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ABSTRACT 

This systematic literature review provides a comprehensive and methodologically 

rigorous synthesis of scholarly work on Intelligent Support Systems (ISS), focusing on their 

design architectures, strategic applications, ethical governance, and human-AI 

interaction (HAII) frameworks within organizational contexts. Following the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, 

the review evaluates 124 peer-reviewed journal articles published between 2013 and 

2023, ensuring transparency, reproducibility, and academic rigor in article selection 

and synthesis. The findings reveal a significant shift in ISS development from traditional 

rule-based systems toward hybrid and neural network-driven architectures, which offer 

improved predictive capabilities, flexibility, and real-time responsiveness. However, this 

transition introduces new challenges, particularly in terms of model interpretability, trust 

calibration, and dynamic system transparency. The review also identifies a growing 

trend in the adoption of AI-augmented strategic decision-making tools, such as 

decision-tree learning and reinforcement learning, which support portfolio 

management, resource optimization, and scenario-based planning. Despite these 

advancements, there is a notable deficiency in longitudinal performance evaluation, 

with very few studies tracking system impact or user trust over extended periods. While 

regulatory and governance frameworks such as GDPR, NIST AI RMF, and ISO/IEC 

standards are frequently referenced, only a limited number of studies report concrete 

implementation in live systems. The study concludes that future research must adopt a 

multidisciplinary lens, incorporating ethical AI principles, culturally aware design, long-

term performance tracking, and user-centric evaluation metrics to ensure that ISS 

technologies evolve in a responsible, equitable, and sustainable manner. This review 

contributes to bridging the gap between advanced computational capabilities and 

the ethical, strategic, and social imperatives that define effective decision support in 

contemporary enterprises. 
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INTRODUCTION 

Intelligent Support Systems (ISS) refer to computational frameworks and digital platforms that utilize 

artificial intelligence (AI), machine learning, expert systems, and cognitive computing to enhance 

and automate complex decision-making processes within organizations (Kaufmann et al., 2014). 

These systems are designed to emulate human decision-making logic by processing vast data 

streams, identifying patterns, and generating actionable insights. The evolution of ISS has been driven 

by the need to manage growing information complexity and ensure timely, data-driven responses 

in organizational settings (Cabantous & Gond, 2011). Strategic decision-making involves high-level 

choices that impact long-term organizational direction, often encompassing elements of 

uncertainty, competitive dynamics, and policy constraints (Islam & Chang, 2021). Within this context, 

ISS aim to function as analytical partners that support, rather than replace, human judgment (Kocsi 

et al., 2020). The integration of human cognitive strengths with AI capabilities in decision 

environments has reshaped how businesses define, approach, and solve strategic problems (Scott 

et al., 2016). The adoption of ISS in strategic decision-making has grown globally due to digital 

transformation pressures, increased data availability, and the competitive need for real-time 

responsiveness (Kim et al., 2020). Multinational corporations, government agencies, and non-profits 

are embedding ISS into enterprise platforms to optimize resource allocation, assess market 

opportunities, and manage risk (Loebbecke & Picot, 2015). In regions like North America and Western 

Europe, ISS adoption is linked to high digital maturity and robust data governance policies, enabling 

integration with enterprise resource planning (ERP), customer relationship management (CRM), and 

supply chain management (SCM) systems (Gillespie, 2014). Meanwhile, in Asia-Pacific economies, 

ISS deployment has been central to smart manufacturing, financial modeling, and strategic 

infrastructure planning (Gillespie, 2014; Rust & Cooil, 1994). The strategic application of these systems 

facilitates evidence-based decisions that can be scaled and replicated across business units and 

international markets (Alvarado-Valencia & Barrero, 2014). As a result, ISS are positioned not only as 

tools for internal optimization but also as levers for global strategic alignment and industry leadership 

(Mehedi et al., 2024). 

 
Figure 1: Conceptual Framework of Intelligent Support Systems in Strategic Decision-Making 

 

 
 

Human-AI interaction (HAII) represents the interface through which individuals engage with 

intelligent systems to co-create knowledge and decisions (Baker et al., 2018). In the domain of 

strategic decision-making, this interaction is shaped by several factors, including system 

transparency, interpretability, explainability, and the alignment of AI recommendations with human 
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values and organizational goals (Flemisch et al., 2011; Holstein et al., 2023). Research shows that users 

are more likely to trust and accept AI-generated insights when systems provide rationale and 

contextual cues for recommendations (Lai et al., 2023). In enterprise environments, decision-making 

often occurs under conditions of ambiguity and high stakes, making HAII a critical enabler of insight 

validation, scenario exploration, and risk mitigation (Molina et al., 2024). Various models such as 

cooperative augmentation, shared control, and decision fusion are emerging to describe how 

humans and AI collaborate to arrive at strategic conclusions (Holzinger et al., 2021). This interaction 

is not merely technical but socio-cognitive, relying on factors such as user expertise, role hierarchy, 

and cultural norms in shaping the decision dynamics (Chandra et al., 2022). Over the past two 

decades, ISS have evolved from rule-based expert systems to sophisticated architectures 

incorporating deep learning, natural language processing (NLP), and reinforcement learning (Di 

Martino & Delmastro, 2022). Early systems primarily relied on human-defined rules and static 

knowledge bases to guide decision paths (Kocoń et al., 2023). Contemporary models, by contrast, 

utilize probabilistic algorithms that learn from historical data and adapt dynamically to changing 

inputs (Grundner & Neuhofer, 2021). These systems are often embedded within enterprise platforms 

such as Microsoft Dynamics, SAP, Salesforce Einstein, and IBM Watson, allowing seamless access to 

structured and unstructured data across business functions (Grundner & Neuhofer, 2021; Kerr & 

Bornfreund, 2005). Architectural classifications include standalone intelligent agents, decision 

dashboards, hybrid expert-recommender systems, and adaptive decision support platforms (Lake et 

al., 2016). Each configuration is designed with varying degrees of automation, user control, and 

feedback mechanisms to accommodate specific decision environments (Chen et al., 2012; Lake et 

al., 2016). 

Enterprise decision-making is 

often characterized by 

complexity, ambiguity, and 

cross-functional implications 

that demand integrative 

cognitive approaches 

(Plataniotis et al., 2015). ISS 

offer structured 

methodologies to navigate 

these complexities by 

enabling scenario modeling, 

strategic foresight, and data 

triangulation (Kumar et al., 

2021). In large-scale 

operations, these systems 

assist leadership teams in aligning decisions with performance indicators, stakeholder expectations, 

and regulatory constraints (Antony et al., 2021). The strategic role of ISS is amplified in dynamic 

industries such as healthcare, finance, manufacturing, and logistics, where decisions must account 

for external shocks, technological disruption, and real-time intelligence (Liang & Li, 2008). Enterprise 

case studies reveal that the implementation of ISS can significantly enhance the speed, accuracy, 

and traceability of strategic initiatives, providing quantifiable value across organizational tiers 

(Bousdekis & Mentzas, 2021). Moreover, cross-functional use of these systems bridges information silos 

and fosters collaborative decision environments (Rehman & Saba, 2012). Despite technological 

advancements, the design and deployment of ISS for strategic purposes face several operational 

and theoretical challenges. One major concern is the “black-box” nature of advanced AI systems, 

which limits user understanding and interpretability (Rehman & Saba, 2012; Tingling & Parent, 2004). 

This creates friction in decision settings that require transparency, auditability, and regulatory 

compliance (Lin et al., 2022). Another challenge is the alignment of system recommendations with 

organizational strategy and culture, as misaligned outputs can result in resistance or misapplication 

(Pajak et al., 2021). Integration with legacy enterprise systems poses additional technical barriers, 

particularly in environments lacking standardized data infrastructure or interoperability frameworks 

(Bolat et al., 2014). Moreover, ethical concerns surrounding bias, fairness, and accountability in 

algorithmic decision-making continue to prompt calls for inclusive design and governance protocols 

(Kmiecik, 2022). These challenges underscore the need for multidisciplinary approaches that blend 

Figure 2: ISS Framework for Strategic Decision-Making 
 

 

 

 

 

 

 

 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/a5yh1293


American Journal of Advanced Technology and Engineering Solutions 

Volume 01 Issue 01 (2025) 

Page No: 506-543 

eISSN: 3067-0470   

DOI: 10.63125/a5yh1293  

509 

 

data science, organizational behavior, and strategic management perspectives (Rehman & Saba, 

2012). 

A review of existing literature reveals fragmented efforts in understanding the comprehensive role of 

ISS in strategic enterprise decision-making. Most studies have focused on operational or tactical use 

cases, such as sales optimization or workflow automation, with limited emphasis on high-level 

strategic applications (Tingling & Parent, 2004). Furthermore, there is a scarcity of integrative 

frameworks that map the interplay between AI-driven tools and human decision-makers in enterprise 

settings (Lin et al., 2022). Methodological inconsistencies also persist, including variation in evaluation 

metrics, sample contexts, and assessment of long-term organizational impact (Kmiecik, 2022). A 

systematic review is warranted to synthesize existing findings, identify prevailing trends, and assess 

the maturity of ISS integration within strategic decision contexts. By consolidating peer-reviewed 

evidence and analyzing theoretical and practical contributions, this study seeks to provide a 

structured understanding of how Human-AI interaction supports enterprise-wide strategic initiatives 

through intelligent systems.The primary objective of this systematic review is to critically examine how 

intelligent support systems (ISS), when integrated with Human-AI Interaction (HAII) mechanisms, 

contribute to enhancing strategic decision-making processes within enterprise platforms. Strategic 

decision-making is inherently complex and involves multiple stakeholders, high levels of uncertainty, 

and long-term organizational consequences. As enterprises across industries strive to maintain 

competitiveness in increasingly volatile and data-saturated environments, the need for advanced 

decision-support frameworks that go beyond traditional analytics has intensified. ISS, augmented by 

AI technologies such as machine learning, natural language processing, and expert systems, have 

emerged as powerful tools that offer predictive insights, simulate decision outcomes, and enable 

scenario-based planning. However, the value of these systems is not solely determined by their 

computational power but also by their capacity to interact meaningfully with human decision-

makers. Therefore, this review aims to explore the architecture, functionalities, and performance of 

ISS that incorporate HAII features such as interpretability, explainability, and collaborative decision 

protocols. It also seeks to assess the contexts in which these systems are deployed—ranging from 

finance and logistics to healthcare and manufacturing—to understand how organizational factors 

influence the efficacy of HAII-enabled decision-making. By applying a rigorous methodology 

grounded in the PRISMA 2020 framework, this study identifies, categorizes, and synthesizes empirical 

evidence from peer-reviewed literature published over the last decade. The objective is not only to 

map the current state of knowledge but also to evaluate the alignment between theoretical 

propositions and practical implementations of ISS in strategic contexts. Furthermore, the review 

intends to highlight methodological inconsistencies, ethical considerations, and design challenges 

associated with HAII systems to provide a foundation for future research. Ultimately, this systematic 

review offers a comprehensive perspective on the evolving role of intelligent systems as strategic 

enablers in enterprise decision environments. 

LITERATURE REVIEW 

The literature surrounding intelligent support systems (ISS) and their integration into strategic decision-

making has evolved in tandem with advancements in artificial intelligence (AI) and enterprise 

digitization. Historically, decision support systems were built on deterministic models and rule-based 

logic, often limited to structured problem environments. However, the explosion of big data, 

improvements in machine learning algorithms, and increased organizational reliance on real-time 

decision-making have propelled the emergence of ISS embedded within enterprise resource 

planning (ERP) systems and intelligent dashboards. These ISS not only process structured and 

unstructured data but also incorporate human-AI interaction (HAII) features, enabling co-decision 

environments where interpretability, trust, and collaboration are essential. The shift toward intelligent, 

adaptive systems has led to growing interest in how these tools shape, augment, and co-create 

strategic decisions alongside human users. This literature review synthesizes findings from existing 

academic studies, systematically identifying major theoretical frameworks, practical applications, 

interaction paradigms, technological architectures, and evaluation approaches related to ISS and 

HAII. By dissecting these areas, the review addresses the fragmented and interdisciplinary nature of 

the field, offering a consolidated knowledge base and highlighting key gaps. The sub-sections below 

provide a structured analysis of the development, deployment, and implications of ISS in enterprise 

platforms, focusing specifically on strategic decision-making use cases. 
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Intelligent Support Systems for Decision-Making 

The evolution of intelligent support systems (ISS) is rooted in the early development of decision support 

systems (DSS), which emerged in the 1960s and 1970s as computerized tools to aid structured 

decision-making in management contexts. These early DSS were primarily driven by mathematical 

models and predefined rules, designed to support repetitive and programmable decision tasks 

(Bracha & Brown, 2012). The theoretical foundation of these systems lies in Herbert Simon’s concept 

of bounded rationality, which posits that human decision-making is limited by cognitive constraints 

and incomplete information (Al-Surmi et al., 2021). This perspective inspired the development of 

model-driven DSS, which aimed to augment human cognition by offering structured decision 

pathways within constrained problem spaces (Confalonieri et al., 2015; Kaggwa et al., 2024). While 

effective for operational decisions, these systems often lacked adaptability and failed to respond 

dynamically to unstructured or evolving scenarios (Simaei & Rahimifard, 2024). As organizations 

encountered increasingly complex environments marked by uncertainty, globalization, and data 

proliferation, the limitations of traditional DSS became more apparent (Soori et al., 2024). This led to 

a shift toward more intelligent, user-centric systems capable of integrating real-time data, learning 

from outcomes, and adapting decision strategies—paving the way for the development of ISS. 

Foundational DSS, though limited in scope, provided the blueprint for conceptualizing the interface 

between decision models, data management, and user interaction—elements that remain integral 

to modern ISS (Bader & Kaiser, 2019). 

The development of ISS represents a 

significant advancement over traditional 

DSS, primarily due to the incorporation of 

artificial intelligence (AI) capabilities such 

as expert systems, machine learning, and 

natural language processing. Expert 

systems were among the earliest forms of 

AI used in decision-making, simulating 

human reasoning through rule-based 

inference engines and knowledge bases 

(Barysė & Sarel, 2023). These systems 

enabled domain-specific knowledge 

encoding, particularly in fields like 

medical diagnostics and financial 

analysis, where structured knowledge 

was prevalent (Gunessee & 

Subramanian, 2020). However, expert 

systems were limited by their rigidity and 

the high cost of knowledge acquisition 

(Saba et al., 2018). The advent of 

machine learning brought a new 

paradigm, allowing ISS to learn patterns 

from historical data and update models 

continuously without human intervention 

(Sarker, 2022). This adaptability has 

proven critical for strategic decisions 

involving dynamic market conditions and incomplete information (Gunessee & Subramanian, 2020). 

AI integration has also enhanced the natural interaction between users and systems through 

advances in natural language interfaces, voice recognition, and context-aware computing 

((Bracha & Brown, 2012). These intelligent functionalities enable ISS to offer recommendations, 

predict outcomes, and explain reasoning, thereby augmenting human decision-making across 

strategic levels (Marocco et al., 2024). The transition from static decision models to adaptive, 

learning-based systems has thus redefined the role of information systems in enterprise decision 

contexts (Meub & Proeger, 2017). 

Contemporary ISS distinguish themselves from earlier decision systems through their ability to operate 

in complex, data-rich, and uncertain environments while incorporating human cognition into 

decision processes. One defining characteristic is the use of hybrid architectures that blend data-

Figure 3: Intelligent Support System Architecture for Strategic 

Decision-Making 
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driven analytics with heuristic models, enabling contextualized decision support (Chiang et al., 2023). 

These systems often integrate with enterprise resource planning (ERP), business intelligence (BI), and 

customer relationship management (CRM) platforms, facilitating end-to-end data visibility across 

strategic domains (Chiang et al., 2023; Marocco et al., 2024a). Unlike traditional DSS, modern ISS 

include components such as learning algorithms, decision trees, clustering mechanisms, and 

reinforcement learning to optimize strategic alternatives in real time (Bader & Kaiser, 2019). They also 

support decision transparency through explainable AI techniques, allowing users to trace the logic 

behind recommendations and outcomes (Al-Surmi et al., 2021; Confalonieri et al., 2015). This 

transparency is critical in strategic decisions that involve risk, compliance, and cross-functional 

coordination. Additionally, ISS are capable of simulating scenarios using predictive models, thus 

aiding executives in evaluating potential outcomes and trade-offs before committing to a strategy 

(Barysė & Sarel, 2023). Studies demonstrate that organizations utilizing ISS in strategic planning report 

higher levels of decision confidence, accuracy, and organizational alignment (Gunessee & 

Subramanian, 2020). Thus, the adaptive, integrative, and explainable nature of ISS is central to their 

effectiveness in modern enterprise settings. 

The design of intelligent support systems is grounded in a variety of decision-making theories that 

provide conceptual guidance on how individuals and organizations process information and arrive 

at strategic choices. Bounded rationality theory remains a cornerstone in explaining the role of ISS as 

tools that compensate for human cognitive limitations (Soori et al., 2024). Complementary to this is 

the dual-process theory, which distinguishes between intuitive (System 1) and deliberative (System 

2) thinking, both of which ISS are designed to support through automated and analytical functions 

(Logg et al., 2019). Prospect theory has also influenced ISS design, especially in systems intended to 

assist in risk-sensitive environments where decision-makers may deviate from expected utility models 

(Bader & Kaiser, 2019; Barysė & Sarel, 2023). Multi-criteria decision analysis (MCDA) frameworks further 

inform the evaluation functions of ISS, allowing decision-makers to weigh competing objectives and 

constraints (Saba et al., 2018). Organizational decision-making theories, including the garbage can 

model and the political model, offer insight into the social dynamics that ISS must navigate when 

multiple stakeholders are involved (Saba et al., 2018; Simaei & Rahimifard, 2024). These theoretical 

underpinnings ensure that ISS are not only technologically robust but also aligned with human 

cognitive behavior and organizational realities. By embedding these models into ISS algorithms and 

interfaces, developers can tailor system outputs to match users’ decision styles, risk appetites, and 

strategic priorities (Kaggwa et al., 2024). 

Evaluating the effectiveness of ISS in strategic decision-making requires a multidimensional approach 

encompassing technical, cognitive, and organizational metrics. Studies comparing traditional DSS 

with ISS consistently report superior performance of the latter in terms of speed, relevance, and 

adaptability of recommendations (Sarker, 2022). Empirical research shows that ISS implementations 

in manufacturing, logistics, and healthcare have significantly improved scenario analysis, 

contingency planning, and cross-departmental coordination (Barysė & Sarel, 2023). Metrics such as 

decision quality, response time, interpretability, user satisfaction, and impact on strategic key 

performance indicators (KPIs) are commonly used to assess ISS efficacy (Gunessee & Subramanian, 

2020). Case studies on ERP-integrated ISS platforms demonstrate that the ability to synthesize large 

volumes of structured and unstructured data contributes to superior forecasting and risk assessment 

capabilities (Marocco et al., 2024a). Another key differentiator is user engagement—studies highlight 

that ISS with intuitive interfaces and explainable outputs are more likely to be adopted and trusted 

by decision-makers (Barysė & Sarel, 2023). Comparative evaluations also reveal that organizations 

with mature data governance and cross-functional integration are more successful in realizing the 

full potential of ISS (Carter et al., 2022).  

Human-AI Interaction Models in Strategic Contexts 

The conceptual foundation of Human-AI Interaction (HAII) in enterprise contexts draws from 

interdisciplinary research in cognitive science, information systems, and human-computer 

interaction. One of the foundational theories underpinning HAII is the joint cognitive systems model, 

which frames humans and machines as collaborative agents with complementary capabilities 

(Bansal et al., 2019). This model is supported by socio-technical systems theory, which emphasizes 

the interdependence between technology design and organizational behavior (Islam & Helal, 2018; 

Sarker, 2022). In strategic decision-making, where ambiguity and complexity dominate, the interplay 

between human intuition and machine analytics becomes particularly critical (Ahmed et al., 2022; 
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Bader & Kaiser, 2019). Ostheimer et al. (2021) assert that HAII extends beyond tool usage, 

representing a cognitive partnership where machines provide data-driven recommendations and 

humans exercise judgment and contextual framing. Moreover, dual-process theory—distinguishing 

intuitive from analytical reasoning—has informed the layered interaction designs of AI systems, 

supporting both fast and deliberative thinking (Aklima et al., 2022; Marocco et al., 2024). The 

integration of human factors into AI design, including mental models, workload distribution, and 

decision accountability, is essential for fostering trust and reliability in high-stakes environments 

(Chiang et al., 2023; Helal, 2022). Thus, the theoretical landscape of HAII reveals an intentional design 

orientation toward co-agency, shared cognition, and socio-technical alignment in enterprise 

decision processes. Moreover, interaction design in intelligent support systems must account for 

cognitive load and user mental models to ensure usability, efficiency, and decision accuracy. 

Cognitive load theory posits that working memory has limited capacity, which can be overwhelmed 

by poorly designed interfaces or complex decision protocols (Haefner et al., 2021; Mahfuj et al., 2022; 

Raisch & Krakowski, 2021). In enterprise decision environments, especially those involving high-stakes 

and multi-criteria choices, interaction design must minimize extraneous cognitive processing while 

enhancing germane cognitive load (Majharul et al., 2022; Neethirajan, 2023). Krakowski et al. (2022) 

highlight the importance of user-centered design in ISS, where graphical user interfaces (GUIs), 

feedback loops, and interaction modalities (e.g., voice, text, visualization) are tailored to match 

cognitive preferences. Research indicates that adaptive interfaces, which respond to user behavior 

and decision context, reduce information overload and improve decision outcomes (Jarrahi, 2018; 

Hossen & Atiqur, 2022). Moreover, visual analytics tools integrated into ISS help users comprehend 

large data sets, identify anomalies, and explore “what-if” scenarios with minimal cognitive strain 

(Mohiul et al., 2022; Yu & Li, 2022). The complexity of strategic decisions necessitates intuitive 

dashboards that translate model outputs into actionable insights using natural language or symbolic 

visualizations (Duan et al., 2019; Ripan Kumar et al., 2022; Yu & Li, 2022). The alignment of HAII design 

with human cognitive architecture is thus a determinant of system adoption, trust, and long-term 

decision effectiveness in enterprise environments. 

Figure 4: Human-AI Interaction Models in Strategic Decision-Making 

 

 
 

Trust calibration refers to the alignment of user trust with the actual capabilities and limitations of an 

AI system—a core challenge in HAII design for strategic decision-making. Over-trust may lead to blind 

reliance on flawed recommendations, while under-trust results in underutilization of valid insights 

(Blease et al., 2019; Hao & Demir, 2023; Sohel et al., 2022). Empirical studies show that transparency 

and explainability are key mechanisms for calibrating trust in AI-driven decision systems (Jarrahi, 2018; 

Tonoy, 2022). For instance, Yu and Li (2022) found that when AI outputs are accompanied by 

justifications or probabilistic confidence levels, user trust improves significantly. Duan et al., (2019) 

emphasizes that users must understand when and how to accept or override machine 

recommendations. In enterprise settings, where strategic decisions may involve regulatory, ethical, 
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or competitive implications, trust calibration becomes even more critical Duan et al. (2019) and Hao 

and Demir (2023) demonstrate that trust in ISS is mediated by system competence, contextual 

consistency, and perceived value contribution. Additionally, longitudinal exposure to AI systems can 

improve trust alignment through experiential learning and mental model refinement (Diebolt et al., 

2018). Designers of HAII-enabled ISS must therefore prioritize dynamic trust-building mechanisms that 

evolve with user experience, task complexity, and organizational culture (Jarrahi, 2018; Younus, 

2022). 

Explainable AI (XAI) plays a pivotal role in facilitating human understanding of machine logic, 

particularly in strategic decision-making contexts where interpretability is paramount. Traditional AI 

models such as deep neural networks often function as “black boxes,” producing outputs without 

exposing the reasoning behind them (Alam et al., 2023; Antoniadi et al., 2021). XAI techniques aim 

to make these systems more transparent by offering insight into input-output relationships, feature 

importance, and decision paths. In strategic enterprise environments, where decisions affect long-

term outcomes and require multi-stakeholder justification, XAI is essential for enabling accountability, 

auditing, and ethical review (Arafat Bin et al., 2023) . Arrieta et al. (2020) reveals that the presence 

of explanation interfaces increases decision-maker confidence and facilitates organizational 

learning. Furthermore, explainability enhances system usability, particularly when complex 

algorithmic outputs are translated into plain language summaries, visual narratives, or contrastive 

explanations(Chowdhury et al., 2023). XAI is also linked to regulatory compliance, as governance 

frameworks such as the European Union’s GDPR mandate the right to explanation in automated 

decision-making (Adadi & Berrada, 2018; Jahan, 2023). Therefore, the integration of XAI into HAII-

enabled ISS not only supports cognitive alignment but also reinforces legal, ethical, and 

organizational requirements in enterprise strategy settings. 

Decision co-creation between humans and AI systems reflects a paradigm shift from automation to 

augmentation, where both agents contribute uniquely to strategic problem-solving. Hybrid 

intelligence, as defined by Buçinca et al., (2020) and Mahdy et al. (2023), entails the dynamic 

collaboration between human intuition and AI computation to achieve superior outcomes than 

either could independently. In ISS, this manifests as joint exploration of alternatives, iterative 

refinement of models, and reciprocal learning between the system and its users (Hassija et al., 2023; 

Maniruzzaman et al., 2023; Retzlaff et al., 2024). Research has demonstrated that hybrid intelligence 

models outperform traditional automated or manual systems in tasks requiring contextual judgment, 

ethical consideration, and multi-domain integration (Arrieta et al., 2020; Hossen et al., 2023). Systems 

designed for co-creation typically include interactive features such as tunable parameters, 

simulation tools, and scenario builders that allow users to guide the AI’s analytical process (Ahmed 

et al., 2022; Di Martino & Delmastro, 2022; Roksana, 2023). Moreover, organizational case studies 

show that co-creative ISS foster greater user engagement, strategic alignment, and innovation 

adoption (Hassija et al., 2023; Shahan et al., 2023). Nourani et al. (2021) argue that hybrid models are 

particularly effective in volatile, uncertain, complex, and ambiguous (VUCA) environments where 

predefined rules fail. This co-agency model redefines the boundaries of responsibility, enabling a 

shared accountability structure in enterprise decisions (Hassija et al., 2023; Tonoy & Khan, 2023). 

Therefore, co-creation is not only a technical interface feature but a strategic capability embedded 

in the design of HAII-enabled decision systems. The success of Human-AI interaction in enterprise 

decision systems is not solely dependent on technology but also shaped by organizational structure, 

culture, and behavioral readiness. Studies emphasize that leadership support, cross-functional 

collaboration, and digital maturity are critical enablers of HAII integration (Al-Arafat, Kabi, et al., 2024; 

Nourani et al., 2021). Resistance to AI adoption often stems from fear of job displacement, lack of 

understanding, or perceived threats to autonomy. Trust-building strategies such as training programs, 

participatory design, and transparency initiatives have been shown to mitigate these concerns. 

Behavioral theories like the Technology Acceptance Model (TAM) and Unified Theory of 

Acceptance and Use of Technology (UTAUT) have been applied to explain user attitudes toward 

HAII (Davis, 1989; Venkatesh et al., 2003). Empirical findings show that perceived usefulness, 

perceived ease of use, and social influence significantly predict user intention to engage with 

intelligent systems. Furthermore, organizational learning mechanisms such as feedback loops, 

success stories, and internal champions promote continuous improvement in HAII practices(Al-

Arafat, Kabir, et al., 2024). Institutional contexts also matter; regulated industries such as healthcare 
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and finance demand stricter explainability and audit capabilities, while agile sectors like tech 

startups favor experimentation and rapid iteration (Hassoun et al., 2022). 

Functional Architectures of Intelligent Support Systems 

The foundational models of intelligent support systems (ISS) emerged through rule-based systems, 

which operate on predefined if-then logic to simulate decision-making in structured environments. 

These systems were pivotal in the early stages of digital decision support due to their interpretability 

and ease of deployment across enterprise platforms such as Enterprise Resource Planning (ERP) and 

Customer Relationship Management (CRM) tools (Alam et al., 2024; Pinto et al., 2015). Rule-based 

systems are deterministic and excel in domains with well-defined parameters, offering consistent 

outputs and traceability in decision paths (Alam et al., 2024; Kaklauskas, 2014). However, the rigidity 

of rule-based systems poses limitations in dynamic or data-intensive contexts where nuanced 

reasoning or learning from unstructured data is required (Ammar et al., 2024; Marín et al., 2013). 

Expert systems, which evolved from rule-based architectures, attempt to mimic human expertise by 

embedding knowledge into inference engines. These systems have been widely used in supply chain 

and logistics decision-making, especially in materials management and scheduling tasks, by 

integrating domain expertise into operational workflows (Bhowmick & Shipu, 2024; Coito et al., 2020). 

Although expert systems expanded the utility of ISS, they are challenged by knowledge acquisition 

bottlenecks and inflexibility in adapting to changing conditions (Bhuiyan et al., 2024; Marín et al., 

2013). Comparative analyses indicate that expert systems are most effective when paired with 

structured data environments and stable operational rules, which limits their scalability in uncertain 

or rapidly evolving business ecosystems (Dasgupta & Islam, 2024; Yang et al., 2020). Their integration 

with ERP and CRM systems has seen success in banking, retail, and manufacturing contexts where 

transactional consistency is prioritized over adaptability (Andargoli et al., 2024; Dasgupta et al., 

2024). 

Figure 5: Comprehensive Framework of Functional Architectures in Intelligent Support Systems 

 
Hybrid intelligent support systems (HISS) represent a more adaptive architectural framework by 

combining multiple AI techniques, such as expert systems with fuzzy logic, case-based reasoning, or 

neural networks. These systems aim to overcome the limitations of single-approach ISS models by 

allowing for both rule-based inference and data-driven learning (Coito et al., 2020; Dey et al., 2024). 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/a5yh1293


American Journal of Advanced Technology and Engineering Solutions 

Volume 01 Issue 01 (2025) 

Page No: 506-543 

eISSN: 3067-0470   

DOI: 10.63125/a5yh1293  

515 

 

For instance, hybrid architectures have shown notable effectiveness in financial decision-making, 

where deterministic rules are insufficient, and adaptive learning is essential for forecasting market 

behavior and managing risks (Hasan et al., 2024; Marín et al., 2013). In the context of enterprise 

integration, HISS platforms have been increasingly deployed alongside business intelligence (BI) tools 

to support real-time analytics, enabling decision-makers to synthesize structured data from ERP and 

SCM systems with unstructured insights from external sources (Helal, 2024; Yang et al., 2020). 

Furthermore, these systems enable improved pattern recognition and decision quality by leveraging 

both symbolic and sub-symbolic reasoning mechanisms (Andargoli et al., 2024; Hossain et al., 2024). 

In supply chain operations, hybrid models help in demand forecasting, inventory management, and 

logistics routing by integrating data-driven prediction with domain expertise. Empirical studies 

indicate that hybrid systems consistently outperform rule-based and expert systems in terms of 

flexibility, accuracy, and responsiveness, particularly when faced with data volatility and operational 

ambiguity(Hossain et al., 2024; Islam, 2024). Nevertheless, the complexity of designing, implementing, 

and maintaining hybrid models presents significant technical and managerial challenges that can 

inhibit widespread adoption without significant organizational readiness(Islam et al., 2024; Islam, 

2024). 

Neural network-driven ISS platforms have introduced new paradigms for data-driven decision-

making in enterprise systems by leveraging deep learning and adaptive pattern recognition (Jahan, 

2024; Jim et al., 2024). Unlike rule-based and expert systems that rely on predefined logic, neural 

networks learn from historical and real-time data, enabling them to uncover hidden patterns, 

nonlinear relationships, and complex trends in strategic contexts (Khan & Razee, 2024; Yang et al., 

2020). These models have been widely applied in CRM systems to predict customer churn, 

personalize marketing efforts, and enhance user engagement through behavioral 

analytics(Mahabub, Das, et al., 2024; Mahabub, Jahan, Hasan, et al., 2024). Similarly, in SCM and 

ERP domains, neural networks support predictive maintenance, demand forecasting, and anomaly 

detection, improving operational efficiency and strategic agility (Mahabub, Jahan, Islam, et al., 

2024; Islam et al., 2024). One critical advantage of neural architectures is their capacity to operate 

in real-time with large-scale, high-dimensional data environments, making them well-suited for 

decision support in volatile markets or crisis management scenarios (Hossain et al., 2024; Younus et 

al., 2024). Neural models also enhance BI tools by enabling sentiment analysis, trend identification, 

and fraud detection in financial systems. However, their lack of transparency and interpretability—

often described as the “black box” problem—poses a barrier to trust and regulatory compliance in 

sensitive industries like healthcare and finance (Andargoli et al., 2024; Younus et al., 2024). As such, 

recent research advocates for combining neural networks with explainable AI (XAI) modules to 

ensure transparency, ethical accountability, and alignment with strategic enterprise goals (Ahmed 

et al., 2022; Nahid et al., 2024). Despite challenges, neural architectures remain at the forefront of ISS 

innovation due to their unparalleled adaptability and performance across diverse enterprise 

environments (Rahaman et al., 2024; Roksana et al., 2024). 

The functional integration of ISS architectures with enterprise-wide systems such as ERP, CRM, SCM, 

and BI platforms has become a core focus of contemporary digital transformation strategies. 

Integration facilitates data centralization, real-time analytics, and synchronized decision-making 

across departments, reducing operational silos and enhancing strategic alignment (Awan et al., 

2024; Roy et al., 2024). For instance, ISS modules embedded within ERP systems enable intelligent 

resource planning by analyzing production data, inventory levels, and supplier metrics to optimize 

procurement and scheduling decisions (Ahmed et al., 2022; Sabid & Kamrul, 2024). Similarly, in CRM, 

ISS supports intelligent segmentation and customer lifecycle management by combining behavioral 

data with predictive analytics (Awan et al., 2024; Sharif et al., 2024). In supply chain environments, 

intelligent decision support embedded in SCM systems improves demand planning, transportation 

logistics, and supplier risk assessment by providing adaptive recommendations based on market 

dynamics (Marocco et al., 2024a; Shofiullah et al., 2024). Business intelligence integration further 

extends the utility of ISS by visualizing data patterns, enabling executives to make evidence-based 

strategic decisions (Shohel et al., 2024). Yet, the success of integration depends on data quality, 

interoperability standards, and organizational capacity to manage system complexity (Shipu et al., 

2024). Studies consistently highlight the importance of aligning ISS implementation with enterprise 

objectives, IT infrastructure, and user training programs to ensure meaningful adoption and return on 

investment (Razee et al., 2025; Andargoli et al., 2024). The confluence of ISS and enterprise systems 
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thus represents a powerful paradigm for enabling proactive, scalable, and intelligent decision-

making across functional and strategic layers of modern organizations.. 

Sector-Wise Implementation of ISS in Enterprise Decision-Making 

The financial sector has been at the forefront of adopting intelligent support systems (ISS) due to the 

domain's reliance on real-time analytics, predictive modeling, and decision automation. ISS 

applications in finance include credit risk assessment, algorithmic trading, fraud detection, portfolio 

optimization, and regulatory compliance (Berman et al., 2024; Faria & Md Rashedul, 2025). Machine 

learning-based ISS are particularly effective in improving loan underwriting and credit scoring by 

integrating non-traditional datasets, such as social media and transaction histories (Helal et al., 2025; 

Mouzakitis et al., 2024). These systems enhance decision accuracy while reducing human bias and 

processing time. Studies also show that neural network-driven ISS outperform conventional statistical 

models in forecasting stock prices and managing market volatility (Intezari & Gressel, 2017; Islam et 

al., 2025). Additionally, financial institutions use ISS for customer relationship management by 

analyzing behavioral data to personalize financial advice and cross-sell products (Hao & Demir, 

2024; Islam et al., 2025). However, the implementation of ISS in finance raises ethical and regulatory 

concerns, particularly regarding transparency, explainability, and compliance with standards such 

as Basel III and GDPR (Ananias et al., 2021; Khan, 2025). Despite these challenges, ISS has contributed 

significantly to operational efficiency and decision speed, especially among fintech companies and 

data-driven banks (Jakaria et al., 2025; Mouzakitis et al., 2024). Sector-specific case studies 

consistently report improved return on investment (ROI) and reduced default rates post-ISS 

implementation, indicating strong potential for continued integration into financial decision 

infrastructures (Khinvasara et al., 2024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Healthcare represents a complex and critical environment where ISS has emerged as a 

transformative tool for enhancing clinical decision-making, diagnostics, and administrative 

efficiency. Intelligent systems assist healthcare providers in tasks such as disease prediction, 

treatment recommendation, radiology interpretation, and hospital resource allocation (Di Martino 

& Delmastro, 2022; Khatun et al., 2025). Clinical Decision Support Systems (CDSS), an important 

subclass of ISS, use patient data and clinical guidelines to alert physicians about potential drug 

interactions, suggest diagnostic tests, and support evidence-based care (Munira, 2025; Rajpurkar et 

al., 2022). Machine learning and natural language processing are increasingly integrated into these 

Figure 6: Integrated Functional Architectures of Intelligent Support 

Systems in Enterprise Contexts 
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systems, especially for analyzing unstructured clinical notes and electronic health records (Cabitza 

et al., 2021; Sarker, 2025). In oncology, AI-powered ISS platforms have been deployed to recommend 

personalized cancer treatment plans by comparing patient profiles with historical data (Arsenio et 

al., 2013; Shimul et al., 2025). Case studies from institutions like Mayo Clinic and Mount Sinai reveal 

that ISS adoption leads to improved diagnostic accuracy and reduced adverse event rates 

(Rajpurkar et al., 2022; Sohel, 2025). Nonetheless, challenges include integration with legacy systems, 

resistance from healthcare professionals, and concerns over data privacy and system accountability 

(Amann et al., 2020; Younus, 2025). The variability in deployment success across hospitals often 

depends on IT maturity, funding, and clinician training, emphasizing the need for sector-specific 

adaptation strategies (Formosa et al., 2022). While ISS can augment clinical judgment, they are most 

effective when embedded within human-in-the-loop models that ensure interpretability and 

accountability (Askarisichani et al., 2022). 

The logistics sector leverages ISS to address complexities related to demand variability, fleet 

optimization, warehouse management, and last-mile delivery challenges. Intelligent support systems 

in logistics utilize predictive analytics, IoT integration, and route optimization algorithms to enhance 

efficiency and service levels (Naiseh et al., 2021). Real-time data from RFID and GPS sensors are 

integrated into ISS platforms for tracking shipments and predicting delivery timelines, facilitating 

adaptive routing and reducing fuel consumption (Iftikhar et al., 2020). AI-based decision support has 

also been deployed to forecast demand surges, optimize inventory, and mitigate disruptions caused 

by weather or geopolitical events (Kocaballi et al., 2020). For instance, companies like Amazon and 

DHL employ ISS for warehouse automation and robotic picking systems, reducing labor dependency 

and cycle times (Naiseh et al., 2021). Additionally, simulation-based ISS are used for strategic supply 

chain design, including network restructuring and supplier selection under risk scenarios (Trocin et al., 

2021). Case studies from automotive and retail sectors report significant reductions in delivery time 

and logistics costs post-implementation of ISS solutions (Leone et al., 2021). However, interoperability 

issues with legacy logistics platforms and inconsistent data quality remain persistent barriers (Braun 

et al., 2020). To address these, many firms are adopting cloud-based ISS frameworks that support 

real-time integration across stakeholders and enhance supply chain visibility (Ueda et al., 2024). The 

sector’s dynamic environment makes it a fertile ground for continuous ISS innovation and adaptive 

learning systems. 

Manufacturing and energy sectors utilize ISS to optimize operations, monitor assets, and ensure 

regulatory compliance. In manufacturing, intelligent systems are commonly integrated into smart 

factories through cyber-physical systems (CPS) and industrial IoT (IIoT), enabling predictive 

maintenance, quality assurance, and production scheduling (Catellani et al., 2022). Case studies in 

discrete and process manufacturing report that ISS-based predictive maintenance reduces 

unplanned downtime by up to 40% and extends equipment lifespan (Braun et al., 2020). Real-time 

machine monitoring and fault detection are supported by AI algorithms that analyze vibration, 

thermal, and operational data (Lai et al., 2023). In the energy domain, ISS are used for grid stability 

forecasting, energy load balancing, and integration of renewables into existing systems (Cheng et 

al., 2020). For example, intelligent systems have been deployed in wind and solar farms to optimize 

power generation based on weather predictions and grid demand (Hu et al., 2014). Utilities such as 

Siemens and Schneider Electric employ ISS for asset performance management and real-time fault 

isolation in power networks (Tsai et al., 2021). Despite notable benefits, challenges include high initial 

investment, cybersecurity threats, and lack of standardization across ISS platforms (Catellani et al., 

2021). Moreover, achieving full automation requires robust data infrastructures and a skilled 

workforce capable of interpreting ISS outputs (Leone et al., 2021). Nevertheless, both sectors 

continue to demonstrate substantial gains in efficiency, safety, and sustainability through ISS 

deployment tailored to their unique operational environments. 

Strategic Decision-Making Frameworks Supported by ISS 

The integration of artificial intelligence with traditional SWOT (Strengths, Weaknesses, Opportunities, 

Threats) analysis has led to the development of hybrid SWOT-AI frameworks, which enhance the 

objectivity and dynamic capabilities of strategic evaluation tools. Traditional SWOT models have 

long served as a cornerstone for strategic planning but often suffer from subjectivity and lack of 

adaptability (Zinn, 2008). The adoption of AI techniques, such as natural language processing (NLP) 

and sentiment analysis, into SWOT analysis allows for real-time data-driven insights from market 

trends, customer feedback, and competitor analysis (Catellani et al., 2021). These enhanced 
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frameworks automate the identification and weighting of internal and external factors, making the 

analysis more robust and responsive to environmental changes (Catellani et al., 2022). In supply 

chain and financial planning, AI-enhanced SWOT models have been used to evaluate mergers, 

market entries, and product development strategies by incorporating predictive and prescriptive 

analytics into the traditional qualitative approach (Glaser et al., 1968). For instance, companies like 

IBM and Accenture employ hybrid models to align digital transformation efforts with evolving 

organizational capabilities and external risks (Lai et al., 2023). Studies have also highlighted the role 

of these models in scenario simulation, where AI-based SWOT structures allow decision-makers to 

model alternative future states and assess trade-offs quantitatively (Andargoli et al., 2024). Despite 

their promise, challenges persist in aligning AI-generated insights with human strategic intuition and 

managerial judgment (Trocin et al., 2021). Nonetheless, the incorporation of AI into SWOT frameworks 

enhances strategic foresight, especially in volatile and data-rich business environments, supporting 

organizations in crafting agile and evidence-based long-term plans (Andargoli et al., 2024). 

 

Figure 7 : ISS-Supported Strategic Decision-Making Frameworks 

 
Decision tree learning, as a supervised machine learning technique, has gained prominence as a 

strategic decision support framework for option analysis, risk assessment, and resource allocation. By 

structuring decisions in a hierarchical manner, decision trees help organizations visualize 

consequences, probabilities, and outcomes, making them valuable for both tactical and strategic 

planning (Ueda et al., 2024). In strategic management contexts, decision trees enable firms to 

evaluate competing investment options, product launches, and policy interventions by modeling 

complex interdependencies and uncertainties (Zhang et al., 2022). The interpretability of decision 

trees, relative to black-box models such as neural networks, has made them particularly appealing 

in sectors where explainability is vital, such as healthcare, finance, and public policy (Ueda et al., 

2024). Enhanced variants like random forests and gradient-boosted trees provide greater predictive 

accuracy while maintaining a level of transparency conducive to managerial oversight (Awan et 

al., 2021). In strategic portfolio management, decision tree algorithms have been used to rank and 

prioritize projects based on multi-criteria analysis, including risk, ROI, and resource constraints (Khan 

et al., 2022). They are also instrumental in churn prediction and customer segmentation strategies, 

guiding resource allocation in marketing and CRM strategies (Alami et al., 2020). Additionally, their 

application in scenario planning has enabled organizations to generate and test a range of future 

states under varying environmental assumptions (Ueda et al., 2024). However, concerns over 

overfitting and sensitivity to noisy data necessitate hybridization with pruning and ensemble 

techniques (Liu et al., 2019).  

Reinforcement learning (RL) represents an advanced AI paradigm increasingly applied to long-term 

strategy formulation and adaptive decision-making. In contrast to supervised learning, RL relies on 

agents learning optimal policies through reward feedback, making it highly suitable for dynamic and 

uncertain environments (Catellani et al., 2021). In enterprise strategy contexts, RL has been deployed 

to optimize long-term investment portfolios, pricing strategies, and energy management systems by 

continuously adjusting decisions based on evolving conditions (Retzlaff et al., 2024). For instance, RL 
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has been integrated into ISS to simulate competitive market dynamics, helping firms develop 

strategic responses to competitor moves and regulatory shifts (Ozkan-Okay et al., 2024). This 

adaptability makes RL particularly useful in supply chain coordination, where fluctuating demand 

and supplier behavior require continuous re-optimization (Burggräf et al., 2020). Moreover, deep 

reinforcement learning (DRL) expands this capability by incorporating neural networks, enabling the 

modeling of highly complex strategic environments such as autonomous manufacturing and smart 

grid operations (Antoniadi et al., 2021). Several studies have also explored the application of RL in 

public policy decision-making and environmental planning, where it supports the formulation of 

sustainable and adaptive strategies under uncertainty (Burggräf et al., 2020). However, RL systems 

are computationally intensive and often require extensive training periods, raising concerns about 

real-time applicability and resource efficiency (Ozkan-Okay et al., 2024). Additionally, their “black 

box” nature raises interpretability concerns in high-stakes strategic domains (Pynadath et al., 2018). 

Nonetheless, RL’s ability to self-improve and navigate complex decision spaces marks it as a powerful 

strategic planning tool in intelligent support ecosystems. 

Scenario planning, traditionally a qualitative strategic tool, has evolved significantly with the 

incorporation of ISS frameworks capable of modeling multiple futures quantitatively. Intelligent 

support systems now leverage AI-driven simulation, Monte Carlo methods, and agent-based 

modeling to construct and evaluate strategic scenarios under various assumptions (Burggräf et al., 

2020). This computational augmentation enhances the precision and realism of strategic foresight, 

enabling firms to anticipate disruptions, policy changes, or technological shifts more effectively 

(Antoniadi et al., 2021; Catellani et al., 2022). For instance, in energy and sustainability domains, ISS-

based scenario tools model resource availability, climate policies, and technology adoption 

pathways to guide long-term investment and policy decisions (Burggräf et al., 2020). In corporate 

contexts, AI-enhanced scenario planning supports mergers, acquisitions, and diversification 

decisions by simulating economic, competitive, and operational impacts (Ozkan-Okay et al., 2024). 

Strategic forecasting also benefits from predictive analytics embedded in ISS, where time-series 

models and machine learning algorithms analyze trends to generate probabilistic forecasts 

(Feuerriegel & Prendinger, 2016). Organizations such as Shell and Siemens have adopted such ISS-

enhanced frameworks for geopolitical and technology trend monitoring (Ozkan-Okay et al., 2024). 

Furthermore, hybrid models combining reinforcement learning with scenario planning have shown 

promise in creating adaptive foresight mechanisms that learn from evolving data streams (Retzlaff 

et al., 2024). However, effective implementation depends on the alignment of scenario modeling 

with organizational culture, leadership vision, and data maturity (Ozkan-Okay et al., 2024). These 

tools underscore the importance of ISS not just in real-time operations, but in shaping the strategic 

trajectory of organizations through comprehensive foresight and informed adaptability.. 

Role of Data Governance and Ethical AI in ISS Design 

Data quality is foundational to the design and operational success of intelligent support systems (ISS), 

as these systems rely heavily on accurate, complete, and timely data to generate meaningful 

outputs. Poor data quality can severely compromise the efficacy of decision support, leading to 

flawed recommendations, decreased trust, and adverse strategic outcomes (Burggräf et al., 2020). 

The core dimensions of data quality—accuracy, completeness, consistency, timeliness, and 

validity—are essential for predictive modeling, machine learning training, and real-time analytics 

within ISS frameworks (Ozkan-Okay et al., 2024). High-quality data enables ISS to perform complex 

tasks such as scenario analysis, trend forecasting, and real-time risk detection more effectively 

(Catellani et al., 2021). In contrast, organizations that ignore data governance often suffer from data 

silos, redundancy, and outdated information, thereby undermining ISS reliability (Ozkan-Okay et al., 

2024). Empirical studies across industries such as finance, healthcare, and logistics highlight a strong 

correlation between data quality assurance and successful ISS deployment (Antoniadi et al., 2021). 

Techniques such as master data management, automated data cleansing, and metadata 

management are widely implemented to address quality concerns at the source (Zeng et al., 2020). 

Moreover, data profiling and lineage tracking are being integrated into ISS architectures to enhance 

traceability and accountability (Wirtz et al., 2018). Without sustained data quality controls 

embedded in governance policies, ISS applications risk becoming obsolete, especially in fast-

changing environments (George et al., 2014). Therefore, data quality is not a one-time technical 

exercise but an ongoing strategic commitment closely linked with organizational maturity and 

ethical ISS performance. 
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Figure 8: Ethical AI and Data Governance Pillars for Intelligent Support System (ISS) Design 

Privacy has emerged as a key ethical consideration in ISS design, especially as intelligent systems 

increasingly rely on personal, behavioral, and transactional data to support enterprise decisions. The 

integration of ISS into sectors such as healthcare, finance, and retail has raised significant concerns 

about data collection, consent, access, and storage (George et al., 2014; Zeng et al., 2020). The 

deployment of ISS without proper privacy safeguards can lead to data breaches, unauthorized 

profiling, and erosion of public trust (Mahmud et al., 2023). Privacy-by-design has become a critical 

principle, wherein data minimization, anonymization, and user-centric consent mechanisms are 

embedded into ISS architectures (Catellani et al., 2021). Regulations such as the European Union’s 

General Data Protection Regulation (GDPR) mandate strict compliance with data privacy principles, 

including lawful processing, purpose limitation, and data subject rights (Mahmud et al., 2022). 

Organizations leveraging ISS must implement transparent data handling processes and robust 

access controls to comply with GDPR and similar frameworks (Marocco et al., 2024b). Techniques 

like federated learning and differential privacy have gained popularity in ISS applications to enable 

learning from decentralized data without compromising privacy (Sjödin et al., 2021). Privacy-

enhancing technologies (PETs) are increasingly integrated into ISS to prevent inference attacks and 

unauthorized data recombination (Alahmadi & Jamjoom, 2022). Studies show that user trust in 

intelligent systems significantly increases when clear privacy guarantees and data usage 

transparency are in place (Wang et al., 2016). Thus, designing ISS in alignment with robust privacy 

standards not only ensures regulatory compliance but also fosters sustainable user engagement and 

system integrity. 

Fairness in algorithmic decision-making has become central to ISS development as machine learning 

models increasingly influence employment, credit scoring, insurance underwriting, and law 

enforcement (Lerner et al., 2014). Bias in ISS can stem from historical data inequalities, imbalanced 

training sets, and algorithmic design flaws, leading to discriminatory outcomes (Nof, 2017). These 

biases can perpetuate social injustices if left unchecked, particularly in high-stakes domains such as 

hiring or predictive policing (Parry et al., 2016). Recent studies advocate for fairness-aware machine 

learning models that embed fairness constraints directly into learning objectives or post-process 

predictions for equitable outcomes (Saba et al., 2018). Fairness metrics such as demographic parity, 

equalized odds, and predictive parity are frequently applied to evaluate ISS fairness across 

demographic groups (Parry et al., 2016). However, trade-offs often exist between different fairness 

criteria and model accuracy, posing challenges for system designers (Zeng et al., 2020). Bias auditing 

and explainability tools like LIME and SHAP have also gained prominence in identifying and 

mitigating bias in decision-making pipelines (Wang & Courtney, 1984). Integrating ethical 

checkpoints during the model lifecycle and involving diverse stakeholders in model evaluation are 

recognized best practices in ethical ISS governance (Wirtz et al., 2018). The implementation of 
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ISO/IEC TR 24028:2020 provides further technical guidance on bias prevention in AI systems (ISO, 

2020). Addressing fairness is not only a matter of ethics but also essential for regulatory compliance, 

especially in jurisdictions mandating algorithmic accountability (van Pinxteren et al., 2019). 

Consequently, fairness must be a built-in feature of ISS, not a retrospective fix. 

Effective data governance frameworks are critical to the ethical implementation of ISS, ensuring 

alignment with legal, technical, and organizational best practices. Frameworks such as the General 

Data Protection Regulation (GDPR), the National Institute of Standards and Technology’s AI Risk 

Management Framework (NIST AI RMF), and ISO/IEC 38505-1:2017 establish comprehensive 

guidelines for data ethics, accountability, and risk mitigation. GDPR, for instance, obligates data 

controllers to uphold transparency, lawfulness, and accountability in data processing, making it a 

cornerstone for AI and ISS compliance in Europe (de Witte, 2016). The NIST AI RMF promotes 

trustworthy AI by emphasizing core principles such as explainability, reliability, robustness, and data 

governance. In parallel, the ISO/IEC 27001 standard provides data security benchmarks vital for ISS 

infrastructure, especially where sensitive data is processed. These frameworks offer structured 

methodologies for ethical system design, risk assessment, and incident response planning. Empirical 

studies show that organizations adhering to such frameworks are better equipped to detect bias, 

manage data provenance, and ensure stakeholder trust (Felzmann et al., 2019). Moreover, 

corporate ethical AI guidelines issued by firms like Microsoft, Google, and IBM often align with these 

frameworks, signaling industry-wide consensus on governance principles (Balakrishnan & Dwivedi, 

2021). Adoption of these standards contributes not only to legal compliance but also to reputational 

capital, user confidence, and system sustainability in ISS applications (Hasija & Esper, 2022). 

Explainability is a fundamental requirement for ethical ISS, especially when systems influence high-

stakes decisions in domains such as healthcare, finance, and criminal justice. The lack of 

interpretability in many advanced machine learning models, especially deep learning architectures, 

presents challenges in ensuring accountability and stakeholder trust (Lewis & Marsh, 2022). 

Explainable AI (XAI) techniques seek to address this gap by providing post-hoc explanations or 

designing inherently interpretable models (McNeese et al., 2021). Tools such as LIME, SHAP, and 

counterfactual explanations allow users to understand how inputs influence outputs, enhancing 

transparency and enabling human oversight (Korteling et al., 2021). Transparency is not only essential 

for ethical governance but is also mandated by legal frameworks like GDPR’s “right to explanation,” 

which requires that data subjects be informed of automated decision logic (Radclyffe et al., 2023; 

Rheu et al., 2020). Moreover, transparency supports bias detection and error analysis by revealing 

the inner workings of ISS models (Vinanzi et al., 2021). Studies also show that increased transparency 

improves stakeholder adoption and satisfaction with ISS solutions in enterprise contexts (Xu & Dudek, 

2015). Best practices recommend embedding explainability into every stage of the ISS pipeline—

from data preprocessing to model output presentation—thereby ensuring traceability and 

auditability (van Pinxteren et al., 2019). However, challenges persist in balancing explainability with 

model performance, particularly in complex architectures where trade-offs must be managed 

(Vinanzi et al., 2021). As such, integrating explainable frameworks is not merely a technical 

enhancement but a core component of ethical and compliant ISS development. 

Accountability is a critical governance principle in ISS design, ensuring that stakeholders remain 

responsible for decisions made or influenced by intelligent systems. As ISS increasingly support or 

automate strategic decisions, clear mechanisms for assigning responsibility and enforcing ethical 

standards are needed (Radclyffe et al., 2023). Human-in-the-loop (HITL) models are widely 

advocated to retain human agency in decision-making processes, particularly in contexts where 

automated decisions affect fundamental rights (Vinanzi et al., 2021). HITL configurations enhance 

system transparency, allow for error correction, and mitigate the risk of algorithmic overreach 

(Radclyffe et al., 2023). Furthermore, audit trails and logging mechanisms are essential for tracking 

decision pathways and identifying sources of failure or bias in ISS outputs (Yu et al., 2019). The ISO/IEC 

38507:2017 standard outlines governance guidelines for IT-enabled decision systems, emphasizing 

executive responsibility and ethical risk management (ISO, 2017). Legal scholars argue for the 

formalization of accountability structures, including algorithmic impact assessments and 

documentation of model development, deployment, and usage. Organizational practices, such as 

assigning data stewards and AI ethics officers, are increasingly adopted to ensure that ISS align with 

institutional values and legal obligations. Empirical evidence from sectors like healthcare and 

finance demonstrates that the presence of governance bodies and interdisciplinary review boards 
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improves ethical compliance and decision quality. Thus, human oversight is not just a safeguard but 

a strategic enabler of trustworthy ISS. 

Risk management is central to the ethical deployment of ISS, particularly in addressing cybersecurity 

threats, model degradation, and adversarial attacks. Intelligent systems, especially those integrated 

with IoT or cloud platforms, face unique vulnerabilities such as data poisoning, model inversion, and 

unauthorized access (Owolabi et al., 2020). The NIST AI Risk Management Framework identifies 

robustness, reliability, and resilience as key components of responsible AI deployment (Wach et al., 

2023). Secure ISS design involves implementing adversarial training, threat modeling, and access 

control mechanisms that protect both data and models from manipulation (Xiong et al., 2022). The 

ISO/IEC 27001 and 27005 standards provide structured approaches to information security and risk 

assessment applicable to ISS environments (Zinn, 2008). Empirical studies indicate that incorporating 

security-by-design principles from the outset of ISS development reduces system downtime and 

increases user trust (Oluwatosin et al., 2024). Furthermore, ethical risk management involves assessing 

the social and organizational impacts of ISS, including unintended consequences such as 

discrimination, data misuse, or loss of human agency (Wach et al., 2023). Periodic risk audits, red 

teaming, and continuous monitoring are recommended to manage evolving threats and maintain 

system integrity (Seeber et al., 2020). As cyber threats become more sophisticated, the convergence 

of cybersecurity and AI ethics is essential to ensuring safe and responsible ISS operations. This 

convergence reflects a shift from reactive risk responses to proactive, embedded resilience in 

enterprise AI strategy. 

Identified Gaps 

A critical gap in HAII research is the absence of longitudinal evaluations that assess the sustained 

impact of intelligent support systems over time. Most empirical studies emphasize short-term metrics 

such as initial usability, user satisfaction, or predictive accuracy within trial periods (Iftikhar et al., 2020; 

Seeber et al., 2020). These limited time frames fail to capture the evolving nature of user-AI 

interaction, especially in dynamic environments like healthcare, finance, and education (Soori et al., 

2023). For instance, adaptive behaviors, trust development, and performance degradation are 

temporal phenomena that cannot be fully understood through cross-sectional or simulation-based 

analyses alone (Hao & Demir, 2023; Krijestorac et al., 2021). There is a growing consensus that 

longitudinal studies are essential to understand how HAII systems affect decision quality, user 

autonomy, and cognitive load over extended periods (Owolabi et al., 2020). Moreover, such studies 

are vital for detecting concept drift, where AI models become misaligned with real-world changes 

(Wach et al., 2023). Despite the maturity of frameworks like ISO/IEC 25010 for system quality tracking, 

their application in HAII literature remains scarce (Krawinkler et al., 2022). Calls for embedded 

performance dashboards and real-time feedback loops within ISS interfaces are becoming more 

frequent, yet empirical validation remains minimal (Rosenberg et al., 2018). Addressing this gap will 

require interdisciplinary collaboration and stakeholder engagement to develop robust, user-centric 

performance benchmarks that evolve alongside ISS technologies. 

HAII systems are often studied in isolated national or organizational contexts, leading to a lack of 

comparative insight across global regions. Cultural factors such as power distance, uncertainty 

avoidance, and individualism can influence user interaction with AI, yet they are rarely included as 

variables in HAII evaluations (Moghaddam, 2003). Most research has been conducted in North 

America and Europe, with limited representation from Asia, Africa, or Latin America, despite growing 

AI deployment in these regions (Mehedi et al., 2024). This geographical bias restricts the 

generalizability of findings and overlooks the socio-technical nuances that influence acceptance 

and effectiveness of ISS (Mtau & Rahul, 2024). For example, trust in automation and perceived 

fairness may vary significantly between collectivist and individualist societies (Sarker, 2022). 

Furthermore, legal and ethical standards such as GDPR or the U.S. Algorithmic Accountability Act 

shape ISS governance differently, influencing design and deployment practices (Durga et al., 2022). 

Comparative studies could illuminate how regulatory frameworks and cultural variables jointly 

mediate HAII outcomes (Peres et al., 2020). However, only a handful of cross-national case studies 

have explored these intersections in depth (Wilkens et al., 2023). Closing this gap would require 

methodologically diverse research designs, including multi-country field trials and cross-cultural 

experimental studies, to ensure inclusive and equitable AI design. 

The integration of emotional intelligence (EI) into HAII remains significantly underexplored, despite its 

critical role in shaping user trust, engagement, and cooperation. While emotional cues are 
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foundational in human-human interaction, they are rarely addressed in current ISS development 

practices, which prioritize logic-driven inference over affective responsiveness (Oluwatosin et al., 

2024). Studies in human-computer interaction (HCI) suggest that emotionally aware systems 

enhance user satisfaction and reduce perceived complexity in decision tasks (Sarker, 2022). 

However, ISS models largely neglect mechanisms for emotion detection, sentiment analysis, or 

empathetic response generation (Wilkens et al., 2023). Even in customer service and education 

domains—where emotional cues are essential for personalization and feedback—ISS often lack 

components that recognize stress, frustration, or hesitation (Talamo & Pozzi, 2011). Emotional 

intelligence could improve collaboration in hybrid human-AI teams, especially in strategic planning, 

medical diagnosis, and legal interpretation where emotions influence judgment (Mtau & Rahul, 

2024). Moreover, research has shown that emotional congruence between AI and users increases 

perceived authenticity and cooperation (Oluwatosin et al., 2024). Despite this, most AI ethics 

guidelines and performance metrics remain limited to cognitive competencies (Wilkens et al., 2023). 

Incorporating emotional intelligence in ISS would require multidisciplinary contributions from 

psychology, affective computing, and behavioral economics, as well as development of 

emotionally annotated datasets and multi-modal sensing systems. 

Figure 9: Identified gaps in HAII research 

 
Human values such as dignity, autonomy, justice, and compassion are seldom operationalized in the 

technical design of HAII systems, creating a disconnect between technological capabilities and 

societal expectations. Although value-sensitive design (VSD) frameworks have been proposed to 
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integrate ethical values into AI systems, their adoption remains superficial in mainstream ISS 

development (Oluwatosin et al., 2024; Wilkens et al., 2023). Most ISS are evaluated using 

performance metrics like accuracy or efficiency, with little regard for how decisions align with 

stakeholder values (Barile et al., 2020; Kangas et al., 2016). In domains such as healthcare, law, and 

education—where moral reasoning is central—this omission can result in recommendations that 

violate ethical norms or user expectations (Durga et al., 2022). Recent studies argue that embedding 

human values requires not just technical adjustments but institutional transformation, including 

ethical training for developers and participatory design processes involving end-users (Sarker, 2022). 

Furthermore, algorithmic decisions often lack transparency in how trade-offs between conflicting 

values are resolved, leading to user alienation and resistance (Barile et al., 2020). Only a few ISS 

models have incorporated formal ontologies or ethics engines capable of reasoning about value 

conflicts (Peres et al., 2020). The ISO/IEC TR 24028:2020 standard highlights the importance of value 

alignment, yet empirical applications remain scarce. Advancing this research will require not only 

technical innovation but also broader discourse across humanities, policy, and systems engineering 

disciplines. 

A critical shortfall in the current HAII literature is the lack of comprehensive models that account for 

the dynamic nature of trust in human-AI collaboration. While initial trust assessments are often studied 

during system onboarding or early interactions, there is insufficient research examining how trust 

evolves over time based on system performance, contextual changes, and feedback loops. Existing 

trust models are often static and do not incorporate fluctuations in user perception that result from 

inconsistent system behavior, unexpected outcomes, or increased reliance (Wilkens et al., 2023). 

Furthermore, trust is frequently treated as a monolithic construct, despite evidence suggesting it 

comprises multiple dimensions, including dispositional, situational, and learned trust (Talamo & Pozzi, 

2011). Dynamic trust modeling is particularly vital in decision-intensive environments such as 

autonomous vehicles, medical diagnostics, and military command systems, where AI 

recommendations may be accepted or rejected based on real-time credibility assessments (Durga 

et al., 2022). Studies have shown that mismatches between system transparency and actual 

reliability can erode trust and increase user stress, yet these dynamics are rarely embedded into ISS 

design (Kangas et al., 2016). Moreover, most trust calibration studies are experimental and lack field 

validation over prolonged interaction periods (Mehedi et al., 2024). Emerging research calls for 

reinforcement learning and feedback-based ISS architectures that continuously adapt explanations 

and performance based on trust metrics (Oluwatosin et al., 2024). Addressing this gap will require 

integrated approaches that combine psychological models of trust with technical mechanisms for 

behavior monitoring and adaptation in HAII environments. 

METHOD 

This systematic review adopted the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA 2020) framework to ensure a methodologically rigorous, transparent, and 

reproducible research process. The review aimed to synthesize current scholarly findings on intelligent 

support systems (ISS), with a specific focus on their functional architectures, strategic decision-making 

frameworks, ethical AI integration, and human-AI interaction (HAII). A structured four-stage 

approach—identification, screening, eligibility, and inclusion—was employed to systematically 

gather and evaluate relevant literature. 

Identification 

The initial step involved the identification of potentially relevant studies from multiple academic 

databases, including Scopus, Web of Science, IEEE Xplore, SpringerLink, ScienceDirect, and Google 

Scholar. The search was conducted using a combination of keywords and Boolean operators such 

as “intelligent support systems” OR “decision support systems” AND “human-AI interaction” AND 

“ethical AI” AND “data governance” AND “PRISMA.” Searches were limited to peer-reviewed journal 

articles published between January 2013 and December 2023 to ensure contemporary relevance. 

A total of 2,348 articles were initially retrieved based on the inclusion of titles, abstracts, and relevant 

metadata. 

Screening 

Following the identification phase, all retrieved articles were imported into Mendeley for reference 

management and duplicate removal. After filtering out duplicates, 1,867 articles remained. Titles 

and abstracts were then screened against predefined inclusion and exclusion criteria. Articles were 

retained if they focused on the application or theoretical development of intelligent support systems 
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in organizational decision-making contexts. Studies unrelated to ISS, non-English publications, 

conference proceedings without full texts, and those focused exclusively on hardware or 

engineering components were excluded. This screening phase narrowed the dataset to 438 articles 

for full-text assessment. 
Figure 10: PRISMA Method adapted in this study 

 

Eligibility 

The full texts of the 438 shortlisted articles were then reviewed to assess eligibility. Studies were 

considered eligible if they offered empirical, conceptual, or methodological insights into ISS 

architectures, human-AI collaborative frameworks, ethical concerns in ISS development, or data 

governance implications. Additional exclusion criteria were applied at this stage, including lack of 

peer-review, absence of substantial methodological detail, and outdated or redundant theoretical 

models. Based on these criteria, 128 articles were excluded due to inadequate relevance, leaving 

310 articles deemed eligible for final synthesis. 

Inclusion 

The final inclusion phase involved a thematic and methodological synthesis of the 310 eligible 

articles. Each article was coded based on its core contribution to specific thematic areas—

functional architectures, strategic decision-making, ethical AI governance, and HAII integration. A 

qualitative synthesis method was used to categorize the articles into relevant analytical dimensions. 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/a5yh1293


American Journal of Advanced Technology and Engineering Solutions 

Volume 01 Issue 01 (2025) 

Page No: 506-543 

eISSN: 3067-0470   

DOI: 10.63125/a5yh1293  

526 

 

Studies were further reviewed for citation strength, journal ranking (Q1–Q4), and methodological 

robustness. Ultimately, 124 articles were selected for in-depth analysis and reporting in this review. 

These articles form the empirical and theoretical foundation of the findings discussed in subsequent 

sections. 

FINDINGS 

Among the 97 reviewed articles, a dominant finding emerged around the central role of Customer 

Among the 124 reviewed articles, 37 studies focused extensively on the functional architectures of 

ISS, with a significant emphasis on hybrid models and neural network-based frameworks. These 

architectures accounted for over 5,300 combined citations, indicating their influence and 

acceptance across enterprise domains. The findings revealed that hybrid models integrating rule-

based logic with machine learning were particularly dominant in strategic applications such as 

supply chain forecasting, financial portfolio analysis, and operational risk evaluation. Researchers 

highlighted that while expert systems and traditional decision trees provided interpretability, they 

lacked the adaptive learning capabilities required for high-volume and real-time decision 

environments. Neural network-based ISS, particularly those leveraging deep learning, were 

frequently used in high-stakes domains like fraud detection, dynamic pricing, and healthcare 

diagnostics due to their ability to detect patterns from complex and unstructured data. A consistent 

theme in 21 of these studies was the architectural evolution from standalone systems to cloud-

integrated platforms capable of scaling decision support across distributed organizations. These 

advanced frameworks demonstrated improved prediction accuracy and self-learning capabilities 

but often required more computational resources and rigorous oversight. However, despite 

technical superiority, their black-box nature raised interpretability concerns, which were only 

addressed in six of the reviewed papers. These findings suggest a trade-off between performance 

and explainability that continues to shape ISS architecture design and implementation. 
Figure 11: Findings fron the research 

 
Out of the 124 studies, 29 articles concentrated on AI-driven strategic decision-making frameworks, 

with a total citation volume exceeding 6,100. These papers showed a shift from linear strategic 

planning tools to AI-augmented frameworks capable of handling dynamic and uncertain decision 

environments. The analysis indicated a clear trend toward adopting SWOT-AI hybrid models, 

decision-tree learning, and reinforcement learning as core decision technologies. Reinforcement 

learning, in particular, was featured in 13 studies, highlighting its utility in strategy mapping under 

conditions of market volatility and limited foresight. Organizations using AI-augmented planning tools 

reported improved strategic foresight, particularly in long-term investment modeling, competitive 

scenario simulation, and resource reallocation. Decision tree frameworks were valued for their ability 

to provide interpretable, branching paths that assisted managers in understanding trade-offs 

between strategic options. Twelve studies showcased the effectiveness of combining AI-driven 

simulation with human judgment to co-create decisions in real-time environments such as crisis 

response, urban planning, and innovation management. Despite these advancements, only 4 

studies offered field evidence of how these systems affected long-term strategic outcomes such as 

market share growth or enterprise resilience. This suggests that while AI-driven decision tools are 
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gaining traction, more empirical work is needed to evaluate their sustained strategic impact across 

industries. 

A major finding was the limited focus on long-term performance tracking of ISS. Out of the 124 

reviewed articles, only 11 studies addressed longitudinal evaluation, and these collectively 

accounted for fewer than 850 citations, signaling a significant research gap. The reviewed studies 

demonstrated that while initial deployment of ISS often led to short-term efficiency gains and 

reduced cognitive load, very few articles examined how performance metrics evolved over months 

or years. For example, only three studies employed follow-up measurements to determine whether 

the ISS recommendations remained relevant, actionable, or consistent with changing organizational 

goals. Several papers discussed system drift, performance degradation, and user disengagement, 

but these issues were primarily theorized rather than empirically tested. Moreover, only two studies 

introduced embedded monitoring tools within ISS interfaces to track decision accuracy over time. 

This lack of continuous performance tracking undermines the reliability of ISS in dynamic 

environments where user behaviors, business models, and external conditions constantly evolve. 

Without longitudinal evidence, it remains unclear whether the benefits attributed to ISS persist, 

decline, or improve with usage. The scarcity of time-series evaluations poses a challenge for 

validating the true value proposition of intelligent support systems in enterprise strategy. 

Geographic concentration in HAII research was another significant finding. Among the 124 reviewed 

articles, 89 studies (nearly 72%) were conducted in Western contexts, particularly in the United States, 

Canada, and several European Union countries. Collectively, these Western studies received over 

7,800 citations, dominating the global HAII discourse. In contrast, only 18 studies were conducted in 

Asia, 10 in Latin America, and 7 in Africa, highlighting a stark disparity in research representation. 

Despite the growing interest in intelligent support systems across emerging economies, regional 

studies were limited in scale, often lacked access to institutional data, and were mostly conceptual 

rather than empirical. As a result, cultural variables, regulatory environments, and socio-technical 

conditions unique to these regions remain underexplored. Only five studies compared HAII 

deployment outcomes across countries, and only two attempted to correlate user trust levels with 

cultural dimensions such as power distance or collectivism. Furthermore, region-specific challenges 

such as digital infrastructure gaps, data localization laws, and language diversity were rarely 

addressed. This imbalance limits the generalizability of existing findings and may result in ISS designs 

that fail to accommodate global diversity in user expectations, ethical norms, and implementation 

contexts. 

Among the reviewed 124 articles, 33 papers explored ethical considerations and data governance 

frameworks in ISS design. Despite a combined citation count exceeding 6,300, only 17 of these 

studies proposed or evaluated actual frameworks for integrating ethical AI principles into system 

architecture. The remaining works offered conceptual discussions or policy commentary without 

direct implementation insights. Of the frameworks analyzed, the most referenced were GDPR, 

ISO/IEC 27001, and the NIST AI Risk Management Framework. However, fewer than 10 studies 

demonstrated how these standards were operationalized in live ISS environments. Only five papers 

incorporated fairness metrics or bias detection mechanisms into their algorithms, and just three 

provided tools for transparency and explainability that would satisfy legal obligations such as GDPR’s 

“right to explanation.” Data quality management, a core pillar of ethical AI, was inconsistently 

addressed. While 21 studies acknowledged its importance, only 8 included measurable data 

validation strategies or metadata governance protocols. Furthermore, only two studies discussed 

federated learning or privacy-preserving computation as solutions to data misuse or centralization 

risks. This inconsistency highlights a significant disconnect between ethical aspirations and real-world 

ISS design, suggesting that most current deployments may not fully comply with emerging regulatory 

and ethical standards, especially in sensitive domains like finance, healthcare, and public 

governance. 

An emerging yet underdeveloped theme in the reviewed literature was the integration of emotional 

intelligence (EI) and human values in HAII systems. Only 9 out of the 124 reviewed articles directly 

examined the role of affective computing or EI in ISS design, accounting for fewer than 700 

cumulative citations. These studies acknowledged that emotion-aware systems enhance human-AI 

collaboration, especially in domains requiring empathy, persuasion, or psychological safety. 

However, empirical implementations were sparse. For example, just two studies included emotion 

recognition modules capable of interpreting facial expressions, voice modulation, or sentiment cues. 
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Moreover, none of the articles systematically evaluated the impact of emotion-aware ISS on user 

decision satisfaction, system trust, or engagement retention. Human values such as autonomy, 

dignity, justice, and fairness were mentioned in 21 papers, but they were often treated as abstract 

ideals rather than embedded features. Only three studies explicitly mapped user values into ISS 

design using value-sensitive design methodologies. No studies attempted to resolve value conflicts 

dynamically during human-AI interaction. The scarcity of emotionally intelligent and value-sensitive 

systems underscores a critical gap in aligning ISS capabilities with the interpersonal and moral 

dimensions of human decision-making, which are vital for acceptance and long-term adoption. 

Trust dynamics between users and ISS were addressed in 26 of the reviewed articles, with a total of 

approximately 3,400 citations. However, only 10 studies focused on how trust in ISS fluctuates over 

time or in response to contextual factors such as system failure, contradictory recommendations, or 

perceived algorithmic bias. A consistent finding across these articles was that users often displayed 

either over-reliance or under-reliance on AI systems, especially in uncertain or ambiguous scenarios. 

Despite this, trust calibration mechanisms—such as adaptive transparency, trust feedback loops, 

and dynamic control options—were implemented in only 4 studies. Furthermore, only 6 studies 

measured trust longitudinally, and just 3 linked trust levels to behavioral changes such as task 

abandonment, increased delegation, or manual override frequency. Additionally, few systems 

adjusted their decision presentation based on user trust levels or prior interaction history. This suggests 

that while trust is acknowledged as central to HAII, its practical integration into ISS design remains 

immature. Without dynamic modeling of user trust trajectories and behavior adaptation, ISS risk 

producing suboptimal outcomes or user disengagement, particularly in high-stakes decision 

environments. 

The final major finding centers on the lack of inclusive design and accessibility in current ISS 

implementations. Only 12 out of the 124 reviewed studies explicitly addressed issues related to user 

diversity, digital literacy, or accessibility barriers, representing less than 10% of the literature base and 

fewer than 950 total citations. Of these, only 5 studies incorporated features tailored for users with 

disabilities, language barriers, or low technical proficiency. No studies provided intersectional 

analysis exploring how gender, race, socio-economic status, and ability jointly influence interaction 

with ISS. Additionally, only 3 studies adopted participatory design methods to co-create systems with 

marginalized or underrepresented communities. The overwhelming majority of reviewed articles 

focused on technologically advanced user groups in high-resource environments. As a result, 

intelligent support systems may inadvertently reinforce digital inequalities by assuming homogeneous 

user capabilities and preferences. Moreover, current HAII models often lack configurable interfaces, 

multimodal interaction options, or localization features necessary to support diverse global users. The 

neglect of inclusive principles in ISS development raises concerns about ethical deployment, 

particularly as these systems are increasingly used in public service domains such as education, 

health, and welfare. 

DISCUSSION 

The findings of this review underscore a clear convergence toward hybrid and neural network-driven 

architectures in intelligent support system (ISS) development, which aligns with the earlier 

observations by Sayogo et al. (2014)  and Simaei and Rahimifard (2024), who emphasized the 

transition from rule-based to more adaptive, learning-based systems. Our findings revealed that 

among the 124 reviewed studies, hybrid models combining symbolic reasoning with machine 

learning were most frequently implemented, confirming the dual necessity for interpretability and 

performance (Smith et al., 2018). Neural networks, particularly deep learning models, showed 

widespread application in dynamic environments such as finance and healthcare, echoing earlier 

assertions by Clark et al. (2007) and Shollo and Galliers (2015) that emphasized their potential in 

unstructured data analysis. However, unlike earlier studies that offered a purely optimistic view of 

neural systems, our review identifies emerging concerns over opacity and auditability, an issue that 

Bolat et al. (2014)  and Marocco et al.,(2024) also raised in the context of explainable AI. This 

divergence indicates a growing tension between performance-centric design and the demand for 

transparent decision-making in enterprise contexts. While earlier research highlighted model 

accuracy, more recent studies, consistent with our findings, advocate for hybrid architectures that 

provide both interpretability and flexibility (Awan et al., 2024). Thus, the architectural trajectory of ISS 

reflects not only technological advancement but also the evolution of ethical and operational 

expectations in real-world applications. 
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Our analysis of 29 AI-driven strategic decision-making studies revealed that intelligent support systems 

are increasingly utilized to enhance scenario planning, resource allocation, and portfolio 

optimization, corroborating the early propositions made by Lake et al. (2016)  regarding analytics-

driven strategies. The application of reinforcement learning and decision tree learning aligns with 

recent empirical findings by Smith et al. (2018) and Clark et al. (2007), who demonstrated the superior 

ability of these techniques to handle dynamic and probabilistic planning tasks. Compared to earlier 

strategy models that were static and linear, such as SWOT and Porter’s Five Forces, the reviewed 

articles reflect a paradigm shift toward adaptive, real-time models supported by machine learning. 

While traditional frameworks focused on retrospective analysis, current ISS leverage predictive and 

prescriptive analytics to suggest future actions with measurable probabilities. This evolution mirrors 

the trends discussed in strategic foresight literature by Kocsi et al. (2020) and Liu et al. (2023), who 

emphasized simulation and scenario modeling for high-uncertainty decisions. However, our review 

reveals a persistent gap in long-term impact assessment, with few studies demonstrating whether AI-

augmented planning actually translates into sustained performance improvements, a gap similarly 

noted by Nicodeme (2020). This indicates that while AI enhances the strategic planning toolkit, 

empirical validation of its ROI and resilience-enhancing capacity remains limited. The absence of 

such validation risks undermining organizational trust in these systems over time, as observed in 

critiques by Li et al. (2021). 

The findings indicate a major research gap in the long-term evaluation of ISS, a theme similarly 

identified by Nicodeme (2020) and Liu et al. (2009), who argued for the integration of embedded 

monitoring and feedback systems. Only 11 of the reviewed studies incorporated longitudinal 

performance tracking, and even fewer presented robust metrics for post-deployment system 

relevance. This observation aligns with Mehedi et al. (2024) , who warned about the risks of concept 

drift and model obsolescence in dynamic environments. Earlier studies by Simaei and Rahimifard 

(2024) proposed frameworks for adaptive learning systems, yet our review found limited empirical 

adoption of such models. The lack of longitudinal insights restricts the ability of organizations to 

optimize model retraining schedules, manage system degradation, or align AI outputs with evolving 

user needs. Moreover, while initial deployment often results in efficiency gains and improved decision 

speed, studies like Kaklauskas (2014)  and Kasie et al. (2017) confirm that user trust and engagement 

tend to plateau or decline without continuous system updates and performance validation. 

Therefore, our findings reinforce earlier calls for lifecycle-oriented system evaluation, a concept that 

has been widely discussed in software engineering literature but remains underrepresented in the ISS 

field. This underscores a need for future research to develop and test evaluation models that extend 

beyond accuracy metrics to include trust evolution, usage frequency, decision quality, and 

organizational learning outcomes. 

The significant geographic concentration of HAII research in Western countries reflects a 

longstanding bias in the technology literature, consistent with critiques from Kocsi et al. (2020) and 

Liu et al. (2009). Of the 124 reviewed articles, over 70% originated from Western contexts, mirroring 

findings by Mehedi et al. (2024), who noted the lack of cross-cultural variance in AI acceptance 

studies. Earlier works often treated AI-user interaction as culturally neutral; however, our review 

confirms that socio-cultural constructs such as power distance, uncertainty avoidance, and 

collectivism significantly shape HAII effectiveness. For instance, studies from Asia and Latin America 

highlighted contextual factors like regulatory constraints and digital infrastructure gaps that are often 

absent in Western-centric models. This supports the arguments made by Mouzakitis et al. (2024) and 

Pajak et al. (2021), who emphasized that ISS deployment must be tailored to localized norms and 

organizational maturity levels. Yet, only a small fraction of reviewed studies included comparative 

analysis or regional customization strategies. This gap not only limits the scalability of current models 

but also risks cultural misalignment and poor user adoption in diverse settings. Future research must 

respond to this imbalance by integrating intercultural design frameworks and undertaking 

comparative, multi-regional case studies. 

The inconsistent integration of ethical AI frameworks into ISS reflects a misalignment between 

academic advocacy and practical implementation. Although ethical concerns such as fairness, 

privacy, and transparency were commonly discussed, few studies operationalized these principles 

within actual ISS design. This gap mirrors earlier criticisms by Mehedi et al. (2024)  and Liu et al. (2023), 

who pointed out that ethics often remains a theoretical afterthought rather than a design 

imperative. Our review found that even with the availability of standards such as GDPR, NIST AI RMF, 
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and ISO/IEC 27001, fewer than 15% of studies reported implementing them in practice. This supports 

findings by Mehedi et al. (2024), who argued that regulatory frameworks lack enforcement 

mechanisms and technical translation guides for system developers. The findings also reflect 

concerns raised by Pajak et al. (2021) and Pejić Bach et al. (2023), who emphasized the importance 

of embedding ethics into the AI lifecycle rather than treating it as an external audit function. Notably, 

few studies integrated fairness-aware algorithms, and even fewer provided mechanisms for redress 

or user feedback—key components of responsible AI as outlined by Sadeghi et al., (2024). The results 

thus suggest that ethical design in ISS remains nascent, and there is a critical need for interdisciplinary 

collaboration between ethicists, software engineers, and policymakers to bridge this gap. Aligning 

with the perspectives of Simaei and Rahimifard (2024), this review highlights that institutional inertia, 

resource constraints, and lack of ethical training are major barriers to effective governance 

integration in intelligent decision systems. 

The absence of emotional intelligence (EI) and value-sensitive design in ISS echoes longstanding 

critiques from affective computing scholars such as Zaraté and Liu (2016) and Simaei and Rahimifard, 

(2024), who argued that emotion is a critical mediator of user engagement and decision relevance. 

While earlier works in HCI demonstrated the utility of affective cues in enhancing user satisfaction 

and system credibility (Sadeghi R et al., 2024), the current review finds that such dimensions remain 

marginal in HAII research. Only a handful of studies incorporated emotion recognition or empathetic 

response features, a pattern also observed by Awan et al. (2024) and Clark et al. (2007). Furthermore, 

although the concept of value-sensitive design has gained traction in AI ethics discourse (Marocco 

et al., 2024a), its operationalization in ISS design is still lacking. Our findings support Lake et al. (2016) 

and Weinzierl et al. (2024), who asserted that integrating human values into automated systems 

requires more than declarative principles—it demands structural design changes, stakeholder 

inclusion, and evaluation metrics aligned with ethical impact. Studies that did attempt to embed 

values tended to focus narrowly on fairness and privacy, with minimal attention to autonomy, dignity, 

or compassion. This omission may result in decision systems that are technically sound but socially 

disconnected, undermining trust and usability in sensitive domains like healthcare, law, and 

education. Therefore, the need to embed affective and ethical dimensions in HAII design is not only 

a research priority but also a societal imperative. 

The current review reinforces the gap between theoretical models of trust and their implementation 

in intelligent support systems. While early work by Lake et al.(2016) and Shollo and Galliers (2015)  laid 

a conceptual foundation for understanding trust in automation, our review finds that very few ISS 

integrate dynamic trust modeling into system design. This echoes findings by Saba et al. (2020)  and 

Fantini et al. (2020), who noted that most ISS still rely on static trust assumptions that fail to capture 

fluctuations in user perceptions due to system errors or unexpected behavior. Additionally, prior 

studies by Confalonieri et al. (2015) emphasized the need for feedback loops and contextual 

adaptation to support calibrated trust, yet our analysis reveals that only four studies incorporated 

these mechanisms. The challenge of over-reliance or disuse due to trust misalignment, first outlined 

by Demirkan and Delen (2013), persists in current ISS implementations. Moreover, the review confirms 

that trust is not monolithic; it interacts with factors such as transparency, feedback, user experience, 

and situational context—factors also explored by Gupta et al. (2021) and Helenason et al. (2023). 

Without adaptive trust mechanisms, ISS risk fostering blind compliance or total rejection, both of 

which diminish decision quality. Thus, advancing trust modeling from conceptual constructs to real-

time, personalized system features remains a critical agenda for future HAII research and 

development. 

Our review finds that most ISS evaluations rely on technical performance metrics such as accuracy, 

latency, or computational efficiency, a pattern noted previously by Holsapple et al. (1993) and 

Kaklauskas (2014). This narrow evaluation scope fails to account for human, behavioral, and 

organizational outcomes, limiting the understanding of real-world system effectiveness. Earlier studies 

in HCI and CSCW Kasie et al. (2017) advocated for richer evaluation frameworks incorporating 

usability, cognitive workload, and decision satisfaction. However, our analysis shows that only a 

minority of studies used mixed methods or validated constructs such as NASA-TLX or decision 

confidence. Interdisciplinary evaluation frameworks like those proposed by Kocsi et al. (2020) and 

Kaklauskas (2014) were seldom adopted in full. This misalignment constrains both academic insight 

and managerial decision-making regarding ISS value. Moreover, many reviewed articles lacked 

transparency regarding user populations, interaction durations, and contextual settings, reducing 
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the external validity of findings. Without comprehensive evaluation tools, organizations are left to 

guess at the ROI and long-term consequences of ISS implementation. Therefore, future work must 

prioritize the development of robust, context-sensitive, and stakeholder-informed metrics that 

capture both algorithmic performance and human-centered outcomes in HAII environments. 

The review highlights a critical shortfall in equity and inclusion within ISS development and HAII design, 

echoing warnings from Demirkan and Delen (2013)  and Kasie et al. (2017), who showed that 

algorithmic systems often marginalize underrepresented groups. Only a small portion of studies 

addressed user diversity in terms of ability, language, digital literacy, or intersectional identity. This 

finding is consistent with Liu et al. (2009), who emphasized the exclusion of disabled users from 

mainstream technology design. Additionally, while participatory design frameworks have been 

widely endorsed (Demirkan & Delen, 2013), our findings suggest that they are rarely employed in ISS 

projects. Intersectionality, a concept first advanced by Gupta et al. (2021), is almost entirely absent 

from current HAII evaluations, limiting our understanding of how multiple identities shape user-system 

interactions. This omission poses ethical and operational risks, especially as ISS expand into public 

domains like healthcare, education, and social services. As emphasized by Kmiecik (2022) and Liu 

et al. (2009) , inclusive design is not merely about accessibility—it’s about ensuring systems are usable, 

responsive, and empowering for all users. Integrating these principles requires a fundamental shift in 

both research methodology and development practices, emphasizing co-design, community 

engagement, and inclusive testing throughout the system lifecycle. 

CONCLUSION 

This systematic review synthesized findings from 124 peer-reviewed articles to examine the evolving 

role of intelligent support systems (ISS) in organizational decision-making, focusing on architectural 

advancements, strategic planning frameworks, ethical AI integration, and human-AI interaction 

(HAII). The review revealed a dominant shift toward hybrid and neural network architectures, 

highlighting a growing demand for systems that balance predictive performance with 

interpretability. While AI-augmented decision frameworks such as reinforcement learning and 

decision-tree models have enhanced strategic agility, the long-term impact and real-world 

validation of these systems remain limited. Furthermore, the integration of ethical principles—such as 

transparency, fairness, and data privacy—was inconsistently implemented despite the availability of 

established governance frameworks like GDPR, NIST AI RMF, and ISO/IEC standards. Emotional 

intelligence and human values were also underrepresented in system design, indicating a 

disconnect between technical capabilities and user-centric needs. Geographic biases, with a 

heavy concentration of research in Western contexts, further limit the generalizability of current 

findings, while the lack of inclusive design practices risks excluding marginalized and diverse user 

groups. The review underscores the urgent need for interdisciplinary evaluation metrics, dynamic 

trust modeling, and longitudinal studies to ensure that ISS can deliver equitable, accountable, and 

sustainable decision support across sectors and global regions. By bridging technical innovation with 

ethical, cultural, and human-centered considerations, future ISS development can better align with 

the complex realities of contemporary decision environments. 
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