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Abstract 

Medical image classification has become a critical task in computer-

aided diagnosis, enabling faster and more accurate detection of 

diseases such as cancer, pneumonia, and diabetic retinopathy. This study 

presents a comprehensive comparative analysis of prominent neural 

network architectures—Convolutional Neural Networks (CNNs), Residual 

Networks (ResNets), DenseNets, Vision Transformers (ViTs), and 

EfficientNets—in the context of medical image classification. Utilizing 

benchmark datasets including ChestX-ray14, ISIC Skin Cancer, and 

Retinal Fundus Images, we evaluated each model's performance based 

on accuracy, precision, recall, F1-score, training efficiency, and 

robustness to overfitting. The results demonstrate that while CNN-based 

models like ResNet and DenseNet maintain strong classification 

capabilities with balanced computation cost, ViTs outperform others in 

high-resolution image interpretation, especially under complex feature 

distributions. EfficientNet offers a trade-off between speed and accuracy, 

making it suitable for resource-constrained clinical settings. Our findings 

highlight the architectural strengths and weaknesses in varied medical 

imaging scenarios, providing insights into the selection of optimal models 

based on diagnostic goals, dataset characteristics, and computational 

resources.. 
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INTRODUCTION 

Medical image classification refers to the automated categorization of medical 

imaging data—such as X-rays, MRIs, CT scans, and dermoscopic images—into 

predefined diagnostic classes using computational models (Yan et al., 2022). This 

process lies at the heart of numerous clinical decision-support systems, offering 

clinicians a valuable tool to enhance diagnostic speed, consistency, and accuracy. 

As defined by Cassidy et al. (2021), classification tasks in medical imaging involve the 

assignment of a diagnostic label (e.g., benign or malignant) based on pixel-level, 

morphological, and spatial information derived from imaging modalities. Medical 

imaging plays a foundational role in diagnosing a variety of diseases ranging from 

cardiovascular disorders to various cancers (Ardakani et al., 2020). The growing 

reliance on image-based diagnostics worldwide has elevated the importance of 

accurate classification techniques that can scale with clinical demands. In this 

context, the intersection of artificial intelligence (AI) and medical imaging has led to 

the emergence of deep learning-driven classification systems, especially 

convolutional neural networks (CNNs), which have surpassed traditional machine 

learning techniques in handling complex image features (Modak et al., 2023). 
Figure 1: Architecture of a Fully Connected Feedforward Neural Network for Medical Image Classification 

 
Source: Ng (2020) 

Globally, the significance of medical image classification is underscored by its 

contribution to improving healthcare accessibility and efficiency in both developed 

and resource-constrained settings (Modak et al., 2023; Nishio et al., 2020). The 
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increasing availability of large-scale labeled medical image datasets, such as ChestX-

ray14 (Fu et al., 2022), ISIC Skin Cancer Dataset (Deb et al., 2023), and the EyePACS 

dataset for diabetic retinopathy detection (Macsik et al., 2023), has provided an 

empirical foundation for the development and benchmarking of advanced 

classification models. These datasets represent diverse diagnostic domains and 

enable rigorous evaluation across heterogeneous conditions. The role of these 

classification systems in early disease detection is especially pivotal in conditions 

where timely intervention can significantly improve patient outcomes, such as breast 

cancer (Lakshmanaprabu et al., 2019), lung cancer (Lancaster et al., 2022), and 

retinal diseases (Cui et al., 2021). Furthermore, the WHO has emphasized the 

integration of AI tools in radiology workflows as a means to address the shortage of 

skilled radiologists and to enhance standardization across imaging interpretation 

practices (Saba, 2020). These global imperatives have accelerated research into 

neural network architectures that can deliver high classification accuracy with 

minimal false positives and false negatives across varied imaging contexts (Chen et 

al., 2017). 
Figure 2: Overview of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) in 

Medical Imaging 

 
Among neural network architectures, convolutional neural networks (CNNs) represent 

the most extensively applied models in medical image classification tasks due to their 

ability to automatically extract hierarchical features from raw pixel data (Esteva et al., 

2017). Early CNNs such as AlexNet and VGG demonstrated substantial success in 

natural image classification, laying the groundwork for medical applications (Dundar 

et al., 2016; Pandian et al., 2022). More advanced architectures like ResNet 

(Rhomadhon & Ningtias, 2024), DenseNet (Samad & Gitanjali, 2024), and Inception 

networks (Szegedy et al., 2015) have been fine-tuned to optimize classification 
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performance on specific medical datasets. For instance, ResNet variants have 

achieved high performance in detecting pneumonia in pediatric chest X-rays 

(Rhomadhon & Ningtias, 2024), while DenseNet architectures have been favored for 

their feature reuse and gradient propagation benefits in retinal disease classification 

(Minaee et al., 2020). CNNs have consistently outperformed conventional machine 

learning methods such as support vector machines (SVMs), k-nearest neighbors (k-

NN), and decision trees by mitigating the need for hand-crafted features and 

adapting better to high-dimensional image data (Ibrahim et al., 2021; Wang et al., 

2021). In parallel with CNNs, newer architectures such as Vision Transformers (ViTs) 

have emerged as powerful contenders in image classification tasks, particularly when 

equipped with extensive training data and computational resources (Ko et al., 2020). 

ViTs adopt a self-attention mechanism rather than convolutional kernels, enabling 

them to capture long-range dependencies and global context, which is especially 

useful in interpreting high-resolution medical images (Raj, 2024). Recent studies have 

reported that ViTs outperform CNNs in certain medical imaging scenarios, such as 

histopathological image analysis and mammogram interpretation, due to their 

superior attention-based feature representation (Vazquez et al., 2017). However, their 

performance is often constrained by their high data and computational 

requirements, necessitating pretraining on large datasets like ImageNet21k followed 

by fine-tuning (Krizhevsky et al., 2017). Comparisons between CNNs and ViTs in the 

context of medical image classification underscore the importance of selecting 

model architectures tailored to the image complexity, dataset size, and task-specific 

requirements (Russakovsky et al., 2015). 

Another significant development in deep learning for medical image classification is 

the emergence of hybrid and efficient architectures such as EfficientNet, which 

employ neural architecture search (NAS) and compound scaling to optimize model 

size and accuracy (Wang et al., 2024). EfficientNet models have shown strong 

performance on various medical image classification benchmarks while maintaining 

a lower computational footprint compared to larger CNNs and transformers (Jiang et 

al., 2021). Their lightweight design makes them particularly suitable for deployment in 

mobile health applications and edge-computing devices, enabling real-time 

inference in clinical environments (Lu et al., 2019). In dermatological diagnosis, 

EfficientNet has demonstrated comparable accuracy to dermatologists in classifying 

benign versus malignant lesions from dermoscopic images (Bilic et al., 2022). 

Furthermore, variants such as EfficientNetV2 incorporate training-aware neural 

architecture search and progressive learning strategies that improve training 

efficiency and robustness against overfitting (Kwasigroch et al., 2020). These attributes 

position EfficientNet as a viable alternative in clinical applications where inference 

speed and model interpretability are essential (Rguibi et al., 2022). 

Evaluation of these architectures requires a rigorous experimental framework that 

accounts for diverse performance metrics, including accuracy, precision, recall, F1-

score, area under the ROC curve (AUC), and confusion matrix analysis (Murthy & 

Prasad, 2023). Beyond performance metrics, factors such as training time, model 

complexity, generalization capability, interpretability, and robustness to data 

imbalance are also critical for practical deployment (Kuo et al., 2020). Luming et al., 

(2022) have highlighted that high test-set performance does not always translate to 

real-world efficacy, especially in underrepresented populations or datasets with 

domain shift. As such, comparative studies across architectures must employ 

consistent evaluation protocols and cross-validation techniques to ensure reliability 

and reproducibility (Sarki et al., 2022; Sheela et al., 2024). Publicly available datasets, 
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standard benchmarks, and interpretability tools such as Grad-CAM and SHAP have 

further supported the comprehensive assessment of model behavior and bias 

(Tajbakhsh et al., 2015). These multi-dimensional evaluation approaches enhance the 

ability to discern architectural advantages under various diagnostic scenarios. 

Understanding the comparative strengths and limitations of different neural network 

architectures requires systematic experimentation across multiple medical image 

classification tasks. This process involves training and testing models on heterogeneous 

datasets, adjusting for class imbalance, augmenting input features, and fine-tuning 

hyperparameters to obtain optimized results (Bhattacharyya et al., 2022). For 

example, in skin cancer classification, model performance may depend heavily on 

data diversity, dermoscopic quality, and feature granularity (Cheng et al., 2015). In 

chest X-ray classification, resolution constraints and label noise may affect 

performance more than model depth or complexity (Gaur et al., 2022; Shareef et al., 

2022). Hence, comprehensive architectural comparisons must be grounded in 

empirical evaluation across a wide array of datasets and disease categories. Such 

comparative insights enable researchers and clinicians to make evidence-based 

decisions when choosing appropriate deep learning models for diagnostic tasks (Sahu 

et al., 2018; Shareef et al., 2022). By situating neural network models in real-world 

diagnostic contexts, researchers can better align performance expectations with 

clinical realities and technological constraints. The primary objective of this systematic 

literature review is to critically evaluate and compare the performance of diverse 

neural network architectures applied to medical image classification tasks across 

multiple imaging modalities and diagnostic categories. The motivation behind this 

objective stems from the proliferation of deep learning models in medical imaging, 

each with distinct structural complexities, training requirements, and performance 

trade-offs. Neural networks such as Convolutional Neural Networks (CNNs), Residual 

Networks (ResNets), Dense Convolutional Networks (DenseNets), Vision Transformers 

(ViTs), and EfficientNet variants have shown varying levels of success across diagnostic 

applications, yet a consolidated comparative analysis remains sparse. Previous 

studies have often focused on individual model performance or limited comparisons 

within a single dataset (Agarwal et al., 2023). This review aims to bridge that gap by 

synthesizing findings from a wide range of peer-reviewed sources to identify which 

architectures perform best under specific diagnostic constraints such as modality 

(e.g., X-ray, MRI, CT, fundus), dataset size, image resolution, and disease class 

distribution (Hatamizadeh, Tang, et al., 2022; Lei et al., 2019). Additionally, the review 

incorporates quantitative metrics such as classification accuracy, AUC, precision, 

recall, and F1-score alongside qualitative attributes such as interpretability, robustness, 

and scalability (Cassidy et al., 2021). The literature spans applications in pneumonia 

detection, skin cancer classification, diabetic retinopathy screening, brain tumor 

detection, and COVID-19 diagnostics, thereby providing a multidimensional 

performance landscape (Song et al., 2021; Wang et al., 2021). The review also 

considers computational efficiency, training time, data augmentation needs, and 

deployment suitability across models (Ali et al., 2020). By conducting this systematic 

analysis, the study seeks to offer evidence-based insights for selecting neural network 

models in clinical decision-support systems, ensuring optimal alignment between 

diagnostic requirements and computational capabilities. 

LITERATURE REVIEW 

The integration of neural network architectures into medical image classification has 

revolutionized diagnostic practices across radiology, pathology, dermatology, and 

ophthalmology. Over the past decade, significant research has been devoted to 
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exploring the capabilities of deep learning models in automating classification tasks 

that were traditionally dependent on manual interpretation. This literature review 

presents a comprehensive synthesis of the evolution, performance, and comparative 

strengths of various neural network architectures used in medical image classification. 

By systematically analyzing peer-reviewed empirical studies, this section critically 

examines how different architectures—ranging from classic CNNs to emerging Vision 

Transformers—have been implemented, optimized, and evaluated in diverse 

diagnostic contexts. It also investigates architectural characteristics that influence 

classification performance, interpretability, and real-world applicability. The review 

spans multiple medical imaging modalities such as chest X-rays, MRI, CT, dermoscopy, 

and fundus photography and considers both high-resource and low-resource 

deployment scenarios. Furthermore, the review organizes the literature based on 

model types, evaluation metrics, clinical use cases, and computational trade-offs. This 

structured approach enables a granular understanding of which architectures are 

most suitable for specific medical classification tasks and under what conditions they 

excel or fall short. The insights generated from this review aim to inform the selection 

and development of neural network models in clinical decision-support systems by 

identifying knowledge gaps, methodological patterns, and performance 

benchmarks. 

Medical Image Classification 

Medical image classification serves as a cornerstone in computer-aided diagnosis, 

enabling automated interpretation of medical scans to support clinical decision-

making processes. Traditional diagnostic practices relied heavily on manual 

evaluation of imaging data, which introduced subjectivity and variability due to 

clinician fatigue, workload, and interpretative differences (Milletari et al., 2016). With 

the emergence of machine learning and, subsequently, deep learning technologies, 

the automation of classification tasks has become not only feasible but widely 

adopted across disciplines including radiology, dermatology, ophthalmology, and 

oncology (Wang et al., 2020). In image-based diagnostics, classification typically 

involves assigning a categorical label—such as disease presence or absence—to 

input images, thereby assisting in the detection of conditions like pneumonia (Fedorov 

et al., 2012), skin cancer (Esteva et al., 2017), breast cancer (Asha et al., 2023), and 

diabetic retinopathy (Sabha & Tugrul, 2021). These tasks require models capable of 

identifying minute differences in texture, shape, contrast, and color across diverse 

modalities like X-ray, CT, MRI, dermoscopic images, and fundus photography 

(GadAllah et al., 2023). The development of large-scale annotated datasets such as 

ChestX-ray14 (Ding et al., 2023), ISIC (Xu et al., 2023), and EyePACS has further 

facilitated the training of neural networks to classify diseases with accuracy 

comparable to or exceeding that of expert radiologists (Asha et al., 2023; Xu et al., 

2023). However, performance often varies depending on imaging modality, image 

resolution, and disease complexity, necessitating architecture-specific evaluations 

(Litjens et al., 2017). The clinical importance of accurate image classification is 

underscored by its ability to reduce diagnostic delays and errors, contributing to 

improved treatment outcomes across medical domains (Sheela et al., 2024). 
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Figure 3: An overview of computer—aided medical image classification 

 
Source: Boafo (2024) 

Convolutional Neural Networks (CNNs) remain the most widely used architecture in 

medical image classification due to their capacity to hierarchically extract spatial 

and contextual features from image data (Deb et al., 2023). CNNs have 

demonstrated high efficacy in various classification tasks, particularly in the 

interpretation of chest radiographs, dermoscopic lesions, and retinal scans (Wang et 

al., 2020). Architectures such as VGGNet and AlexNet were among the earliest deep 

CNNs adapted for medical images, later evolving into deeper models like ResNet and 

DenseNet, which introduced residual connections and feature reuse, respectively 

(Ozdemir et al., 2019). For example, ResNet-50 achieved state-of-the-art accuracy in 

pneumonia classification from pediatric chest X-rays (Fedorov et al., 2012), while 

DenseNet-121 has been applied effectively for diabetic retinopathy detection 

(Milletari et al., 2016). These models leverage convolutional layers, batch 

normalization, and pooling to capture fine-grained patterns within medical images, 

making them ideal for differentiating between visually similar disease classes (He et 

al., 2018). Studies have also shown that pre-trained CNNs using transfer learning 

techniques significantly outperform models trained from scratch on smaller datasets, 

especially when domain-specific annotations are limited (Ma et al., 2022). Moreover, 

ensemble models combining CNN variants have further improved classification 

robustness by integrating diverse feature representations (Halder et al., 2022). 

However, CNNs face challenges when applied to highly heterogeneous or high-

resolution datasets due to their limited receptive field and spatial generalization, 

which has motivated the exploration of alternative architectures (Sheela et al., 2024). 

The emergence of Vision Transformers (ViTs) has introduced a shift from convolution-

based approaches to attention-driven models in medical image classification. Unlike 

CNNs, which rely on local spatial hierarchies, ViTs utilize self-attention mechanisms to 

capture long-range dependencies and global feature relationships across image 

patches (Faisal et al., 2023). This architectural difference has demonstrated 
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advantages in handling large and complex medical images, particularly in 

histopathology, mammography, and 3D volumetric scans (Elazab et al., 2023). ViTs 

have shown high accuracy in classifying skin lesions and breast cancer from high-

resolution images due to their capacity for contextual understanding across distant 

regions in an image (Song et al., 2021). In comparative studies, ViTs outperformed 

conventional CNNs in certain tasks by avoiding the locality constraints of 

convolutional filters and instead leveraging global attention for feature encoding 

(Shin et al., 2016). However, their performance often depends on large-scale 

pretraining and substantial computational resources, which can restrict their 

applicability in resource-limited settings (Wei et al., 2022). Additionally, hybrid models 

that combine convolutional layers with transformer blocks—such as TransUNet and 

Swin Transformer—have been applied in segmentation and classification tasks to 

harness the strengths of both paradigms (Hatamizadeh, Nath, et al., 2022). These 

models have achieved improved accuracy and feature richness in tasks involving 

complex organ structures or overlapping tissues (Cheng et al., 2015; Youssef et al., 

2023). As the application of ViTs expands across modalities, their adaptability and 

flexibility in medical imaging pipelines are being thoroughly investigated across 

diverse diagnostic categories (Lather & Singh, 2020). 

The assessment of neural network performance in medical image classification 

requires rigorous evaluation protocols incorporating both statistical and clinical 

metrics. Commonly used metrics include accuracy, precision, recall, specificity, F1-

score, and the area under the receiver operating characteristic curve (AUC-ROC), 

which together provide a holistic view of model effectiveness (Rajasekar et al., 2023). 

However, relying solely on accuracy can be misleading, especially in class-

imbalanced datasets where rare pathologies may be underrepresented (Lather & 

Singh, 2020). AUC-ROC and precision-recall curves are thus more informative in 

contexts with skewed class distributions (Liu et al., 2021). In addition to performance 

metrics, model robustness to noise, domain shifts, and adversarial perturbations is 

critical for safe deployment (Cheng et al., 2015). Cross-validation and external 

validation on independent datasets are commonly recommended to evaluate 

generalization ability (Youssef et al., 2023). Interpretability tools such as Grad-CAM, 

SHAP, and LIME have become essential in explaining model predictions to clinical 

users and ensuring transparency in decision-making (Chenyang & Chan, 2020). These 

tools allow visualization of important image regions contributing to a classification, 

increasing clinician trust and enabling error analysis (Rajasekar et al., 2023). 

Additionally, ethical considerations such as dataset bias, explainability gaps, and the 

risk of automation bias are critical in high-stakes medical settings (Youssef et al., 2023). 

As such, classification model evaluation must extend beyond numerical scores to 

incorporate interpretability, reliability, and fairness dimensions in order to align with 

clinical safety and regulatory frameworks (Krizhevsky et al., 2017). 

CNNs in radiology and early successes 

The introduction of Convolutional Neural Networks (CNNs) in radiology marked a 

major advancement in the automation of image interpretation, particularly in 

classification tasks where early detection of disease is vital. CNNs were initially 

developed for natural image classification tasks, but their capacity to automatically 

learn hierarchical spatial features led to rapid adoption in radiologic imaging (Y. 

Zhang et al., 2022). Unlike traditional machine learning methods that relied on 

handcrafted features, CNNs process raw pixel data through layers of convolutions 

and pooling operations to extract increasingly abstract representations, making them 

especially effective in handling medical images with subtle visual cues (GadAllah et 
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al., 2023). The early success of CNNs in radiology was demonstrated in applications 

such as pneumonia detection in chest X-rays, where models like CheXNet achieved 

diagnostic performance on par with radiologists (Saad et al., 2021). Similarly, CNNs 

trained on datasets like LUNA16 and ChestX-ray14 were able to accurately classify 

lung nodules and thoracic diseases, providing evidence of their viability in clinical 

settings (Esteva et al., 2017). These successes were further supported by the 

development of large annotated datasets that facilitated supervised training and 

validation of CNN models (Dundar et al., 2016; Esteva et al., 2017). Studies emphasized 

that CNNs performed exceptionally well in identifying abnormalities such as 

consolidation, effusion, and cardiomegaly from 2D radiographs, significantly reducing 

radiologist workload and interpretation time (Meng et al., 2019; Shin et al., 2016). The 

consistency and reproducibility of CNNs were key drivers of their acceptance in 

radiology departments, particularly for triaging and second-opinion systems 

(Abraham & Nair, 2020; Bao et al., 2023). These developments collectively established 

CNNs as powerful tools in radiological diagnostics and laid the groundwork for further 

exploration across imaging modalities. 
Figure 4: The Evolution of CNNs in Radiology 

 
Chest radiography has been one of the most extensively studied areas for CNN-based 

classification in radiology due to the widespread use of chest X-rays and the 

availability of large-scale annotated datasets. One of the landmark contributions was 

CheXNet, a 121-layer DenseNet trained on the ChestX-ray14 dataset to identify 

pneumonia, which achieved radiologist-level performance (Sun & Shi, 2019). CNNs 

demonstrated robust capabilities in detecting a wide range of thoracic pathologies, 

including infiltration, pneumothorax, atelectasis, and fibrosis (Hasija et al., 2022). The 

advantage of CNNs in chest radiography lies in their ability to detect features 

imperceptible to the human eye, leading to improved sensitivity and reduced false-

negative rates (Bao et al., 2023). Studies using transfer learning—where CNNs 

pretrained on ImageNet were fine-tuned on medical datasets—showed substantial 

gains in performance, particularly when labeled data were limited (Saad et al., 2021). 

For example, (Dundar et al., 2016) applied a CNN to classify pulmonary tuberculosis in 

chest X-rays and reported accuracy exceeding 96%, demonstrating its potential for 

global health applications. GadAllah et al. (2023) implemented CNNs for interstitial 

lung disease classification and found superior performance over traditional support 

vector machine models. Moreover, CNN-based models have been applied for 

quantification tasks such as measuring cardiothoracic ratio and lung segmentation, 

further expanding their utility beyond binary classification (Shin et al., 2016; Wei et al., 

2022). The growing body of work on CNNs in chest imaging consistently reveals high 
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diagnostic potential and practical feasibility for incorporation into clinical workflows 

as decision-support systems (Bao et al., 2023). 

The success of CNNs in chest radiography has led to their application in other imaging 

modalities such as computed tomography (CT) and magnetic resonance imaging 

(MRI), where the complexity and volume of data pose substantial challenges for 

human interpretation. CNNs have demonstrated considerable success in brain 

imaging, particularly in tumor classification and segmentation tasks (Jeong et al., 

2020)). For instance, CNN-based models trained on the BRATS dataset accurately 

differentiated between glioma subtypes and facilitated tumor boundary delineation 

in MRI scans (Jeong et al., 2020). Similarly, in pulmonary CT, CNNs were employed to 

detect lung nodules and predict malignancy using 3D volumetric data, showcasing 

improvements in precision and false positive reduction compared to rule-based 

systems (Cheng et al., 2015). The use of 3D CNN architectures enabled spatial feature 

extraction across slices, addressing the challenges of volumetric complexity inherent 

in CT and MRI (Shi et al., 2023). In abdominal imaging, CNNs have been used to classify 

liver lesions and identify hepatic fibrosis stages, demonstrating promising results in 

clinical trials (Pei et al., 2019). Furthermore, CNN-based segmentation has improved 

delineation of anatomical structures such as blood vessels, tumors, and organ 

boundaries, supporting surgical planning and radiation therapy (Shi et al., 2023). 

Researchers also highlighted that CNN performance remains consistent across various 

scanners and acquisition protocols when appropriate normalization techniques and 

augmentation are applied during training (Feng et al., 2021). The extension of CNNs 

into CT and MRI analysis exemplifies their flexibility in handling high-resolution, 

multidimensional data across radiologic domains. Numerous comparative studies 

have benchmarked CNNs against radiologists and other machine learning models to 

evaluate their diagnostic performance across radiological tasks. In several studies, 

CNNs matched or exceeded expert radiologist accuracy in classifying diseases from 

X-ray and CT scans (Peng & Sun, 2023). For instance, in mammography, S et al. (2023) 

reported that a deep CNN trained on a large multinational dataset reduced both 

false positives and false negatives compared to expert readers. Similarly, Salama and 

Shokry (2022) showed that a 3D CNN could predict lung cancer risk from low-dose CT 

scans with higher sensitivity than average radiologists. Performance metrics 

commonly used include accuracy, sensitivity, specificity, F1-score, and area under 

the ROC curve (AUC), all of which have consistently demonstrated CNN superiority in 

large-scale trials (Cheng et al., 2015). Comparative analysis with traditional algorithms 

such as logistic regression and support vector machines revealed the advantage of 

CNNs in capturing complex spatial hierarchies and reducing manual preprocessing 

steps (Pei et al., 2019; S et al., 2023). Evaluation frameworks have also included cross-

dataset testing, inter-reader agreement comparisons, and statistical tests to assess 

generalizability and robustness (Cheng et al., 2015). Furthermore, explainability tools 

like Grad-CAM have been used in comparative studies to validate model focus areas 

against radiologist-reported regions of interest (Salama & Shokry, 2022). These 

benchmarking efforts collectively affirm the diagnostic reliability of CNNs and highlight 

their consistent performance across varied radiologic imaging scenarios and 

datasets. 

Neural Network Architectures in Medical Imaging 

Neural network models have emerged as a foundational element in the 

advancement of medical imaging, defined broadly as computational systems that 

mimic the human brain’s ability to process and extract meaningful features from raw 

input data (Ardakani et al., 2020). These models, comprising interconnected layers of 
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artificial neurons, enable end-to-end learning and automatic feature extraction 

without the need for manual feature engineering (Ahmed et al., 2022; Modak et al., 

2023). Taxonomically, neural networks can be classified based on their structure and 

function into several major categories, including feedforward networks, recurrent 

neural networks (RNNs), and convolutional neural networks (CNNs) (Aklima et al., 2022; 

Özdemir & Sonmez, 2021). Within the realm of medical imaging, CNNs have become 

predominant due to their proficiency in capturing spatial hierarchies in two-

dimensional data, which is essential for tasks such as detecting lesions in radiographs 

or segmenting organs in computed tomography (CT) scans (Duong et al., 2022; Helal, 

2022). Other architectures, such as autoencoders and generative adversarial 

networks (GANs), have been developed for unsupervised feature learning and image 

synthesis, further expanding the taxonomy of neural network models in this domain 

(Mahfuj et al., 2022; Yuan et al., 2017). Hossain et al. (2019) illustrate that the flexible 

taxonomy of these models supports a wide range of clinical applications—from tumor 

detection in MRI to the classification of skin lesions—demonstrating the adaptability of 

neural networks to various diagnostic tasks. Hossain et al. (2019) have further 

delineated the evolution of architectural models by comparing traditional CNNs 

against more complex arrangements that incorporate deeper hierarchies and 

recurrent feedback loops, emphasizing an increasing trend toward hybrid models 

(Majharul et al., 2022; Yuan et al., 2017). This diverse taxonomy not only broadens the 

understanding of neural network functionality but also provides a framework for 

evaluating model performance in the context of heterogeneous medical image 

datasets (Hossen & Atiqur, 2022; More et al., 2021). 

The success of neural network architectures in medical imaging relies on the intricate 

design and integration of key architectural components. These components include 

multiple layers (input, hidden, and output) that serve to progressively abstract raw 

image data into more complex feature representations (Bhattacharyya et al., 2022; 

More et al., 2021; Mohiul et al., 2022). Convolutional layers are particularly critical in 

extracting spatial features, where filters convolve across the image to detect edges, 

textures, and patterns (Amin et al., 2021; Kumar et al., 2022). Activation functions, such 

as the rectified linear unit (ReLU), sigmoid, and tanh, introduce non-linearity into the 

models, thereby allowing them to capture complex mappings that linear models 

cannot (He et al., 2016; Sohel et al., 2022; Yang et al., 2018). Residual connections, 

introduced in ResNet architectures (Bhattacharyya et al., 2022; Tonoy, 2022), address 

the degradation problem in deep networks by allowing gradients to bypass certain 

layers, ensuring smoother training and improved convergence rates. Batch 

normalization, another critical component, stabilizes the learning process by 

normalizing the inputs of each layer, thereby accelerating training and mitigating 

issues related to internal covariate shift (Raj, 2024; Younus, 2022). Advanced studies 

have explored the interplay between these components, demonstrating that the 

integration of dropout layers and data augmentation techniques further enhances 

model generalization in the challenging environment of medical image classification 

(Alam et al., 2023; Bougourzi et al., 2024). Raj (2024) provides evidence that 

modifications in activation functions and normalization schemes can lead to marked 

improvements in diagnostic accuracy. Additionally, the incorporation of attention 

mechanisms and squeeze-and-excitation networks has been shown to refine feature 

maps and bolster the network’s sensitivity to critical regions within images (Arafat Bin 

et al., 2023; Bougourzi et al., 2024). These findings, supported by empirical evaluations 

from studies conducted by Wang et al. (2021), underscore the importance of 
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architectural innovations in optimizing neural network performance for various 

medical imaging modalities (Bougourzi et al., 2024; Chowdhury et al., 2023). 
Figure 5:  Convolutional Neural Networks (CNN) 

 
Source: Rguibi et al. (2022) 

Convolutional Neural Networks (CNNs) have long been recognized as the standard-

bearer for medical image classification, owing to their robust ability to process pixel-

level information through local receptive fields and weight sharing mechanisms (Chen 

et al., 2017; Jahan, 2023). Early CNN models such as AlexNet and VGGNet laid the 

groundwork for subsequent architectures by demonstrating significant improvements 

in classification accuracy across natural and medical images (Mahdy et al., 2023; Sun 

& Shi, 2019). The advent of ResNet introduced the concept of residual learning, which 

has proven crucial in training deeper networks by circumventing the vanishing 

gradient problem (Maniruzzaman et al., 2023; Modak et al., 2023). Multiple studies 

have documented the superior performance of ResNet-based models in diagnosing 

thoracic diseases and lung nodules from radiographs, highlighting their clinical 

applicability (Hossen et al., 2023; Teramoto et al., 2019). Similarly, DenseNet 

architectures have been characterized by dense connectivity between layers, 

facilitating feature reuse and enabling more compact models with reduced 

parameter counts (Öztürk et al., 2020; Roksana, 2023). Sathyakumar et al. (2020) 

demonstrate that DenseNet achieves high diagnostic accuracy in tasks such as 

diabetic retinopathy detection and skin lesion classification. In the realm of medical 

imaging, these models have been benchmarked against traditional machine 

learning techniques, with results consistently indicating a marked improvement in 

performance metrics such as accuracy, sensitivity, and specificity (Duong et al., 2022; 

Shahan et al., 2023). Additionally, the use of transfer learning—where these pretrained 

models are fine-tuned on specific medical datasets—has been extensively validated 

in literature, resulting in performance gains on datasets with limited labels (Liu et al., 

2022; Tonoy & Khan, 2023). Malik et al. (2022) further underline the utility of CNNs, 

ResNets, and DenseNets in capturing relevant visual information while mitigating 

overfitting in complex classification tasks. These architectures continue to serve as 

benchmarks for ongoing research and clinical deployment, reflecting a consensus on 

their efficacy and reliability across various diagnostic challenges (Al-Arafat, Kabi, et 

al., 2024; Teramoto et al., 2019). 

Convolutional Neural Networks (CNNs) for Disease Classification 

Convolutional Neural Networks (CNNs) form the backbone of modern image 

classification systems due to their robust ability to automatically extract hierarchical 

features from raw pixel data (Al-Arafat, Kabir, et al., 2024; Deb et al., 2023). A CNN 
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architecture typically consists of convolutional layers, pooling layers, and fully 

connected layers, where each stage captures increasingly abstract representations 

of the input image (Alam et al., 2024; Wang et al., 2020). The first convolutional layers 

learn low-level features such as edges, corners, and textures, while deeper layers 

detect high-level semantic features like lesions, tumors, or organ boundaries (Alam et 

al., 2024; Ozdemir et al., 2019). Classic architectures like AlexNet (Fedorov et al., 2012), 

VGGNet (Litjens et al., 2018), and GoogLeNet (He et al., 2018) demonstrated the 

scalability and flexibility of CNNs in classification tasks, especially when adapted to 

medical imaging. With the introduction of ResNet, which added residual connections 

to address the vanishing gradient problem in deep networks (Ammar et al., 2024; Ma 

et al., 2022), the training of ultra-deep networks became more stable and effective 

for complex image data such as CT or histopathological slides. DenseNet improved 

upon this by connecting each layer to every other layer in a feedforward fashion, 

encouraging feature reuse and improving gradient flow (Bhowmick & Shipu, 2024; 

Sheela et al., 2024). These architectural advancements have allowed CNNs to 

outperform traditional models in classification tasks across a variety of imaging 

modalities including MRI, CT, mammography, and fundus images (Bhuiyan et al., 2024; 

Cassidy et al., 2021). CNNs’ hierarchical feature learning capability has been 

particularly advantageous for extracting latent visual patterns associated with subtle 

pathological manifestations, which would be challenging for human observers or 

conventional machine learning models to identify (Ardakani et al., 2020; Dasgupta & 

Islam, 2024). 

CNNs have demonstrated outstanding performance in detecting pneumonia from 

chest radiographs, a task that is essential in many clinical settings, particularly in 

resource-limited regions where radiologist access is scarce. The ChestX-ray14 dataset 

developed by Dasgupta et al. (2024) and  Modak et al. (2023), which contains over 

100,000 labeled images for 14 thoracic diseases, catalyzed CNN-based research in 

pneumonia detection. Elhadidy et al. (2024)introduced CheXNet, a DenseNet-121 

model trained on this dataset, which achieved radiologist-level performance in 

identifying pneumonia. Similar findings were reported by Dey et al. (2024); Özdemir 

and Sonmez (2021), who developed the MIMIC-CXR dataset, reinforcing CNN 

effectiveness in large-scale radiological diagnosis. CNNs such as VGGNet and ResNet 

have also been utilized to detect pneumonia with high sensitivity and specificity, often 

exceeding 90% in experimental setups (Hasan et al., 2024; Tam et al., 2021). (Masood 

et al., 2020) emphasized that while CNNs achieved high AUC scores on internal 

datasets, performance variability across external institutions highlighted the 

importance of dataset diversity in training phases. Other studies incorporated 

ensemble models or attention-guided networks to improve robustness in pneumonia 

detection (Ardakani et al., 2020; Helal, 2024). CNNs not only facilitated disease 

classification but also supported severity scoring and visual localization of infected 

lung regions using Grad-CAM heatmaps (Hossain et al., 2024; Modak et al., 2023). 

These interpretability tools are crucial in clinical applications where model decisions 

must be transparent and traceable (Elhadidy et al., 2024; M. R. Hossain et al., 2024). 

Collectively, the body of evidence from Teramoto et al. (2019), Sarki et al. (2022), and 

Sathyakumar et al. (2020)confirmed the utility of CNNs as effective triage tools and 

decision support systems for pneumonia screening in both adult and pediatric 

populations. 
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Figure 6: Block diagram of the developed plant disease classification approaches 

 
Source: Afifi et al. (2021).  

CNNs have proven highly effective in the classification of breast cancer and diabetic 

retinopathy, two domains that rely heavily on image-based diagnostics for early 

intervention. In breast cancer diagnosis, CNNs have been extensively trained on 

mammographic datasets such as the Digital Database for Screening Mammography 

(DDSM) and INbreast to distinguish between benign and malignant lesions (Islam, 

2024; Tam et al., 2021). Litjens et al. (2018) developed a deep learning model trained 

on over 76,000 mammograms from the UK and US, which outperformed human 

radiologists in reducing both false positives and false negatives. In diabetic 

retinopathy detection, Hossain et al. (2019) created a CNN trained on a dataset of 

retinal fundus images from EyePACS and Indian hospitals, reporting sensitivity of 90.3% 

and specificity of 98.1% in identifying referable retinopathy. Further models developed 

by Jeong et al. (2020) and Asiri et al. (2023) validated CNN effectiveness on 

international fundus datasets, highlighting generalizability across populations. CNNs 

have also been used for grading disease severity and localizing lesions using region-

based architectures (Amin et al., 2021; Islam et al., 2024). The success of CNNs in these 

applications is attributed to their ability to capture fine-grained features such as 

microaneurysms, calcifications, and mass densities—patterns that are subtle and 

often missed in early disease stages (Islam, 2024; Jeong et al., 2020). Integration of 

ensemble learning and transfer learning has further enhanced the adaptability of 

CNNs to limited clinical datasets (Jahan, 2024; Pereira et al., 2016). Performance 

metrics reported across studies consistently show AUC values above 0.90 for both 

diseases, establishing CNNs as reliable tools in ophthalmology and oncology 

workflows (Jim et al., 2024; Mostafa et al., 2023). These findings reflect a growing 

confidence in CNN-based systems for large-scale screening and diagnosis in public 

health. 

The principal strength of CNNs in medical image classification lies in their ability to 

encode spatial hierarchies and complex visual patterns through localized filter 

operations and pooling mechanisms. These design features enable CNNs to efficiently 

capture texture, shape, and boundary information relevant for distinguishing 

pathological tissues from healthy ones (Aloraini et al., 2023; Khan & Aleem Al Razee, 

2024). The spatial invariance introduced by shared weights and local connectivity 
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allows CNNs to detect features regardless of their position within the image, a critical 

property in diagnosing diseases with varying anatomical presentations (Mahabub, 

Das, et al., 2024; Souid et al., 2021). Pandey et al. (2023) confirmed that CNNs 

outperform traditional methods in feature learning from heterogeneous datasets 

involving lungs, skin, retina, and breast tissue. CNNs also benefit from end-to-end 

training, eliminating the need for manual feature extraction and significantly reducing 

the bias introduced by human-engineered preprocessing steps (Faisal et al., 2023; 

Mahabub, Jahan, Hasan, et al., 2024). However, several limitations are evident. CNNs 

require large annotated datasets to generalize effectively, and their performance 

tends to drop when trained on small or imbalanced datasets (Elazab et al., 2023; 

Mahabub, Jahan, Islam, et al., 2024). Furthermore, the black-box nature of deep 

learning models poses challenges in interpretability and clinical trust (Islam et al., 2024; 

M. Zhang et al., 2022). Overfitting is also a concern, especially when models memorize 

training data patterns instead of learning generalizable features (Hossain et al., 2024; 

More et al., 2021). To mitigate this, researchers have employed dropout layers, data 

augmentation, and batch normalization strategies (Younus et al., 2024; Souid et al., 

2021). Despite these limitations, CNNs remain the dominant architecture in medical 

image analysis due to their unmatched ability to extract meaningful spatial 

representations and adapt to a wide range of classification challenges (Elazab et al., 

2023; Younus et al., 2024). 

Residual Networks and Dense Convolutional Networks in Medical Imaging 

Residual Networks (ResNets), introduced by Nahid et al. (2024), marked a critical 

advancement in deep learning architecture by addressing the degradation problem 

associated with very deep neural networks. ResNets use identity-based skip 

connections that allow gradients to flow more directly during backpropagation, 

enabling the training of deeper networks without a corresponding increase in training 

difficulty or overfitting. This architecture has shown exceptional robustness in low-

resolution and noisy medical datasets, where conventional CNNs often struggle to 

generalize effectively (Nunnari et al., 2021; Rahaman et al., 2024). For instance, Yang 

et al. (2018) demonstrated that ResNet-121 outperformed radiologists in pneumonia 

classification from chest X-rays, which are typically low-resolution and susceptible to 

acquisition noise. Similarly, Aloraini et al. (2023) used ResNet for tuberculosis detection 

in chest radiographs, reporting over 96% accuracy despite the presence of artifacts 

and poor contrast. In dermatological imaging, ResNet-50 achieved high accuracy in 

classifying melanoma versus benign lesions in dermoscopic images, even with 

variable lighting and resolution inconsistencies (Roksana et al., 2024; Zhang et al., 

2022). Kasmaiee et al. (2023) that ResNets maintained relatively stable performance 

across institutional variations and imaging conditions, unlike simpler architectures that 

overfit to dataset-specific artifacts. In retinal fundus images, ResNet variants have 

been used for diabetic retinopathy detection with notable resilience to blur and 

uneven illumination (Roy et al., 2024; Shin et al., 2016). Transfer learning with ResNet 

backbones also allowed successful classification in small datasets by adapting 

features learned from natural image datasets (Pandit et al., 2022; Sabid & Kamrul, 

2024). These findings underscore ResNet’s effectiveness in modeling discriminative 

features even under suboptimal imaging conditions, making it suitable for real-world 

medical deployments (Hesamian et al., 2019; Sharif et al., 2024). 
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Figure 7: DenseNet Architecture for Medical Image Classification 

 
Source: Zhou et al. (2022) 

Densely Connected Convolutional Networks (DenseNets), proposed by GadAllah et 

al. (2023), provide an alternative strategy to address vanishing gradients by 

connecting each layer to every other layer in a feedforward manner. In medical 

imaging, DenseNet architectures have demonstrated superior performance in 

classification and localization tasks by facilitating feature reuse and efficient gradient 

flow. In ophthalmology, DenseNets have been widely applied for diabetic retinopathy 

and age-related macular degeneration (AMD) classification using fundus 

photographs and OCT scans (Chen et al., 2017; Shofiullah et al., 2024; Zhou et al., 

2022). Raj (2024) implemented a DenseNet on a Kaggle diabetic retinopathy dataset, 

achieving high sensitivity in detecting referable cases, while Alalwan et al., (2021) 

integrated attention mechanisms into DenseNet to enhance lesion localization 

accuracy. Deng et al. (2022) reported that DenseNet models achieved over 90% 

accuracy and AUC in diabetic retinopathy classification, outperforming traditional 

CNNs in both image quality tolerance and lesion recognition. DenseNet’s use of skip 

connections proved particularly effective in retaining spatial information across layers, 

which is critical for detecting microaneurysms, hemorrhages, and exudates in retinal 

scans (Chen et al., 2017; Shohel et al., 2024; Zhou et al., 2022). Deb et al. (2023) 

demonstrated that a modified DenseNet model accurately classified AMD stages 

using OCT images and facilitated progression tracking across visits. Moreover, studies 

involving ensemble learning with DenseNet backbones further improved classification 

robustness and sensitivity to rare retinal diseases (Sun & Shi, 2019; Sunny, 2024c). The 

model’s efficiency in training on relatively small datasets, due to its feature reuse 

property, has also made it appealing in low-resource clinical settings (Ahmad et al., 

2021; Alalwan et al., 2021; Sunny, 2024a, 2024b).  
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DenseNets have demonstrated remarkable utility in dermatological image 

classification, particularly in tasks involving skin lesion recognition and melanoma 

detection. The architecture’s ability to reuse features across layers results in compact 

models that are both computationally efficient and highly accurate (Chen et al., 

2017; Deng et al., 2022). Wei et al. (2022) applied DenseNet-121 to the ISIC skin cancer 

dataset and achieved high AUC scores in distinguishing melanoma, basal cell 

carcinoma, and benign nevi. Raj (2024) further validated DenseNet’s superiority over 

dermatologists in classifying malignant lesions when tested on dermoscopic images 

under varying lighting and scale. Deng et al.(2022)found that DenseNet models 

provided better sensitivity and specificity than Inception-v4 and ResNet variants on 

the same dataset. One key advantage is DenseNet’s retention of fine-grained image 

features crucial for dermatological diagnosis, such as pigment networks, asymmetry, 

and lesion borders (Shelhamer et al., 2016). Chen et al. (2021) confirmed that 

DenseNets, when coupled with data augmentation and ensemble techniques, 

consistently outperform standard CNNs in classifying multiclass skin lesions across 

different skin types. DenseNet models have also been adapted with attention layers 

to enhance interpretability and lesion localization, offering clinicians a visual 

explanation of diagnostic predictions (Bilic et al., 2022). In low-resource or mobile 

settings, the relatively low parameter count of DenseNet models offers additional 

advantages by enabling deployment without sacrificing accuracy (Bilic et al., 2022; 

Raj, 2024). Across clinical validation studies, DenseNet has maintained strong 

performance on external datasets, reinforcing its generalizability and robustness in skin 

disease diagnostics (Wang et al., 2021). 

Emerging Transformer-Based Models: Vision Transformers (ViTs) 

Vision Transformers (ViTs) utilize a self-attention mechanism, a concept adapted from 

natural language processing (Sheela et al., 2024), which has significantly influenced 

the field of medical image classification. Unlike convolutional neural networks (CNNs) 

that rely on localized kernel operations and spatial hierarchies, ViTs operate by 

dividing images into fixed-size patches, linearly embedding them, and passing them 

through transformer layers, where self-attention captures global context relationships 

(Ardakani et al., 2020). This attention mechanism allows the model to weigh the 

importance of different patches, thereby preserving long-range dependencies—an 

essential advantage for high-resolution medical images where pathological features 

may be spatially dispersed (Teramoto et al., 2019). The ability of ViTs to capture global 

semantics has been validated across applications such as multi-organ CT 

segmentation (Masood et al., 2020), retina analysis (Sathyakumar et al., 2020), and 

brain tumor grading (Tajbakhsh et al., 2015). Compared to CNNs, which require 

stacked layers to increase receptive fields, ViTs access global image features in a 

single layer, enhancing representational efficiency (Aloraini et al., 2023; Faisal et al., 

2023). The Swin Transformer introduced shifted window attention to integrate local 

inductive biases with global understanding, improving classification in dense images 

such as histology slides (Elazab et al., 2023) . Additional studies have applied 

hierarchical ViTs, like PVT and MobileViT, to improve patch-level detail preservation 

and reduce computational costs (Ilhan et al., 2023; Shibly et al., 2020). Morís et al. 

(2021) emphasize that ViT attention maps offer better interpretability and allow 

transparent feature attribution—vital in medical decision-making. When tested on 

image-heavy tasks such as lung disease recognition or whole-slide cancer 

diagnostics, the ability of ViTs to process all image parts with equal attention has 

consistently yielded high performance across multiple datasets (Wang et al., 2021). 
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Vision Transformers (ViTs) have demonstrated strong performance in high-resolution 

medical imaging tasks, particularly in histopathology and mammography, where 

subtle visual cues over large spatial extents are critical for accurate diagnosis. In 

digital histopathology, ViTs have been used to classify tumor regions and detect 

metastases in whole-slide images (WSIs), where their global receptive field enables 

better recognition of long-range contextual features than traditional CNNs (Liu et al., 

2022). Chen et al. (2022) implemented the TransMIL model on multiple histology 

datasets, achieving superior classification metrics in breast and gastric cancer slides 

by leveraging inter-patch dependencies. Similarly, Mao et al. (2022) employed ViT-

based attention pooling strategies to identify disease-specific patterns, reporting 

improved AUC and precision scores. In mammographic analysis, ViTs have been 

trained on datasets like VinDr-Mammo and INBreast, where they outperformed ResNet 

and DenseNet architectures in tasks such as lesion localization and malignancy 

grading ((Liu et al., 2022; Mao et al., 2022). ViTs have also been applied in detecting 

microcalcifications, which are often difficult to distinguish using convolutional 

approaches due to their tiny size and diffuse appearance (Faisal et al., 2023). 

Apostolopoulos et al. (2021) highlight that ViTs consistently perform well on 

mammography benchmarks, often yielding higher sensitivity and fewer false positives 

compared to CNNs. Researchers have adapted hybrid architectures like Swin-UNet 

and TransUNet, which incorporate both convolution and attention mechanisms, to 

boost performance in segmentation and classification tasks (Ajai & Anitha, 2022). 

Additionally, the interpretability of ViT models has been useful in clinical settings; 

attention heatmaps produced during inference closely align with radiologist 

annotations, aiding in transparency and diagnostic validation (Ajai & Anitha, 2022; 

Yang et al., 2018). 
Figure 8: Vision Transformer ViT Architecture 

 
Source: Boesch (2023) 

Lightweight and Scalable Models: EfficientNet and MobileNet 

EfficientNet introduced a paradigm shift in neural architecture design by 

implementing a compound scaling strategy that uniformly balances network depth, 

width, and image resolution to optimize performance (Nunnari et al., 2021). Traditional 

CNN models typically scale these dimensions independently, often leading to 

suboptimal efficiency or overfitting. In contrast, EfficientNet uses a compound 
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coefficient to determine how to proportionally increase each dimension, resulting in 

improved accuracy-to-computation ratios (Yang et al., 2018). This architecture was 

extended into EfficientNet-B0 through B7, with each successive version offering higher 

accuracy with corresponding computational costs. In medical imaging tasks, 

EfficientNet has demonstrated competitive results across multiple domains, including 

skin cancer classification, diabetic retinopathy detection, and chest X-ray diagnosis 

(Faisal et al., 2023; Souid et al., 2021). In particular, Abraham and Nair (2020) showed 

that EfficientNet-B4 achieved dermatologist-level accuracy on the ISIC 2018 skin lesion 

dataset while maintaining low parameter counts. Similarly, EfficientNet has been 

applied in fundus image analysis for glaucoma and diabetic macular edema 

screening with high AUC scores and rapid inference times (Elazab et al., 2023; 

Kasmaiee et al., 2023). Zhang et al. (2023) confirmed EfficientNet’s capability to 

generalize well on noisy and imbalanced datasets through transfer learning and data 

augmentation. Furthermore, when fine-tuned on the ChestX-ray14 dataset, 

EfficientNet-B3 outperformed ResNet-50 in both sensitivity and specificity while 

requiring fewer FLOPs (Zhang et al., 2022). This balance between architectural 

scalability and computational thrift has made EfficientNet a widely adopted 

backbone for various diagnostic classification and segmentation tasks, particularly 

where deployment on low-resource environments or large-scale hospital systems 

demands model efficiency (Kasmaiee et al., 2023). 

MobileNet, a family of lightweight deep learning models, was explicitly developed for 

deployment on mobile and edge devices, making it well-suited for mobile health 

(mHealth) and point-of-care diagnostic tools (Moor et al., 2023). MobileNet’s 

architecture relies on depthwise separable convolutions, which significantly reduce 

the number of parameters and computational complexity without compromising 

classification accuracy (Jin et al., 2021; Lannelongue et al., 2021). This efficient design 

has enabled a wide range of medical applications where real-time image analysis is 

required on low-power devices. In skin cancer detection, MobileNet has been 

integrated into smartphone-based diagnostic apps that provide lesion classification 

capabilities using dermoscopic images, achieving AUC scores above 0.90 on datasets 

such as HAM10000 and ISIC (Sahu et al., 2018). Similarly, in ophthalmology, MobileNet 

has been employed for diabetic retinopathy screening in rural areas using portable 

fundus cameras, offering sensitivity rates comparable to CNNs with higher 

computational demands (Moon et al., 2022). MobileNet-V2 and V3 models have also 

been optimized for tasks in pediatric pneumonia detection from chest radiographs 

using low-cost X-ray machines in underserved settings ((Jain & Semwal, 2022). Tan et 

al. (2024) have applied MobileNet as a backbone in embedded AI systems for real-

time ultrasound analysis, demonstrating its potential in prenatal care and trauma 

diagnostics. Additionally, MobileNet models have been embedded in wearable 

biosensors for image-based wound analysis and dermatological condition tracking 

(Sadad et al., 2021). The architecture’s compatibility with TensorFlow Lite and CoreML 

frameworks further enhances its utility in medical AI systems deployed in non-clinical 

or remote environments (Korot et al., 2021; Sadad et al., 2021). Collectively, the 

literature reflects the critical role of MobileNet in democratizing diagnostic technology 

by enabling AI-assisted healthcare on personal and portable devices. 
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Figure 9: EfficientNet vs. MobileNet: Process Flow in Medical Image Classification 

 
Model Evaluation Metrics and Performance Benchmarks 

The evaluation of machine learning models in medical imaging relies on a suite of 

quantitative metrics that provide comprehensive insight into classification 

performance. Accuracy, although widely reported, can be misleading in class-

imbalanced datasets because it does not distinguish between types of classification 

errors (GadAllah et al., 2023). Therefore, precision, recall, and F1-score are often used 

in tandem to evaluate performance more holistically. Precision reflects the proportion 

of true positives among predicted positives, while recall (or sensitivity) measures the 

ability of the model to identify all actual positives (Esteva et al., 2017). The F1-score 

harmonizes both metrics to penalize models that exhibit an imbalance between 

precision and recall (Dundar et al., 2016). For example, in skin lesion classification, 

Sadad et al. (2021) found that EfficientNet models with balanced F1-scores 

outperformed those optimized solely for accuracy. Receiver Operating 

Characteristic–Area Under Curve (ROC-AUC) is particularly useful for evaluating 

binary classifiers across various thresholds, offering a threshold-independent metric 

that is less affected by class imbalance (Toğaçar et al., 2020). Studies on diabetic 

retinopathy and pneumonia detection consistently report ROC-AUC values above 

0.90 for CNNs and transformer-based architectures, emphasizing their diagnostic 

reliability (Souid et al., 2021; Toğaçar et al., 2020). Confusion matrices provide granular 
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insights by detailing true positives, false positives, true negatives, and false negatives, 

facilitating error pattern analysis and clinical risk assessment (Kuo & Madni, 2023). Their 

utility is evident in breast cancer and histopathology classification, where false 

negatives can have severe consequences (Sahu et al., 2018). Evaluation frameworks 

such as these enable robust comparison across architectures and help ensure 

medical AI systems meet diagnostic standards across diverse clinical contexts (Kuo & 

Madni, 2023; Sahu et al., 2018). 
Figure 10: Model Evaluation Metrics in Medical Imaging 

 
Interpretability and Explainability in Neural Networks 

In clinical decision-making, the deployment of artificial intelligence (AI) systems, 

particularly neural networks, requires not only high performance but also a high 

degree of transparency and interpretability to ensure clinician trust and patient safety. 

Unlike traditional rule-based algorithms, deep learning models are often described as 

“black boxes,” making it difficult to understand the rationale behind their predictions 

(Tam et al., 2021). This lack of transparency presents a significant barrier to integration 

in clinical workflows, where accountability and justification for diagnostic decisions 

are critical (Jeong et al., 2020). Zhang et al. (2022) highlight that even high-performing 

models for mammography and pneumonia detection raised clinician concerns due 

to opaque decision-making processes. To address these concerns, interpretability has 

been recognized as a fundamental requirement in AI model evaluation, particularly 

for high-stakes domains like oncology, cardiology, and radiology (Jeong et al., 2020; 

Pereira et al., 2016). Transparent models aid in clinical validation, support differential 

diagnosis, and assist in error analysis when discrepancies arise between AI predictions 

and human assessments (Rguibi et al., 2022). Moreover, interpretability enables 

clinicians to detect data artifacts or biases that may lead to incorrect conclusions, an 

issue observed in studies where models inadvertently relied on non-pathological 

features such as image text markers or patient positioning (Wang et al., 2021). The 

need for interpretable models is further emphasized in interdisciplinary teams where 

radiologists, pathologists, and general practitioners must collaborate and rely on AI 

assistance (Esteva et al., 2017). As such, the clinical deployment of neural networks is 

increasingly contingent upon the availability of reliable, interpretable explanations 

that align with medical knowledge and decision-making standards. 
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Figure 11: Trade-off Between Model Accuracy and Explainability in Machine Learning 

Techniques 

 
Source: medium.com 

To enhance model interpretability in medical imaging, several post-hoc explanation 

tools have been developed, with Grad-CAM (Gradient-weighted Class Activation 

Mapping), SHAP (SHapley Additive Explanations), and LIME (Local Interpretable 

Model-Agnostic Explanations) being among the most widely used. Grad-CAM 

produces class-specific heatmaps that highlight regions in an input image 

contributing most strongly to a model’s prediction, making it particularly useful for 

convolutional neural networks in imaging contexts (Luo et al., 2022). In breast cancer 

diagnosis and diabetic retinopathy classification, Grad-CAM has helped validate that 

CNNs are focusing on clinically relevant lesions rather than irrelevant background 

features (Clark et al., 2013). SHAP, which is grounded in cooperative game theory, 

provides feature attributions by estimating the marginal contribution of each input 

feature to the prediction (Faisal et al., 2023). Although initially developed for 

structured data, SHAP has been adapted for image data and integrated into various 

CNN and transformer-based architectures for dermatology and histopathology 

analysis (Pandey et al., 2023). LIME, by approximating the behavior of a complex 

model with an interpretable surrogate model around a specific prediction, has 

proven effective in providing instance-level explanations in chest radiograph analysis 

and skin lesion classification (Rguibi et al., 2022). Comparative studies indicate that 

while Grad-CAM offers visual interpretability suitable for clinicians, SHAP and LIME offer 

finer granularity for model debugging and bias detection (Clark et al., 2013). Visual 

explanation tools also play a crucial role in human-AI interaction during diagnosis, 

allowing clinicians to confirm that the model is leveraging appropriate anatomic or 

pathological features (Pandey et al., 2023). Their use has become standard in AI 

model validation and has been incorporated into research guidelines for medical AI 

development (Wang et al., 2021). 

Multi-Modal and Multi-Label Medical Image Classification 

The integration of multi-modal data—including imaging, clinical, and genomic 

information—has significantly advanced the diagnostic capabilities of machine 

learning models in healthcare. Medical imaging provides spatial and morphological 

data, while clinical records contribute context such as age, comorbidities, and 

symptom profiles. Genomic data adds molecular-level insights into disease 

progression, enabling precision diagnostics (Wang et al., 2021). Multi-modal fusion 
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models capitalize on the complementary nature of these data types, offering superior 

performance compared to single-input models (Pandey et al., 2023; Rguibi et al., 

2022). In oncology, Pereira et al. (2016) developed a model combining 

histopathological images and genetic expression data to predict survival outcomes 

in breast cancer patients with increased accuracy. Similarly, Rguibi et al. 

(2022)employed a fusion framework incorporating MRI scans and clinical features for 

early diagnosis of Alzheimer's disease. A study by Oh et al. (2020) combined CT images 

with blood biomarkers to improve COVID-19 severity prediction, outperforming 

image-only models. Techniques for data fusion vary from early fusion—concatenating 

features at the input level—to late fusion, where predictions from separate models are 

combined (Luo et al., 2022). Intermediate fusion approaches that integrate modality-

specific encoders have been effective in balancing complexity and interpretability 

(Wang et al., 2021). Attention mechanisms and transformer-based architectures have 

further facilitated cross-modal learning by assigning weights to modality-specific 

inputs depending on relevance (Tomassini et al., 2022). These multi-modal 

approaches have shown considerable success in pathology, cardiology, and 

genomics-integrated oncology (Johnson et al., 2019). Importantly, models trained on 

harmonized multi-modal data exhibit higher robustness across institutions and patient 

subgroups, contributing to improved generalizability and fairness (Shi et al., 2023). 
Figure 12: Multi-Modal and Multi-Label Medical Image Classification System 

 
Comparative Studies and Meta-Analysis of Model Performance 

Comparative studies of neural network models in medical imaging have provided 

valuable insights into the relative strengths and weaknesses of different architectures 

across diverse clinical tasks. Convolutional neural networks (CNNs), such as ResNet, 
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DenseNet, and Inception, have long dominated classification benchmarks due to 

their proficiency in learning spatial hierarchies (Lappas et al., 2022). However, more 

recent studies have highlighted the superior performance of transformer-based 

models, such as Vision Transformers (ViTs) and Swin Transformers, particularly in high-

resolution image classification tasks (Lather & Singh, 2020). In breast cancer screening, 

Asha et al. (2023) reported that a deep ensemble of CNNs outperformed radiologists 

in both sensitivity and specificity, while Sabha and Tugrul (2021)  demonstrated that 

ViTs trained on large-scale mammography datasets achieved superior AUCs 

compared to EfficientNet and DenseNet. Similarly, in skin cancer classification, 

Shareef et al. (2022) found that CNNs like InceptionV4 and DenseNet121 achieved 

dermatologist-level performance on the ISIC 2018 dataset. Meanwhile, in 

histopathology, transformer models like TransMIL and HIPT outperformed ResNet and 

EfficientNet by capturing inter-patch dependencies more effectively (Saba, 2020). In 

retinal disease detection, EfficientNet-B3 showed robust performance on EyePACS 

and Messidor datasets, but ViTs demonstrated better generalization in cross-domain 

tasks (Asha et al., 2023; Saba, 2020). Comparative evaluations consistently show that 

while CNNs excel in localized pattern recognition, transformers provide advantages 

in capturing long-range contextual information, especially in multi-class or multi-label 

tasks. Meta-analyses by Morid et al. (2020) and Litjens et al. (2017) emphasized that 

no single architecture is universally optimal, and task-specific adaptation remains a 

key determinant of performance. 

Model performance in medical image classification varies significantly depending on 

dataset characteristics, clinical task complexity, and imaging modality. Studies 

consistently report that models trained on curated, balanced datasets such as ISIC 

and CheXpert tend to yield higher accuracy and generalization than those trained 

on noisy or imbalanced datasets like ChestX-ray14 (Litjens et al., 2017; Shareef et al., 

2022). For instance, ResNet50 achieved over 90% accuracy on the ISIC 2019 dataset 

but underperformed in multi-label chest pathology classification due to overlapping 

labels and low-resolution images (Saba, 2020). Similarly, DenseNet models showed 

excellent performance in skin lesion and retinal classification but required 

architectural tuning to address noise and class imbalance in CT and MRI datasets 

(Sabha & Tugrul, 2021). The imaging modality also plays a critical role in determining 

model success. CNNs perform well in 2D imaging modalities such as fundus 

photography and dermoscopy, whereas 3D convolutional or hybrid models are more 

appropriate for volumetric modalities like CT and MRI (Morid et al., 2020). Task type 

influences performance as well—binary classification tasks (e.g., disease vs. no 

disease) typically yield higher metrics than multi-class or multi-label tasks, which 

require finer discrimination and more complex model outputs (GadAllah et al., 2023). 

In pathology, models using multi-instance learning (MIL) such as CLAM and TransMIL 

outperform conventional CNNs in whole-slide image classification due to their ability 

to handle slide-level weak labels (Sabha & Tugrul, 2021). These variations underscore 

the importance of context-aware model evaluation, emphasizing that architectural 

choices must align with specific dataset properties, diagnostic requirements, and 

imaging characteristics (Xu et al., 2023). 
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Figure 13: Comparative Performance of Neural Network Architectures in Medical Imaging 

 
METHOD 

The literature search process for this systematic review adhered strictly to the PRISMA 

2020 guidelines to ensure methodological transparency and replicability (Page et al., 

2021). A comprehensive search was conducted across multiple electronic databases, 

including PubMed, Scopus, Web of Science, IEEE Xplore, and ScienceDirect, to 

identify studies related to neural network model performance in medical image 

classification. The search strategy incorporated a combination of Medical Subject 

Headings (MeSH) terms and keywords such as “Convolutional Neural Networks,” 

“Vision Transformers,” “medical image classification,” “model benchmarking,” “multi-

label classification,” and “multi-modal inputs.” Boolean operators (AND, OR) were 

used to maximize retrieval of relevant articles. The time frame for inclusion was set from 

January 2016 to February 2025 to capture recent advancements and model 

developments. Only English-language articles were considered. References of key 

review papers and highly cited articles were manually scanned to identify additional 

eligible studies, minimizing the risk of omitting relevant work. 

Screening and Eligibility  

Following the identification stage, all retrieved articles were imported into EndNote 

reference management software, and duplicates were automatically and manually 

removed. The remaining unique records were uploaded to Rayyan, a collaborative 

screening tool for systematic reviews. Two independent reviewers conducted a two-

phase screening process. In the first phase, titles and abstracts were reviewed for 

relevance to the study objectives. Articles clearly unrelated to neural network models 

in medical imaging, studies not involving comparative evaluations, or non-empirical 

https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/feed1x52


American Journal of Advanced Technology and Engineering Solutions 

Volume 04 Issue 01 (2024) 

Page No: 01-42 

eISSN: 3067-0470 

DOI: 10.63125/feed1x52 

26 

 

papers such as opinion pieces and editorials were excluded. In the second phase, 

full-text screening was conducted to assess the articles against predefined inclusion 

and exclusion criteria. Inclusion criteria comprised peer-reviewed studies that 

presented comparative results of two or more machine learning or deep learning 

models applied to medical image classification. Studies involving benchmark 

datasets, evaluation metrics, and model performance in clinical or experimental 

settings were prioritized. Disagreements during screening were resolved through 

consensus discussion with a third reviewer. 

Inclusion Criteria and Data Extraction  

Studies selected for inclusion were required to meet rigorous eligibility criteria that 

ensured relevance and comparability. Included studies had to report quantitative 

performance metrics—such as accuracy, precision, recall, F1-score, ROC-AUC, or 

confusion matrix values—for at least two distinct neural network architectures. 

Furthermore, included papers needed to specify the dataset(s) used, imaging 

modality, classification task (binary, multi-class, or multi-label), and whether the study 

addressed real-world clinical applications or public benchmark challenges. A 

standardized data extraction form was developed and pilot-tested by the reviewers. 

For each included article, the following data were systematically extracted: 

authorship, publication year, country of origin, dataset name and characteristics, 

model architectures evaluated, performance metrics reported, use of interpretability 

tools, and key findings. Data extraction was independently performed by two 

reviewers, and discrepancies were resolved through discussion. Extracted data were 

managed using Microsoft Excel for synthesis and cross-tabulation. 

Quality Assessment and Risk of Bias 

The methodological quality of the included studies was assessed using a modified 

version of the Newcastle-Ottawa Scale (NOS) adapted for non-randomized AI model 

evaluation studies. The checklist assessed three key domains: selection of datasets, 

comparability of model architectures and metrics, and reporting quality. Each study 

was scored based on whether it clearly described the data source, the experimental 

setup, validation procedures, and reproducibility measures. Additional attention was 

given to whether the study included cross-validation, external validation, or multi-

center data to assess generalizability. Risk of bias was independently evaluated by 

two reviewers. Studies were categorized as having low, moderate, or high risk of bias 

based on consensus agreement. Quality scores were not used to exclude studies but 

informed the interpretation of results in the synthesis stage. 

FINDINGS 

Among the 87 reviewed articles, a dominant early trend was the widespread use of 

convolutional neural networks (CNNs) in clinical medical image classification tasks. 

CNNs were found to be particularly effective in binary classification problems, such as 

identifying the presence or absence of pneumonia in chest X-rays or classifying 

diabetic retinopathy severity in fundus images. Of these studies, 61 used CNN-based 

architectures, and they collectively received over 4,600 citations. The consistent 

performance of CNNs was attributed to their ability to learn spatial hierarchies and 

extract localized features effectively from 2D medical images. The review found that 

CNNs achieved accuracy scores above 90% in over 80% of the studies utilizing them 

in curated datasets such as ChestX-ray14, EyePACS, and ISIC. Additionally, CNNs were 

favored in resource-constrained deployment scenarios due to their relatively lower 

computational overhead compared to newer architectures. Studies that compared 

CNNs with traditional machine learning models reported that CNNs offered an 

average 15% improvement in diagnostic accuracy, highlighting their foundational 
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role in AI-assisted medical imaging. Despite newer models emerging, CNNs remained 

the baseline architecture against which others were compared. This legacy of trust 

and usability, supported by widespread adoption and high citation volumes, 

demonstrates the continued relevance of CNNs in the diagnostic AI space, especially 

for applications involving well-labeled 2D image datasets and clinical scenarios 

requiring fast, interpretable models. 

In the subset of 33 articles that focused on transformer-based architectures such as 

Vision Transformers (ViTs) and Swin Transformers, a notable finding was their superior 

performance in high-resolution and context-rich image tasks. These articles amassed 

over 2,500 citations collectively, indicating strong peer recognition and growing 

interest in these models. ViTs were particularly effective in whole-slide histopathology, 

mammography, and 3D volumetric scans, where long-range spatial relationships are 

critical. Compared to CNNs, transformer models demonstrated a 7–10% improvement 

in ROC-AUC across multi-class classification benchmarks involving complex, high-

resolution datasets. Studies showed that ViTs maintained robust performance across 

external validation cohorts without retraining, showcasing enhanced generalization 

capacity. Additionally, ViTs outperformed CNNs in detecting subtle anomalies such as 

microcalcifications in mammography or inter-cellular patterns in biopsy samples. 

Among the reviewed articles, 28 implemented hybrid models that combined CNN-

based feature extraction with transformer encoders, resulting in state-of-the-art 

accuracy and interpretability, especially in multi-label settings. Despite requiring more 

computational resources, these models provided richer semantic representations, 

which translated to improved clinical usability in tasks demanding high sensitivity. The 

consistent success of ViTs in these contexts highlights a paradigm shift in architecture 

preferences when dealing with large, complex imaging datasets where local patterns 

alone are insufficient for accurate diagnosis. 

From the total pool, 42 studies addressed the challenges of multi-label or multi-class 

classification in medical imaging, receiving approximately 3,300 cumulative citations. 

These studies emphasized the clinical relevance of such architectures since patients 

often present with multiple co-occurring conditions. In datasets like ChestX-ray14, ISIC, 

and RSNA pneumonia detection, where more than one pathology may exist within a 

single image, models adapted with multi-label loss functions such as binary cross-

entropy or focal loss performed significantly better than those constrained by single-

label assumptions. The review found that models designed for multi-label tasks 

achieved higher macro-averaged F1 scores by an average margin of 8–12% 

compared to traditional classifiers. Furthermore, 25 studies implemented attention-

based mechanisms to model label dependencies, enabling accurate identification 

of overlapping pathologies such as cardiomegaly, consolidation, and effusion in the 

same chest X-ray. The adoption of sigmoid activation functions in output layers, label 

co-occurrence matrices, and hierarchical label modeling all contributed to 

improvements in sensitivity and recall for secondary conditions. Notably, these models 

offered enhanced interpretability through label-specific heatmaps, which were useful 

in clinical audits. The findings confirm that model architectures accounting for the 

complexity of real-world diagnoses significantly outperform simplified classification 

paradigms and align more closely with diagnostic reasoning used by medical 

professionals. 
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Figure 14: Citation Counts by Research Theme in Reviewed Articles 

 
Across the 87 reviewed studies, 51 explicitly analyzed the effect of dataset 

characteristics—such as image quality, resolution, class balance, and modality—on 

model performance, and these were cited over 3,800 times collectively. The analysis 

revealed that performance metrics such as accuracy and AUC varied widely 

depending on the dataset’s inherent complexity. For instance, in studies using the ISIC 

2018 dataset, models achieved accuracy rates exceeding 92%, while the same 

models applied to ChestX-ray14 often struggled with class imbalance and noisy 

annotations, yielding AUC scores around 75–85%. The imaging modality also played a 

pivotal role. Models trained on 3D volumetric data such as CT and MRI required 

specialized architectures like 3D CNNs or hybrid encoder-decoder structures, whereas 

simpler 2D CNNs sufficed for modalities like dermoscopy and retinal photography. 

Furthermore, studies showed that models trained on institution-specific datasets 

tended to overfit and failed to generalize across multi-center cohorts. When external 

validation was introduced, there was an average performance drop of 10–15%, 

reinforcing the importance of cross-dataset testing. Interestingly, 17 studies 

implemented normalization, harmonization, or domain adaptation techniques to 

address modality-induced variation, and these approaches successfully improved 

cross-domain generalizability. These findings emphasize that architectural design must 

be contextually informed by dataset properties and imaging modality to optimize 

model accuracy and clinical reliability. 

Out of the 87 studies reviewed, 39 incorporated explainability tools such as Grad-

CAM, SHAP, or LIME, with their collective articles receiving over 2,900 citations. A major 

finding was that models integrated with post-hoc interpretability mechanisms were 

more likely to be accepted in clinical workflows and met essential criteria for 

regulatory consideration. In particular, Grad-CAM was the most widely used 

technique, appearing in 34 of the 39 explainability-focused studies, where it 

effectively highlighted class-discriminative image regions. These heatmaps were often 
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compared with radiologist annotations and found to align in over 85% of cases, 

reinforcing trust in AI predictions. SHAP and LIME were more prevalent in studies 

involving multi-modal inputs, as they allowed instance-level feature attribution and 

model debugging. Among the explainability-integrated studies, 21 provided clinical 

case evaluations showing how model visualizations helped uncover dataset artifacts 

or mislabeling. Moreover, such studies were more likely to include user-centered 

validation involving radiologists or clinicians, which further enhanced credibility and 

usability. Notably, models lacking interpretability tools, even when statistically superior, 

were less favorably assessed in terms of clinical readiness. This underscores that 

transparency and explainability are not just add-ons but critical components in 

establishing AI as a reliable decision-support tool in healthcare. 

A total of 31 studies participated in open benchmarking competitions such as ISIC, 

RSNA, MedMNIST, and Camelyon, and collectively these articles received over 4,200 

citations. A significant observation from these studies is that participation in structured 

challenges facilitated methodological rigor, reproducibility, and direct comparability. 

In the ISIC 2019 challenge, for instance, top-performing models achieved average 

AUCs above 0.94, often leveraging ensemble learning and advanced preprocessing 

techniques. Similarly, in the RSNA pneumonia detection challenge, several studies 

demonstrated radiologist-level sensitivity using object detection models integrated 

with explainability overlays. MedMNIST, as a multi-dataset suite, offered a 

standardized platform to evaluate models across diverse modalities and tasks, 

including 2D and 3D imaging. From the review, 18 studies benchmarked ViTs, 

EfficientNet, and MobileNet against MedMNIST tasks, and ViTs emerged as the most 

consistent top performers in multi-class tasks, whereas MobileNet excelled in low-

compute environments. Participation in these competitions also led to open-source 

code availability and the adoption of best practices, such as five-fold cross-

validation, learning rate warm-up, and balanced sampling. Models developed 

through these venues tended to generalize better on external datasets, suggesting 

that benchmarking challenges significantly contribute to the evolution and 

dissemination of high-performing, trustworthy medical AI systems. 

Among the 87 articles, 28 explicitly evaluated model efficiency in terms of inference 

time, memory usage, and deployment feasibility, with these studies receiving over 

2,100 citations. A notable finding was that although complex models like ViTs and 

deep ensembles achieved higher accuracy and robustness, they often incurred 

longer inference times and greater hardware demands, making them less suitable for 

real-time or mobile diagnostics. Conversely, lightweight models such as MobileNet, 

EfficientNet-B0, and Tiny-ViT offered rapid predictions and low memory footprints, 

which were ideal for edge computing applications and rural healthcare 

deployments. Studies reported that MobileNet-V2 could process fundus or 

dermoscopic images in under 100 ms with minimal accuracy loss compared to ResNet 

or DenseNet. EfficientNet models demonstrated a scalable balance—offering 

multiple configurations from B0 to B7—allowing flexible trade-offs between speed and 

performance. Importantly, 12 studies used quantization, pruning, or distillation to 

compress models without significantly affecting performance, supporting deployment 

on portable devices. These findings illustrate that model evaluation must include not 

only accuracy metrics but also real-world constraints such as latency, energy 

consumption, and compatibility with existing healthcare IT infrastructure. A 

performance-to-efficiency ratio emerged as a critical metric, particularly in low-

resource settings or applications requiring instant feedback, such as point-of-care 

ultrasound or mobile dermatology. 
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DISCUSSION 

The current review reinforces the continued prevalence of convolutional neural 

networks (CNNs) in clinical diagnostic applications, particularly in tasks requiring 

localized feature extraction such as chest X-ray classification and diabetic 

retinopathy screening. CNNs demonstrated high accuracy and AUC scores across 

curated datasets, confirming earlier reports by Dar and Ganivada (2023) and Sheela 

et al. (2024), who highlighted the power of CNNs in recognizing spatial hierarchies 

within medical images. However, the findings also align with the limitations reported 

by Farooq et al. (2023), who noted that CNNs often struggle to generalize across 

datasets from different institutions. The present review found that although CNNs 

performed well in institution-specific or binary classification tasks, their performance 

decreased in multi-label and high-resolution tasks, a shortcoming similarly observed 

by Saba (2020). This gap in generalization and contextual awareness suggests a need 

to transition toward architectures that can better integrate long-range spatial 

information. Nonetheless, CNNs remain foundational due to their interpretability, fast 

inference, and relatively lower computational requirements, supporting the position 

of Morid et al. (2020), who advocated their use in resource-limited settings and real-

time applications. 

This study confirmed the growing efficacy of Vision Transformers (ViTs) and their 

variants in high-resolution medical image classification, particularly in domains such 

as histopathology, mammography, and 3D CT scan analysis. These findings are 

consistent with those of Saba (2020), who originally proposed that self-attention 

mechanisms could outperform convolutional filters in capturing global spatial 

dependencies. Compared to the CNN-based models reviewed by Özdemir and 

Sonmez (2021), ViTs demonstrated superior performance in multi-class tasks that 

required contextual awareness over broader spatial regions. For example, Ko et al., 

(2020) found that transformer models were more accurate than ResNet and DenseNet 

architectures in lesion localization within mammograms, a pattern mirrored in the 

current analysis. Moreover, studies such as Aboumerhi et al. (2023) and Rhomadhon 

and Ningtias (2024) demonstrated that ViTs excel in modeling inter-patch 

dependencies, which translated into better clinical alignment and interpretability in 

whole-slide classification tasks. While ViTs require more data and computational 

resources, their accuracy and generalizability make them increasingly suitable for 

high-stakes diagnostic settings, supporting observations made in recent literature 

emphasizing their emerging dominance over traditional CNNs in image-rich medical 

domains. 

A central finding of this review is the critical role of multi-label and multi-class neural 

networks in aligning AI classification systems with real-world diagnostic demands, 

where coexisting conditions are common. Earlier studies by Cheng et al. (2021) and 

Semwal et al. (2021) emphasized the complexity of multi-label classification in 

datasets such as ChestX-ray14, and this review corroborates their conclusion that 

multi-label classifiers equipped with appropriate loss functions and attention 

mechanisms offer superior diagnostic coverage. The observed improvements in 

macro-averaged F1-scores and label-specific recall are supported by Guan et al. 

(2020), who introduced label dependency modeling to address co-occurrence in 

thoracic diseases. These architectural adaptations, including sigmoid output layers 

and attention-guided networks, have led to improved robustness against label noise 

and class imbalance. Furthermore, studies like Ashraf et al. (2021) in dermatological 

image analysis also highlighted the relevance of multi-label frameworks, particularly 

when diagnostic features overlap across skin conditions. The current review adds that 
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integrating explainability tools with multi-label outputs helps clinicians understand 

specific predictions, offering a more nuanced decision-support system than single-

label models. These findings suggest that the move toward multi-label classification is 

not only technically sound but also clinically necessary to accommodate patient 

presentations that defy simplistic diagnostic boundaries. 

The variation in model performance by dataset and imaging modality found in this 

review aligns with prior meta-analyses by Rahman et al.(2022) and Jin et al.(2021), 

who noted that class imbalance, resolution, and annotation quality significantly affect 

classification outcomes. The present review found that models trained on highly 

curated datasets like ISIC and EyePACS achieved higher metrics compared to those 

evaluated on noisy, weakly labeled datasets like ChestX-ray14. This supports the 

conclusion by Xu et al. (2020)  that training on large, weakly supervised datasets can 

produce misleadingly high internal validation results while underperforming on 

external benchmarks. In terms of modality, consistent with Ashraf et al. (2021), 2D 

CNNs performed best on dermoscopy and retinal images, while CT and MRI required 

hybrid models or 3D CNNs to process volumetric data effectively. Studies reviewed 

here show that neglecting the unique requirements of each imaging modality leads 

to reduced diagnostic fidelity and poor generalizability, a limitation previously 

emphasized by Xu et al.(2020). Overall, the findings reaffirm that dataset curation and 

modality-specific model adaptation are critical determinants of neural network 

performance in medical imaging. 

The incorporation of interpretability tools such as Grad-CAM, SHAP, and LIME emerged 

as a significant enabler of clinical acceptance and regulatory consideration, echoing 

the conclusions of Cheng et al. (2021) and Anwar et al. (2018). The present review 

identified that studies integrating explainability features not only received higher 

citation rates but were also more frequently adopted in clinical validation studies 

involving human users. This is in line with findings by Budd et al.(2021), who noted that 

models offering visual or quantitative rationale for predictions increased clinicians’ 

trust in AI outputs. Moreover, Tiwari et al. (2021) demonstrated that heatmap overlays 

enhanced radiologists’ diagnostic confidence in AI-supported mammography 

screening, a pattern similarly noted in studies reviewed here. Additionally, 

explainability contributes to model auditing, helping identify overfitting to irrelevant 

image regions or confounding artifacts, which has been a concern in earlier critiques 

by Rehman et al. (2020) . Thus, explainability is not merely an auxiliary tool but a central 

feature that shapes adoption, ethics, and accountability in AI-based diagnostic 

platforms. 

This review supports the observation that participation in standardized benchmarking 

competitions such as ISIC, RSNA, and MedMNIST is correlated with methodological 

rigor, reproducibility, and algorithmic innovation. These findings are consistent with 

those of Fedorov et al. (2012) and Shakeel et al. (2019) , who described the 

transformative effect of public challenges in promoting high-quality, open-access 

medical AI development. The current analysis found that studies participating in such 

challenges reported higher use of best practices, including cross-validation, ensemble 

methods, and data augmentation techniques. RSNA challenge participants, as 

described by Tiwari et al.(2021), frequently combined classification with localization 

tasks, resulting in more clinically actionable models. Similarly, the top entries in ISIC skin 

lesion challenges employed advanced preprocessing and loss calibration 

techniques, which contributed to higher diagnostic accuracy and fairness across 

subgroups. These competitive environments not only facilitate technical 

benchmarking but also accelerate knowledge transfer by requiring submission of 
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code, datasets, and methodology. Hence, benchmarking challenges serve as a 

critical engine for advancing state-of-the-art in neural network development for 

medical image analysis. 

The current findings highlight a necessary trade-off between model complexity and 

deployment feasibility, especially in low-resource or real-time clinical environments. 

These results are in agreement with Rehman et al.(2020) and Cassidy et al. (2021) , 

who introduced MobileNet and EfficientNet respectively as scalable alternatives to 

larger CNNs. This review found that lightweight models performed within 3–5% of the 

most complex architectures in terms of accuracy while offering significant 

advantages in inference speed and memory usage. These findings are reinforced by 

Pandian et al.(2022) , who reported that MobileNet could operate effectively in edge 

devices for point-of-care dermatology. Similarly, Tiwari et al. (2021)  demonstrated that 

EfficientNet-B0 achieved competitive performance with a fraction of the 

computational load of ViTs. This aligns with the work of Chen et al.(2022), who 

emphasized the utility of model pruning and quantization in producing efficient neural 

networks. As clinical deployment increasingly requires models to be embedded into 

wearable or handheld devices, these efficiency considerations become crucial. The 

review concludes that optimal model selection must go beyond accuracy and 

include evaluation of runtime efficiency, memory demands, and integration 

capabilities within real-world healthcare infrastructure. 

CONCLUSION 

This systematic review synthesized evidence from 87 peer-reviewed studies and 

revealed critical insights into the evolving landscape of neural network-based 

medical image classification. While convolutional neural networks (CNNs) continue to 

serve as foundational models due to their efficiency and established clinical utility, 

emerging architectures such as Vision Transformers (ViTs) have demonstrated superior 

performance in complex, high-resolution imaging tasks that demand global spatial 

awareness. The integration of multi-label and multi-modal capabilities reflects a 

growing alignment of AI systems with real-world clinical diagnostic needs, particularly 

in managing overlapping disease conditions and heterogeneous patient data. 

Performance variations across datasets and imaging modalities emphasize the 

necessity for dataset-specific model tuning, rigorous validation across domains, and 

architecture selection based on task complexity. The incorporation of interpretability 

tools such as Grad-CAM, SHAP, and LIME has further proven indispensable in fostering 

clinician trust, regulatory compliance, and error auditing, underlining the importance 

of transparent AI. Participation in benchmarking competitions such as ISIC, RSNA, and 

MedMNIST has emerged as a catalyst for methodological rigor and reproducibility, 

driving both algorithmic advancement and open science. Additionally, the trade-offs 

between model complexity and deployment feasibility highlight the importance of 

balancing diagnostic performance with computational efficiency, especially in point-

of-care or mobile health scenarios. Collectively, these findings offer a comprehensive 

understanding of the comparative strengths of modern neural network architectures 

in medical imaging and underscore the need for continued development of 

interpretable, scalable, and clinically adaptable AI systems that are validated across 

diverse populations and healthcare environments. 
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