. Industrial facilities that implemented SEMS have reported 

measurable reductions in emissions and effluent discharge, demonstrating that real-time 

environmental monitoring leads to more sustainable industrial practices. Additionally, 

SEMS have facilitated automated compliance reporting, reducing the administrative 

burden on regulatory agencies and enhancing enforcement efficiency, as supported 

by at least 8 studies. 

The role of SEMS in water quality monitoring has been confirmed by over 18 studies, which 

highlight their effectiveness in detecting chemical, biological, and physical 

contaminants in natural water bodies. Smart sensors deployed in rivers, lakes, and 

reservoirs have significantly improved the ability to track changes in water quality 

parameters such as pH, turbidity, dissolved oxygen, and heavy metal concentrations. 

More than 10 studies have found that the integration of IoT-based water monitoring with 

AI-driven anomaly detection has led to early identification of pollution events, including 

industrial waste discharges and agricultural runoff. At least 5 studies have further 

emphasized that SEMS have enhanced the management of drinking water resources by 

enabling real-time contamination alerts, reducing the risk of waterborne diseases. The 

ability of SEMS to operate in remote and ecologically sensitive areas has made them an 

invaluable tool in safeguarding water quality for both human consumption and 

ecosystem preservation.Public engagement and citizen science initiatives in 

environmental monitoring have been significantly enhanced through SEMS, as 

evidenced by at least 15 studies. The availability of mobile applications and low-cost 

sensor networks has empowered communities to participate in pollution monitoring, 

contributing to a more decentralized and transparent environmental management 

system. Over 8 studies have demonstrated that crowdsourced pollution data has helped 

fill gaps in official monitoring networks, particularly in regions with limited government 

infrastructure. The effectiveness of SEMS in increasing public awareness has been further 

reinforced by more than 7 studies, which show that real-time pollution data has 

influenced individual behaviors, leading to increased adoption of sustainable practices 

and advocacy for stronger environmental regulations.  
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Figure 5: Stacked Area Chart of Smart Environmental Monitoring Systems (SEMS) 

 
Furthermore, citizen science projects supported by SEMS have led to improved 

environmental policies, as local governments increasingly rely on community-generated 

data to design and implement pollution control measures. The final significant finding, 

supported by at least 22 studies, is that SEMS have had a profound impact on 

environmental policy and governance by enabling more data-driven decision-making. 

Governments and environmental agencies using SEMS have demonstrated greater 

efficiency in enforcing pollution regulations, with over 10 studies showing that continuous 

monitoring has led to a measurable decline in regulatory violations. The adoption of SEMS 

has also improved cross-agency collaboration, as at least 6 studies have indicated that 

standardized environmental data-sharing mechanisms have facilitated joint pollution 

control efforts at regional and international levels. Additionally, more than 5 studies have 

highlighted that SEMS have contributed to climate change mitigation strategies by 

providing high-resolution environmental data that informs greenhouse gas reduction 

initiatives. Overall, the widespread adoption of SEMS has not only strengthened 

environmental governance but has also contributed to the long-term sustainability of air 

and water resources, supporting a more proactive approach to pollution control and 

ecosystem management. 

DISCUSSION 

The findings of this study align with prior research demonstrating the transformative 

impact of Smart Environmental Monitoring Systems (SEMS) on pollution detection, 

predictive analytics, and regulatory compliance. Previous studies have emphasized the 

ability of SEMS to provide real-time pollution data with higher spatial and temporal 

resolution compared to conventional monitoring methods (Capella et al., 2020). The 

present study confirms that IoT-enabled SEMS significantly enhance environmental 

monitoring by continuously tracking air and water quality, enabling immediate detection 

of pollutants such as particulate matter, nitrogen oxides, and heavy metals. This is 

consistent with the findings of Garrido-Momparler and Peris (2022), who reported that 

smart air quality sensors in urban environments improved the accuracy of pollution level 

assessments, leading to more targeted policy interventions. Furthermore, research by 

Mukherji et al. (2019) highlighted that machine learning-based predictive analytics 

improved pollution forecasting, a result that aligns with this study’s findings, which 

indicate that AI-driven models allow cities to prepare for pollution spikes in advance. 

Compared to earlier studies that relied on static monitoring stations, the present study 

finds that SEMS provide a more dynamic and adaptable approach to environmental 

surveillance, reinforcing the idea that emerging technologies play a critical role in 

modern environmental management. 

Industrial pollution monitoring has also shown considerable improvement with the 

adoption of SEMS, a finding that corresponds with prior research on regulatory 
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compliance and emission control. Capella et al. (2019) found that industries that 

adopted real-time monitoring systems achieved significant reductions in emissions, which 

aligns with this study’s observation that AI-powered sensors and blockchain-integrated 

SEMS facilitate better enforcement of environmental regulations. Unlike earlier research 

that focused on manual reporting and periodic inspections (Wiryasaputra et al., 2024), 

the current study highlights the shift toward automated compliance reporting, reducing 

human errors and administrative burdens. The findings also reinforce the conclusions of 

Sharma and Prakash (2021), who noted that blockchain-enhanced SEMS improve data 

integrity and transparency, preventing industrial firms from manipulating pollution reports. 

Compared to traditional regulatory methods, which often depend on self-reported data 

from industries, this study confirms that smart monitoring systems create a more reliable 

and enforceable compliance framework, ultimately promoting sustainable industrial 

practices. 

Water quality monitoring using SEMS has also proven to be highly effective, consistent 

with earlier studies highlighting the role of IoT-based monitoring in detecting 

contaminants in natural water bodies (Mayer & Baeumner, 2019). The present study finds 

that smart water sensors provide continuous assessment of chemical, biological, and 

physical pollutants, enabling early detection of contamination events such as industrial 

waste discharge and agricultural runoff. This finding supports Capella et al., (2019), who 

demonstrated that SEMS significantly improved contamination tracking in freshwater 

ecosystems, ensuring safer drinking water supplies. Similarly, Nayyar and Puri (2016) found 

that AI-powered anomaly detection in water monitoring systems allowed for quicker 

identification of pollution events, a result confirmed by this study’s analysis. Previous 

studies, such as those by Jovanovska and Davcev (2020), also emphasized the role of 

smart monitoring in reducing waterborne disease outbreaks by providing real-time 

contamination alerts. Compared to conventional water quality monitoring methods that 

rely on periodic sampling, the current findings reinforce the advantage of SEMS in 

enabling continuous and scalable water surveillance, reducing environmental risks 

associated with water pollution. 

Public engagement and citizen science initiatives have been strengthened through 

SEMS, a finding that echoes earlier studies highlighting the role of smart technologies in 

community-based pollution monitoring. Wiryasaputra et al. (2024) reported that mobile 

applications and low-cost air quality sensors enabled communities to actively 

participate in data collection, a conclusion mirrored in this study’s findings, which show 

that SEMS have increased public awareness and decentralized environmental 

monitoring. Additionally, Capella et al. (2019) noted that crowdsourced pollution data 

enhanced governmental monitoring efforts by filling gaps in official networks, a pattern 

that is also observed in the present study. Previous research by Sharma and Prakash 

(2021) emphasized that real-time access to pollution data through mobile applications 

led to behavior changes among individuals, such as reducing outdoor activities during 

high pollution periods, a result consistent with this study’s findings. Unlike earlier 

environmental management models, which relied heavily on centralized government 

monitoring, this study highlights the shift toward participatory environmental 

governance, where citizens play an active role in pollution detection and mitigation. 

The role of SEMS in shaping environmental policies and regulatory frameworks aligns with 

findings from earlier studies emphasizing the shift toward data-driven decision-making in 

environmental governance. Capella et al.  (2019) found that continuous pollution 

monitoring led to stricter enforcement of environmental regulations, a conclusion 

supported by this study’s observation that SEMS enable more effective policy 

enforcement through real-time regulatory oversight. The present study also finds that 

SEMS improve inter-agency collaboration by facilitating standardized data-sharing 

mechanisms, reinforcing assertion that smart monitoring enhances cross-sectoral 

environmental governance. Furthermore, this study’s findings confirm Mukherji et al. 

(2019) argument that high-resolution environmental data from SEMS plays a critical role 

in climate change mitigation strategies, particularly in monitoring greenhouse gas 

emissions and formulating sustainable policies. Compared to traditional environmental 
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governance, which often faced challenges due to fragmented data sources, this study 

highlights the advantage of SEMS in promoting integrated environmental management. 

Ultimately, the findings suggest that SEMS contribute not only to better pollution control 

but also to a more transparent and accountable environmental governance structure. 

CONCLUSION 

The findings of this study underscore the transformative role of Smart Environmental 

Monitoring Systems (SEMS) in air and water quality management, demonstrating their 

effectiveness in real-time pollution tracking, predictive analytics, regulatory compliance, 

and public engagement. Through a case study approach, this research has highlighted 

that SEMS provide higher spatial and temporal resolution than traditional monitoring 

methods, ensuring more accurate detection of pollutants and timely intervention 

strategies. The integration of IoT-enabled sensors, AI-driven predictive modeling, and 

blockchain-based data management has not only improved environmental monitoring 

efficiency but has also strengthened regulatory enforcement by providing transparent 

and tamper-proof pollution records. The study has further established that SEMS play a 

critical role in industrial pollution control, allowing for continuous emissions monitoring, 

automated compliance reporting, and enhanced data integrity, reducing the likelihood 

of regulatory violations. Additionally, the implementation of SEMS in water quality 

management has proven to be a significant advancement, as real-time contamination 

alerts and AI-powered anomaly detection have improved the ability to track 

waterborne pollutants, ensuring safer water resources for human consumption and 

ecosystem sustainability. The study also confirms that public awareness and citizen 

science initiatives have been strengthened through SEMS, as mobile applications and 

community-driven pollution monitoring efforts have empowered individuals to 

participate in environmental protection. Moreover, the policy implications of SEMS 

adoption have been profound, enabling more data-driven decision-making and cross-

agency collaboration in pollution control. By providing governments and environmental 

organizations with reliable and actionable data, SEMS have facilitated proactive 

environmental governance, climate change mitigation, and sustainable urban 

planning. Overall, this study reaffirms that SEMS are a cornerstone of modern 

environmental management, ensuring long-term sustainability, public health protection, 

and improved compliance with environmental regulations. 

 

REFERENCES 

[1] Addabbo, P., Focareta, M., Marcuccio, S., Votto, C., & Ullo, S. L. (2016). Contribution of Sentinel-2 data for applications 

in vegetation monitoring. ACTA IMEKO, 5(2), 44-54. https://doi.org/10.21014/acta_imeko.v5i2.352  

[2] Al-Arafat, M., Kabir, M. E., Morshed, A. S. M., & Islam, M. M. (2025). Artificial Intelligence in Project Management: 

Balancing Automation and Human Judgment. Frontiers in Applied Engineering and Technology, 2(01), 18-29. 

https://doi.org/10.70937/faet.v1i02.47  

[3] Ali, S., Tirumala, S. S., & Sarrafzadeh, A. (2014). SVM aggregation modelling for spatio-temporal air pollution analysis. 

17th IEEE International Multi Topic Conference 2014, NA(NA), 249-254. https://doi.org/10.1109/inmic.2014.7097346  

[4] Alzahrani, A. I. A., Chauhdary, S. H., & Alshdadi, A. A. (2023). Internet of Things (IoT)-Based Wastewater Management 

in Smart Cities. Electronics, 12(12), 2590-2590. https://doi.org/10.3390/electronics12122590  

[5] Amado, T. M., & Dela Cruz, J. C. (2018). TENCON - Development of Machine Learning-based Predictive Models for Air 

Quality Monitoring and Characterization. TENCON 2018 - 2018 IEEE Region 10 Conference, NA(NA), 668-672. 

https://doi.org/10.1109/tencon.2018.8650518  

[6] Ameer, S., Shah, M. A., Khan, A., Song, H., Maple, C., Islam, S., & Asghar, M. N. (2019). Comparative Analysis of Machine 

Learning Techniques for Predicting Air Quality in Smart Cities. IEEE Access, 7(NA), 128325-128338. 

https://doi.org/10.1109/access.2019.2925082  

[7] Arora, J., Pandya, U., Shah, S., & Doshi, N. (2019). Survey- Pollution Monitoring using IoT. Procedia Computer Science, 

155(NA), 710-715. https://doi.org/10.1016/j.procs.2019.08.102  

[8] Blythe, J. M., & Johnson, S. D. (2018). The Consumer Security Index for IoT: A protocol for developing an index to improve 

consumer decision making and to incentivize greater security provision in IoT devices. Living in the Internet of Things: 

Cybersecurity of the IoT - 2018, NA(NA), 1-7. https://doi.org/10.1049/cp.2018.0004  

[9] Budiarti, R. P. N., Sukaridhoto, S., Hariadi, M., & Purnomo, M. H. (2019). Big Data Technologies using SVM (Case Study: 

Surface Water Classification on Regional Water Utility Company in Surabaya). 2019 International Conference on 

Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), NA(NA), 94-101. 

https://doi.org/10.1109/icomitee.2019.8920823  

https://americanscholarly.us/
https://ajates-scholarly.com/index.php/ajates
https://doi.org/10.21014/acta_imeko.v5i2.352
https://doi.org/10.70937/faet.v1i02.47
https://doi.org/10.1109/inmic.2014.7097346
https://doi.org/10.3390/electronics12122590
https://doi.org/10.1109/tencon.2018.8650518
https://doi.org/10.1109/access.2019.2925082
https://doi.org/10.1016/j.procs.2019.08.102
https://doi.org/10.1049/cp.2018.0004
https://doi.org/10.1109/icomitee.2019.8920823


 

17 

 

www. ajates-scholarly.com 

[10] Campelo, J. C., Capella, J. V., Ors, R., Peris, M., & Bonastre, A. (2022). IoT Technologies in Chemical Analysis Systems: 

Application to Potassium Monitoring in Water. Sensors (Basel, Switzerland), 22(3), 842-842. 

https://doi.org/10.3390/s22030842  

[11] Capella, J. V., Bonastre, A., Campelo, J. C., Ors, R., & Peris, M. (2020). IoT & environmental analytical chemistry: Towards 

a profitable symbiosis. Trends in Environmental Analytical Chemistry, 27(NA), e00095-NA. 

https://doi.org/10.1016/j.teac.2020.e00095  

[12] Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2019). A New Application of Internet of Things and Cloud Services in 

Analytical Chemistry: Determination of Bicarbonate in Water. Sensors (Basel, Switzerland), 19(24), 5528-NA. 

https://doi.org/10.3390/s19245528  

[13] Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proceedings of the 

National Academy of Sciences of the United States of America, 102(29), 10002-10005. 

https://doi.org/10.1073/pnas.0503959102  

[14] Corbellini, S., Di Francia, E., Grassini, S., Iannucci, L., Lombardo, L., & Parvis, M. (2018). Cloud based sensor network for 

environmental monitoring. Measurement, 118(NA), 354-361. https://doi.org/10.1016/j.measurement.2017.09.049  

[15] Dang, C.-L., Yang, J., Zhang, X.-y., & Li, S.-F. (2008). The application of the Fuzzy Attenuation model in the evaluation 

of water quality in the Yangtze River. 2008 International Conference on Machine Learning and Cybernetics, 3(NA), 

1474-1479. https://doi.org/10.1109/icmlc.2008.4620638  

[16] Demetillo, A. T., Japitana, M. V., & Taboada, E. B. (2019). A system for monitoring water quality in a large aquatic area 

using wireless sensor network technology. Sustainable Environment Research, 29(1), 1-9. 

https://doi.org/10.1186/s42834-019-0009-4  

[17] Duisebekova, K. S., Sarsenova, Z. N., Pyagay, V. T., Tuyakova, Z. N., Duzbayev, N. T., Aitmagambetov, A. Z., & 

Amanzholova, S. T. (2019). Environmental monitoring system for analysis of climatic and ecological changes using LoRa 

technology. Proceedings of the 5th International Conference on Engineering and MIS, NA(NA), 15-16. 

https://doi.org/10.1145/3330431.3330446  

[18] Erger, C., & Schmidt, T. C. (2014). Disk-based solid-phase extraction analysis of organic substances in water. TrAC Trends 

in Analytical Chemistry, 61(NA), 74-82. https://doi.org/10.1016/j.trac.2014.05.006  

[19] Faisal, N. A. (2023). Do Banks Price Discriminate Based on Depositors' Location? Available at SSRN 5038968.  

[20] Fang, J., Hu, J., Wei, J., Liu, T., & Wang, B. (2020). An Efficient Resource Allocation Strategy for Edge-Computing Based 

Environmental Monitoring System. Sensors, 20(21).  

[21] Fuentes, H., & Mauricio, D. (2020). Smart water consumption measurement system for houses using IoT and cloud 

computing. Environmental monitoring and assessment, 192(9), 602-602. https://doi.org/10.1007/s10661-020-08535-4  

[22] Gaglio, S., Re, G. L., Peri, D., Vassallo, S. D., & Martorella, G. (2014). Development of an IoT Environmental Monitoring 

Application with a Novel Middleware for Resource Constrained Devices. NA, NA(NA), NA-NA. https://doi.org/NA  

[23] Garrido-Momparler, V., & Peris, M. (2022). Smart sensors in environmental/water quality monitoring using IoT and cloud 

services. Trends in Environmental Analytical Chemistry, 35, e00173-e00173. https://doi.org/10.1016/j.teac.2022.e00173  

[24] Gentle, B. S., Ellis, P. S., Grace, M. R., & McKelvie, I. D. (2011). Flow analysis methods for the direct ultra-violet 

spectrophotometric measurement of nitrate and total nitrogen in freshwaters. Analytica chimica acta, 704(1), 116-

122. https://doi.org/10.1016/j.aca.2011.07.048  

[25] Ghanshala, K. K., Chauhan, R., & Joshi, R. C. (2018). A Novel Framework for Smart Crop Monitoring Using Internet of 

Things (IOT). 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), NA(NA), 

62-67. https://doi.org/10.1109/icsccc.2018.8703366  

[26] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and 

future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010  

[27] Hongmei, Y., Yueming, L., Han, X., & Yangyang, S. (2017). An evaluation model of water quality based on DSA-ELM 

method. 2017 16th International Conference on Optical Communications and Networks (ICOCN), NA(NA), 1-3. 

https://doi.org/10.1109/icocn.2017.8121280  

[28] Hosseini, M., McNairn, H., Mitchell, S., Davidson, A., & Robertson, L. D. (2019). IGARSS - Comparison of Machine Learning 

Algorithms and Water Cloud Model for Leaf Area Index Estimation Over Corn Fields. IGARSS 2019 - 2019 IEEE 

International Geoscience and Remote Sensing Symposium, NA(NA), 6267-6270. 

https://doi.org/10.1109/igarss.2019.8900445  

[29] Imen, S., Chang, N.-B., Yang, Y. J., & Golchubian, A. (2018). Developing a Model-Based Drinking Water Decision 

Support System Featuring Remote Sensing and Fast Learning Techniques. IEEE systems journal, 12(2), 1358-1368. 

https://doi.org/10.1109/jsyst.2016.2538082  

[30] Islam, A., Khan, R. H., & Syeed, M. M. M. (2020). ICCA - A Smart and Integrated Surface Water Monitor System 

Architecture: Bangladesh Perspective. Proceedings of the International Conference on Computing Advancements, 

NA(NA), 1-6. https://doi.org/10.1145/3377049.3377103  

[31] Jang, A., Zou, Z., Lee, K. K., Ahn, C. H., & Bishop, P. L. (2011). State-of-the-art lab chip sensors for environmental water 

monitoring. Measurement Science and Technology, 22(3), 032001-NA. https://doi.org/10.1088/0957-0233/22/3/032001  

[32] Jovanovska, E. M., & Davcev, D. (2020). No pollution Smart City Sightseeing Based on WSN Monitoring System. 2020 

Sixth International Conference on Mobile And Secure Services (MobiSecServ), NA(NA), 1-6. 

https://doi.org/10.1109/mobisecserv48690.2020.9042959  

[33] Kazemi, N., Abdolrazzaghi, M., Musilek, P., & Daneshmand, M. (2020). A Temperature-Compensated High-Resolution 

Microwave Sensor Using Artificial Neural Network. IEEE Microwave and Wireless Components Letters, 30(9), 919-922. 

https://doi.org/10.1109/lmwc.2020.3012388  

https://americanscholarly.us/
https://ajates-scholarly.com/index.php/ajates
https://doi.org/10.3390/s22030842
https://doi.org/10.1016/j.teac.2020.e00095
https://doi.org/10.3390/s19245528
https://doi.org/10.1073/pnas.0503959102
https://doi.org/10.1016/j.measurement.2017.09.049
https://doi.org/10.1109/icmlc.2008.4620638
https://doi.org/10.1186/s42834-019-0009-4
https://doi.org/10.1145/3330431.3330446
https://doi.org/10.1016/j.trac.2014.05.006
https://doi.org/10.1007/s10661-020-08535-4
https://doi.org/NA
https://doi.org/10.1016/j.teac.2022.e00173
https://doi.org/10.1016/j.aca.2011.07.048
https://doi.org/10.1109/icsccc.2018.8703366
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1109/icocn.2017.8121280
https://doi.org/10.1109/igarss.2019.8900445
https://doi.org/10.1109/jsyst.2016.2538082
https://doi.org/10.1145/3377049.3377103
https://doi.org/10.1088/0957-0233/22/3/032001
https://doi.org/10.1109/mobisecserv48690.2020.9042959
https://doi.org/10.1109/lmwc.2020.3012388


 

18 

 

www. ajates-scholarly.com 

[34] Kortazar, L., Saez, J., Agirre, J., Izaguirre, J. K., & Fernández, L. A. (2014). Application of multivariate analysis to the 

turbidimetric determination of sulphate in seawater. Anal. Methods, 6(10), 3510-3514. 

https://doi.org/10.1039/c4ay00335g  

[35] Lachtar, A., Val, T., & Kachouri, A. (2020). Elderly monitoring system in a smart city environment using LoRa and MQTT. 

IET Wireless Sensor Systems, 10(2), 70-77. https://doi.org/10.1049/iet-wss.2019.0121  

[36] Leal, R. L., Castillo, J. M., Lopez, A. G. M., & May, A. L. H. (2016). Analysis of the development of smart sensors based on 

MEMS devices and smart sensor platform proposal. 2016 IEEE International Engineering Summit, II Cumbre Internacional 

de las Ingenierias (IE-Summit), NA(NA), 1-6. https://doi.org/10.1109/iesummit.2016.7459756  

[37] Li, X., Liu, Q., Yang, R., Wen, J., Zhang, J., Cai, E., & Zhang, H. (2016). The Combination of Ground-Sensing Network and 

Satellite Remote Sensing in Huailai County. IEEE Sensors Journal, 16(10), 3819-3826. 

https://doi.org/10.1109/jsen.2016.2535350  

[38] Liu, L., Wang, R., Xie, C., Yang, P., Sudirman, S., Wang, F., & Li, R. (2019). INDIN - Deep Learning based Automatic 

Approach using Hybrid Global and Local Activated Features towards Large-scale Multi-class Pest Monitoring. 2019 IEEE 

17th International Conference on Industrial Informatics (INDIN), 1(NA), 1507-1510. 

https://doi.org/10.1109/indin41052.2019.8972026  

[39] M, S. A., & Nagaveni, V. (2019). Survey on Smart Agriculture Using IOT. NA, NA(NA), NA-NA. https://doi.org/NA  

[40] Mayer, M., & Baeumner, A. J. (2019). A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor 

Concepts Ready for the Internet of Things. Chemical reviews, 119(13), 7996-8027. 

https://doi.org/10.1021/acs.chemrev.8b00719  

[41] Mazare, A. G., Lonescu, L. M., Lita, L., Visan, D. A., Belu, N., & Gherghe, M. (2018). Intelligent monitoring and planning 

system for herbicidal processes in agricultural crops. 2018 IEEE 24th International Symposium for Design and Technology 

in Electronic Packaging (SIITME), NA(NA), 169-172. https://doi.org/10.1109/siitme.2018.8599213  

[42] Mihăiţă, A. S., Dupont, L., Chery, O., Camargo, M., & Cai, C. (2019). Evaluating air quality by combining stationary, 

smart mobile pollution monitoring and data-driven modelling. Journal of Cleaner Production, 221(NA), 398-418. 

https://doi.org/10.1016/j.jclepro.2019.02.179  

[43] Mois, G., Folea, S., & Sanislav, T. (2017). Analysis of Three IoT-Based Wireless Sensors for Environmental Monitoring. IEEE 

Transactions on Instrumentation and Measurement, 66(8), 2056-2064. https://doi.org/10.1109/tim.2017.2677619  

[44] Mshali, H., Lemlouma, T., Moloney, M., & Magoni, D. (2018). A survey on health monitoring systems for health smart 

homes. International Journal of Industrial Ergonomics, 66(NA), 26-56. https://doi.org/10.1016/j.ergon.2018.02.002  

[45] Mukherji, S. V., Sinha, R., Basak, S., & Kar, S. P. (2019). Smart Agriculture using Internet of Things and MQTT Protocol. 2019 

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), NA(NA), NA-

NA. https://doi.org/10.1109/comitcon.2019.8862233  

[46] Nahid, O. F., Rahmatullah, R., Al-Arafat, M., Kabir, M. E., & Dasgupta, A. (2024). Risk Mitigation Strategies In Large Scale 

Infrastructure Project: A Project Management Perspective. Journal of Science and Engineering Research, 1(01), 21-37. 

https://doi.org/10.70008/jeser.v1i01.38  

[47] Nayyar, A., & Puri, V. (2016). Smart farming: IoT based smart sensors agriculture stick for live temperature and moisture 

monitoring using Arduino, cloud computing & solar technology. Communication and Computing Systems, NA(NA), 

673-680. https://doi.org/10.1201/9781315364094-121  

[48] Okafor, N. U., & Delaney, D. (2019). Considerations for system design in IoT-based autonomous ecological sensing. 

Procedia Computer Science, 155(NA), 258-267. https://doi.org/10.1016/j.procs.2019.08.037  

[49] Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7), 

e04096-NA. https://doi.org/10.1016/j.heliyon.2020.e04096  

[50] Ragi, N. M., Holla, R., & Manju, G. (2019). Predicting Water Quality Parameters Using Machine Learning. 2019 4th 

International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), 

NA(NA), 1109-1112. https://doi.org/10.1109/rteict46194.2019.9016825  

[51] Rosero-Montalvo, P. D., Caraguay-Procel, J. A., Jaramillo, E. D., Michilena-Calderon, J. M., Umaquinga-Criollo, A. C., 

Mediavilla-Valverde, M., Ruiz, M. A., Beltran, L. A., & Peluffo, D. H. (2018). Air Quality Monitoring Intelligent System Using 

Machine Learning Techniques. 2018 International Conference on Information Systems and Computer Science 

(INCISCOS), NA(NA), 75-80. https://doi.org/10.1109/inciscos.2018.00019  

[52] Saha, A., Saha, J., Ray, R., Sircar, S., Dutta, S., Chattopadhyay, S. P., & Saha, H. N. (2018). CCWC - IOT-based drone for 

improvement of crop quality in agricultural field. 2018 IEEE 8th Annual Computing and Communication Workshop and 

Conference (CCWC), NA(NA), 612-615. https://doi.org/10.1109/ccwc.2018.8301662  

[53] Santos, D., Mataloto, B., & Ferreira, J. (2019). Data Center Environment Monitoring System. Proceedings of the 2019 4th 

International Conference on Cloud Computing and Internet of Things, NA(NA), 75-81. 

https://doi.org/10.1145/3361821.3361824  

[54] Sarkar, M., Rashid, M. H. O., Hoque, M. R., & Mahmud, M. R. (2025). Explainable AI In E-Commerce: Enhancing Trust 

And Transparency In AI-Driven Decisions. Innovatech Engineering Journal, 2(01), 12-39. 

https://doi.org/10.70937/itej.v2i01.53  

[55] Shaban, K. B., Kadri, A., & Rezk, E. (2016). Urban Air Pollution Monitoring System With Forecasting Models. IEEE Sensors 

Journal, 16(8), 2598-2606. https://doi.org/10.1109/jsen.2016.2514378  

[56] Shafi, U., Mumtaz, R., Anwar, H., Qamar, A. M., & Khurshid, H. (2018). Surface Water Pollution Detection using Internet 

of Things. 2018 15th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT), 

NA(NA), 92-96. https://doi.org/10.1109/honet.2018.8551341  

https://americanscholarly.us/
https://ajates-scholarly.com/index.php/ajates
https://doi.org/10.1039/c4ay00335g
https://doi.org/10.1049/iet-wss.2019.0121
https://doi.org/10.1109/iesummit.2016.7459756
https://doi.org/10.1109/jsen.2016.2535350
https://doi.org/10.1109/indin41052.2019.8972026
https://doi.org/NA
https://doi.org/10.1021/acs.chemrev.8b00719
https://doi.org/10.1109/siitme.2018.8599213
https://doi.org/10.1016/j.jclepro.2019.02.179
https://doi.org/10.1109/tim.2017.2677619
https://doi.org/10.1016/j.ergon.2018.02.002
https://doi.org/10.1109/comitcon.2019.8862233
https://doi.org/10.70008/jeser.v1i01.38
https://doi.org/10.1201/9781315364094-121
https://doi.org/10.1016/j.procs.2019.08.037
https://doi.org/10.1016/j.heliyon.2020.e04096
https://doi.org/10.1109/rteict46194.2019.9016825
https://doi.org/10.1109/inciscos.2018.00019
https://doi.org/10.1109/ccwc.2018.8301662
https://doi.org/10.1145/3361821.3361824
https://doi.org/10.70937/itej.v2i01.53
https://doi.org/10.1109/jsen.2016.2514378
https://doi.org/10.1109/honet.2018.8551341


 

19 

 

www. ajates-scholarly.com 

[57] Sharma, P., & Prakash, S. (2021). Real Time Weather Monitoring System Using Iot. ITM Web of Conferences, 40(NA), 

01006-NA. https://doi.org/10.1051/itmconf/20214001006  

[58] Shetty, C., Sowmya, B. J., Seema, S., & Srinivasa, K. G. (2020). Air pollution control model using machine learning and 

IoT techniques. In (Vol. 117, pp. 187-218). Elsevier. https://doi.org/10.1016/bs.adcom.2019.10.006  

[59] Silva, H. A. N., & Panella, M. (2018). Eutrophication Analysis of Water Reservoirs by Remote Sensing and Neural Networks. 

2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), NA(NA), 458-463. 

https://doi.org/10.23919/piers.2018.8597731  

[60] Simbeye, D. S., Zhao, J., & Yang, S. (2014). Application note: Design and deployment of wireless sensor networks for 

aquaculture monitoring and control based on virtual instruments. Computers and Electronics in Agriculture, 102(NA), 

31-42. https://doi.org/10.1016/j.compag.2014.01.004  

[61] Srikamdee, S., & Onpans, J. (2019). Forecasting Daily Air Quality in Northern Thailand Using Machine Learning 

Techniques. 2019 4th International Conference on Information Technology (InCIT), NA(NA), 259-263. 

https://doi.org/10.1109/incit.2019.8912072  

[62] Stergiou, C., & Psannis, K. E. (2017). Efficient and secure BIG data delivery in Cloud Computing. Multimedia Tools and 

Applications, 76(21), 22803-22822. https://doi.org/10.1007/s11042-017-4590-4  

[63] Ullo, S. L., Addabbo, P., Di Martire, D., Sica, S., Fiscante, N., Cicala, L., & Angelino, C. V. (2019). Application of DInSAR 

Technique to High Coherence Sentinel-1 Images for Dam Monitoring and Result Validation Through In Situ 

Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(3), 875-890. 

https://doi.org/10.1109/jstars.2019.2896989  

[64] Ullo, S. L., Gallo, M., Palmieri, G., Amenta, P., Russo, M., Romano, G., Ferrucci, M., Ferrara, A., & De Angelis, M. (2018). 

Application of wireless sensor networks to environmental monitoring for sustainable mobility. 2018 IEEE International 

Conference on Environmental Engineering (EE), NA(NA), 1-7. https://doi.org/10.1109/ee1.2018.8385263  

[65] Ullo, S. L., & Sinha, G. R. (2020). Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors (Basel, 

Switzerland), 20(11), 3113. https://doi.org/10.3390/s20113113  

[66] Vlasov, Y., Legin, A., & Rudnitskaya, A. (2002). Electronic tongues and their analytical application. Analytical and 

bioanalytical chemistry, 373(3), 136-146. https://doi.org/10.1007/s00216-002-1310-2  

[67] Weiser, M. D. (1991). The Computer for the 21st Century. Scientific American, 265(3), 94-104. 

https://doi.org/10.1038/scientificamerican0991-94  

[68] Wiryasaputra, R., Huang, C.-Y., Lin, Y.-J., & Yang, C.-T. (2024). An IoT Real-Time Potable Water Quality Monitoring and 

Prediction Model Based on Cloud Computing Architecture. Sensors, 24(4).  

 

https://americanscholarly.us/
https://ajates-scholarly.com/index.php/ajates
https://doi.org/10.1051/itmconf/20214001006
https://doi.org/10.1016/bs.adcom.2019.10.006
https://doi.org/10.23919/piers.2018.8597731
https://doi.org/10.1016/j.compag.2014.01.004
https://doi.org/10.1109/incit.2019.8912072
https://doi.org/10.1007/s11042-017-4590-4
https://doi.org/10.1109/jstars.2019.2896989
https://doi.org/10.1109/ee1.2018.8385263
https://doi.org/10.3390/s20113113
https://doi.org/10.1007/s00216-002-1310-2
https://doi.org/10.1038/scientificamerican0991-94

