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ABSTRACT 
The escalating global burden of inflammatory diseases—marked by persistent immune 

dysregulation, multisystem involvement, and complex molecular etiologies—has 

intensified the need for innovative therapeutic strategies that minimize cost, reduce 

development timelines, and increase success rates. Drug repurposing, the practice of 

identifying new therapeutic uses for existing drugs, has emerged as a strategic 

alternative to de novo drug discovery, particularly through in silico methodologies such 

as molecular docking, virtual screening, and cheminformatics-guided candidate 

selection. This systematic review synthesizes and evaluates recent advancements in 

computational repurposing approaches aimed at inflammatory disorders, including 

rheumatoid arthritis, inflammatory bowel disease, psoriasis, and systemic lupus 

erythematosus. Following the PRISMA 2020 guidelines, a comprehensive literature 

search was conducted across multiple scientific databases—including PubMed, 

Scopus, Web of Science, Embase, and IEEE Xplore—to identify peer-reviewed studies 

published between January 2010 and April 2022. A total of 65 articles met the inclusion 

criteria, encompassing diverse in silico workflows that examined drug-target interactions 

using molecular docking platforms such as AutoDock, AutoDock Vina, Schrödinger’s 

Glide, MOE, and GOLD, often combined with ADMET profiling tools (e.g., SwissADME, 

pkCSM) and molecular dynamics simulations to validate binding stability. Target proteins 

of interest commonly included pro-inflammatory mediators such as TNF-α, IL-6, IL-1β, 

JAK1/2, and NF-κB, with FDA-approved kinase inhibitors and anti-cancer drugs 

frequently emerging as high-affinity binders suitable for cross-disease application. In 

addition, the review documents methodological convergence in scoring thresholds, 

ligand library design, and reproducibility standards across computational studies. 

Several case studies demonstrate successful downstream validation of in silico 

predictions via in vitro or in vivo assays, reinforcing the translational potential of these 

approaches. However, key challenges persist, including lack of consensus on docking 

protocol standardization, limited exploration of off-target toxicities, and insufficient 

integration with systems pharmacology and biological network modeling. This review 

concludes that in silico drug repurposing represents a rapidly evolving, resource-

efficient approach for identifying new treatments in immunopathology, but emphasizes 

the need for hybrid computational-experimental pipelines and improved 

benchmarking to realize its full clinical utility.. 
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INTRODUCTION 

Drug repurposing, also known as drug repositioning, refers to the process of identifying new 

therapeutic uses for existing pharmaceutical agents outside the scope of their original medical 

indication (Wang et al., 2019). Unlike de novo drug discovery, which is time-consuming, expensive, 

and characterized by a high attrition rate, repurposing leverages the established pharmacological 

and safety profiles of approved drugs to expedite the drug development process (Shen et al., 2019). 

This approach has gained prominence in contemporary pharmacotherapy owing to its cost-

effectiveness and shorter timelines for regulatory approval. Repurposing is especially significant for 

addressing diseases with limited therapeutic options or for which conventional drug development 

pipelines have been inefficient (Smalley, 2017). In the context of inflammatory diseases, this strategy 

holds particular value, as these disorders are often multifactorial, chronic, and associated with 

significant morbidity. 

Inflammatory diseases comprise a wide 

spectrum of conditions characterized by 

dysregulated immune responses that lead to 

tissue damage, fibrosis, and chronic pain. 

Examples include rheumatoid arthritis, 

inflammatory bowel disease, psoriasis, 

systemic lupus erythematosus, and multiple 

sclerosis (Wang et al., 2014). These diseases 

collectively affect millions globally and 

represent a significant burden on 

healthcare systems (Vasconcelos et al., 

2018) Disease and Injury Incidence and 

Prevalence Collaborators, 2018). Many 

inflammatory diseases are autoimmune in 

nature and result from an interplay of 

genetic predisposition and environmental 

triggers that dysregulate cytokine networks, 

cellular immunity, and signal transduction 

pathways (Uddin, 2018). The heterogeneity 

and complexity of these disorders challenge 

traditional drug discovery paradigms, 

prompting increased interest in alternative 

strategies such as drug repurposing. With inflammatory pathways commonly shared among multiple 

conditions, there exists an opportunity to identify therapeutics with broader anti-inflammatory 

potential (Diez-Alarcia et al., 2019). These considerations form the basis for systematically reviewing 

in silico drug repurposing methods targeting inflammatory diseases. Inflammatory diseases have 

become a global public health concern due to their high prevalence, long-term disability outcomes, 

and associated healthcare costs.  

According to the World Health Organization (WHO, 2020), chronic inflammatory conditions rank 

among the leading causes of mortality and morbidity worldwide. Rheumatoid arthritis alone affects 

approximately 0.5–1% of the global population (Romero-Duran et al., 2015), and over 10 million 

people live with inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis (Cheng 

et al., 2018). The burden is not limited to industrialized nations; recent data indicate a rapid increase 

in the incidence of autoimmune inflammatory disorders in low- and middle-income countries, driven 

by urbanization, lifestyle changes, and environmental exposures (Liang et al., 2019). This global shift 

highlights the urgency of accessible, affordable, and effective therapeutic interventions. 

Unfortunately, the high cost of biologics and small molecule immunomodulators poses a significant 

barrier to treatment in resource-constrained settings (Kuo et al., 2013). For instance, TNF-α inhibitors 

and JAK inhibitors, though effective, remain prohibitively expensive for many patients without 

adequate insurance coverage or access to public healthcare programs. Consequently, there is an 

unmet clinical need for affordable alternatives. Drug repurposing presents a compelling solution by 

capitalizing on the global availability of approved medications whose pharmacodynamics are well-

understood and whose supply chains are already established (Minie et al., 2014). Furthermore, 

regulatory frameworks such as the FDA’s 505(b)(2) pathway and the European Medicines Agency’s 

Figure 1: Framework for Drug Repurposing Approaches 
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hybrid applications allow for streamlined 

repurposing efforts, reducing the need for 

extensive preclinical testing (Fine et al., 2020). 

The international impact of these diseases 

and the economic barriers to treatment 

underscore the importance of identifying 

low-cost therapeutic alternatives through 

systematic and scalable methodologies. 

Drug repurposing, particularly when 

informed by computational approaches, 

offers a high-throughput and economically 

viable strategy to address these global 

health challenges (Kleandrova et al., 2020). 

As such, the strategic intersection of global 

health needs and computational innovation 

forms a critical axis for modern therapeutic 

research. In silico methodologies—

encompassing computational modeling, 

molecular docking, and virtual screening—

have revolutionized the landscape of drug 

repurposing by offering a rapid, cost-

effective means of identifying potential 

drug-target interactions (Speck-Planche & 

Kleandrova, 2020). These approaches rely on 

molecular dynamics, ligand-receptor affinity 

prediction, and structural bioinformatics to 

evaluate the suitability of existing drugs for 

novel indications (Bento et al., 2013). In the 

context of inflammatory diseases, which 

involve complex immune pathways and 

multiple protein targets, these 

computational tools facilitate the simultaneous analysis of thousands of drug compounds against a 

spectrum of validated or putative targets (Santos et al., 2017). Molecular docking, a cornerstone of 

in silico repurposing, predicts the optimal binding orientation and affinity of a ligand within the active 

site of a protein (Yamanishi, 2012). Virtual screening extends this methodology by applying it to large 

chemical libraries, including FDA-approved drugs, investigational compounds, and natural products 

(Sato et al., 2020). Software platforms such as AutoDock, Schrödinger Glide, MOE, and GOLD have 

become standard tools for such analyses due to their high sensitivity and specificity (Chopra et al., 

2016). Integration with cheminformatics databases like DrugBank, ChEMBL, and PubChem enhances 

the efficiency and accuracy of these tools (Speck-Planche, 2018). 

Notably, recent studies have successfully employed in silico docking to identify repurposing 

candidates for interleukin inhibitors, JAK-STAT modulators, and NF-κB pathway blockers, all of which 

are key players in inflammatory signaling (Kim et al., 2021). This reflects the versatility and clinical 

relevance of computational repurposing in inflammation-targeted pharmacology. Moreover, the 

ability to predict ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties 

using in silico tools further strengthens their utility in early-stage drug development (Kleandrova et al., 

2021). Understanding the molecular basis of inflammation is pivotal to identifying effective drug 

repurposing targets. Inflammatory diseases are mediated by a network of cytokines, chemokines, 

signaling pathways, and effector cells that interact in a complex and often redundant fashion 

(Cheng et al., 2020). Key molecular players include tumor necrosis factor-alpha (TNF-α), interleukin-

6 (IL-6), interleukin-1 beta (IL-1β), cyclooxygenase enzymes (COX-1/2), nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB), and the Janus kinase/signal transducers and activators 

of transcription (JAK/STAT) pathway (Fradera & Babaoglu, 2017). 

These molecular targets have guided traditional drug development, but they also present viable 

candidates for in silico repurposing strategies (Gentile et al., 2020). For instance, NF-κB is a central 

transcription factor in inflammatory signaling and is activated by a wide range of stimuli, including 

Figure 2: Benefits of In Silico Drug Repurposing for 

Inflammatory Diseases 
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microbial pathogens, stress signals, and cytokines (Korkmaz, 2020). Targeting this pathway has 

proven effective in reducing inflammation in autoimmune diseases, making it an attractive node for 

computational drug screening (Stokes et al., 2020). Similarly, inhibitors of JAK enzymes such as 

tofacitinib and baricitinib have demonstrated efficacy in rheumatoid arthritis and ulcerative colitis, 

suggesting that other JAK-targeting drugs could be repurposed for related conditions (Zong et al., 

2017). In silico studies often focus on docking candidate drugs into the active sites of these molecular 

targets to predict binding affinities and possible inhibitory effects (Zeng et al., 2019). Integrating 

transcriptomic and proteomic data further refines target selection and enhances predictive power 

(Zhang et al., 2021).  

The principal objective of this systematic review is to comprehensively synthesize and evaluate 

existing research on the application of in silico drug repurposing techniques—specifically molecular 

docking and virtual screening—in the identification of therapeutic candidates for inflammatory 

diseases. This review aims to consolidate findings from a wide range of studies that have utilized 

computational methodologies to predict novel uses of already approved or clinically tested drugs 

targeting molecular pathways implicated in inflammatory pathophysiology. Given the increasing 

reliance on computational tools to accelerate the drug discovery pipeline, it becomes essential to 

systematically map the methodological approaches, protein targets, compound libraries, docking 

algorithms, and validation frameworks employed across these studies. The review is designed to 

provide clarity on the robustness, reproducibility, and translational potential of these computational 

strategies by critically analyzing the methodological rigor, consistency of scoring metrics, and the 

biological relevance of the predicted interactions. A secondary objective is to assess the diversity 

and relevance of inflammatory disease models used in the selected studies, including conditions 

such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, inflammatory bowel disease, 

and other immune-mediated inflammatory disorders. The review will examine the alignment of in 

silico findings with known immunological pathways—such as NF-κB, JAK-STAT, MAPK, and COX 

signaling—alongside the frequency and distribution of drug classes identified for repurposing. 

Another key objective is to explore the extent of integration between computational predictions and 

downstream in vitro or in vivo validation studies, with a focus on how computational hits have 

progressed in the drug development continuum. By achieving these goals, the review will provide 

researchers, clinicians, and pharmacologists with a detailed landscape of current advancements in 

computational drug repurposing for inflammatory diseases, enabling better prioritization of 

candidate molecules for further experimental investigation and clinical testing. 

LITERATURE REVIEW 

The application of in silico methodologies—particularly molecular docking and virtual screening—for 

drug repurposing in the treatment of inflammatory diseases has garnered significant scholarly 

attention over the past two decades. These computational strategies have been increasingly 

adopted due to their ability to systematically identify potential therapeutic agents within existing 

drug libraries, thereby overcoming the time and financial constraints associated with conventional 

drug discovery. This literature review explores the evolution, scope, and impact of in silico drug 

repurposing in the context of inflammation-focused pharmacology. It synthesizes a wide body of 

interdisciplinary research spanning bioinformatics, immunology, cheminformatics, and systems 

pharmacology. A systematic organization of this literature is necessary to delineate methodological 

frameworks, computational tools, and specific disease applications that have been central to the 

field’s progress. The review begins with a historical examination of drug repurposing and early 

computational applications, providing the contextual grounding needed to understand current 

innovations. It then investigates the core molecular targets and inflammatory pathways that guide 

docking studies, followed by detailed discussions of the algorithmic underpinnings, ligand 

databases, and scoring functions used to identify candidate molecules. The section further 

evaluates studies applying these techniques to specific inflammatory diseases, highlighting both 

successful repurposing efforts and methodological limitations. The literature is additionally examined 

for the extent to which in silico predictions have been corroborated by laboratory-based validation, 

including in vitro and in vivo studies. Collectively, this structured literature review offers a 

multidimensional analysis of computational repurposing research and its implications for anti-

inflammatory drug development. 
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Drug Repurposing and Computational Methods 

Drug repurposing, or repositioning, emerged as a viable strategic alternative to traditional drug 

discovery processes in response to escalating development costs, protracted timelines, and 

declining success rates in pharmaceutical research. Traditional de novo drug development often 

requires upwards of 12–15 years and investment exceeding $2 billion to bring a new compound to 

market (Prado-Prado et al., 2012). In contrast, drug repurposing allows researchers to leverage 

existing safety, pharmacokinetic, and toxicological data from approved or previously investigated 

compounds, thereby circumventing early-phase testing and accelerating clinical translation (Wang 

et al., 2019). The repurposing paradigm gained widespread attention with the repositioning of 

thalidomide for multiple myeloma and sildenafil for erectile dysfunction—both of which were initially 

developed for other indications but later found substantial therapeutic efficacy in new disease 

domains (Wisner et al., 2019). 
 

Figure 3: Key Components of In Silico Drug Repurposing for Inflammatory Diseases 

 
 

This shift toward therapeutic redeployment is also driven by the evolving regulatory landscape, with 

streamlined approval pathways such as the FDA’s 505(b)(2) mechanism and the EMA’s hybrid 

applications, which facilitate faster market access for repurposed agents (Mouchlis et al., 2021). 

Moreover, the financial appeal of repurposing has made it particularly attractive to academic 

institutions, small biotech firms, and non-profit research organizations that lack the resources to 

pursue full-scale drug development (Kuhlman & Bradley, 2019). Several consortia, including the NIH’s 

NCATS and the UK-based MRC/Innovate UK Repurposing Network, have institutionalized drug 

repurposing as a core component of translational science initiatives (Bertsimas & Shioda, 2007). In 

the context of inflammatory diseases, which often exhibit complex and overlapping 

pathophysiological features, repurposing offers a rational and efficient approach to discovering 

multi-target therapies. The growing recognition of polypharmacology—the idea that a single drug 

may act on multiple targets—further supports repurposing for conditions such as rheumatoid arthritis 

and systemic lupus erythematosus, where multi-modal intervention is desirable (Bertsimas & Shioda, 

2007). Thus, the emergence of drug repositioning as a strategic imperative represents a confluence 

of economic, regulatory, and scientific forces reshaping the pharmaceutical landscape.  

The initial integration of computational tools into drug discovery began as a means to complement 

and rationalize traditional medicinal chemistry workflows. Early computer-aided drug design (CADD) 

methods, dating back to the 1980s and 1990s, focused on structure-activity relationships (SAR), 
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quantitative structure-activity relationships (QSAR), and molecular similarity analyses to predict the 

biological activity of compounds based on their chemical structures (Bertsimas & Shioda, 2007). 

These early computational frameworks laid the groundwork for molecular modeling by allowing 

chemists to generate predictive hypotheses about ligand binding and receptor interactions prior to 

experimental testing. The refinement of three-dimensional structural data, enabled by advances in 

X-ray crystallography and nuclear magnetic resonance spectroscopy, significantly improved the 

accuracy of in silico modeling, ushering in a new era of rational drug design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the earliest successes in computational drug discovery was the structure-based design of HIV 

protease inhibitors, including saquinavir and ritonavir, which demonstrated the value of computer 

modeling in guiding molecular optimization. These milestones catalyzed the integration of docking 

software tools such as AutoDock and DOCK into academic and industrial research pipelines (Tanoli 

et al., 2021). Inflammatory diseases, though not initially the primary focus of computational modeling, 

later became central to the development of kinase inhibitors and COX-2 selective agents due to 

their well-characterized active sites and structural templates (Vanunu et al., 2010). The digitization of 

pharmacological data via public databases such as PubChem, PDB, and DrugBank further enabled 

computational scientists to conduct large-scale docking studies and compound similarity searches 

(Trott & Olson, 2009). These early computational applications provided a proof-of-concept that 

accelerated hypothesis-driven drug discovery could be achieved using digital tools. They also laid 

the methodological foundation for more complex strategies such as virtual screening, molecular 

dynamics simulations, and systems pharmacology. As inflammation-related targets became better 

structurally characterized, computational methods gained prominence in screening candidate 

molecules against cytokine receptors, kinases, and transcription factors implicated in immune 

dysregulation (Morris et al., 2009). The evolution from rational, target-driven drug design to high-

throughput in silico screening methodologies marks a critical inflection point in computational drug 

repurposing. Rational design is predicated on detailed knowledge of a single molecular target and 

a ligand’s precise interaction with its binding site, often leading to highly specific, structurally 

optimized compounds (Aquaro et al., 2010). However, this paradigm is limited in scope when dealing 

with multifactorial diseases like autoimmune and inflammatory disorders, where numerous signaling 

cascades and molecular nodes contribute to disease pathology (Aquaro et al., 2010). To address 

these complexities, computational research shifted toward high-throughput virtual screening (HTVS), 

which enables the simultaneous evaluation of thousands to millions of compounds against multiple 

biological targets in silico. 

 

Figure 4: Timeline of Key Milestones in In Silico Drug Repurposing for 

Inflammatory Diseases 
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HTVS employs docking algorithms that estimate ligand binding affinity by simulating intermolecular 

interactions within protein active sites. Software platforms such as AutoDock Vina, Glide, and GOLD 

utilize scoring functions based on free energy calculations, hydrogen bonding, hydrophobic 

contacts, and electrostatic complementarity (Bhattarai et al., 2019). These tools allow for rapid 

prioritization of drug candidates based on predicted binding strength and pose accuracy. In the 

realm of inflammation research, HTVS has been used to identify COX-2 inhibitors, JAK-STAT 

modulators, and NF-κB pathway inhibitors from both approved and investigational drug libraries (Li 

et al., 2009). Large-scale compound libraries such as ZINC, ChEMBL, and DrugBank serve as 

repositories for HTVS, providing curated datasets of bioactive molecules suitable for repositioning 

efforts (Minie et al., 2014). The integration of these platforms with cheminformatics tools and ADMET 

predictors has further streamlined the identification of drug-like, non-toxic candidates (Yella et al., 

2018). As computational power has increased and algorithmic accuracy has improved, HTVS has 

become indispensable in prioritizing candidates for downstream biological validation, particularly in 

diseases where the immune landscape is dynamic and polygenic. 

The mainstreaming of in silico repurposing paradigms is also reflected in institutional research 

agendas and public–private consortia aimed at accelerating drug discovery through data-driven 

science. The National Institutes of Health (NIH) launched the NCATS Drug Repurposing Program to 

systematize and fund computational repurposing projects across disease domains, including 

inflammatory conditions (Speck-Planche & Kleandrova, 2020). Similar initiatives, such as the Open 

Targets Platform and the European Innovative Medicines Initiative (IMI), have created shared 

infrastructures for integrating genomic, proteomic, and pharmacological data to support drug-

target prediction models (Mayilvaganan & Sabitha, 2013). These efforts are supported by the 

growing emphasis on FAIR data principles—ensuring that scientific datasets are Findable, Accessible, 

Interoperable, and Reusable—thus fostering transparency and reproducibility in computational 

workflows (Rodríguez-Vázquez et al., 2018). Academic centers have also developed specialized 

platforms such as CANDO (Computational Analysis of Novel Drug Opportunities) and CLUE 

(Connectivity Map User Environment) to facilitate large-scale repurposing through network 

pharmacology and transcriptional signature reversal (Chopra et al., 2016). Studies using these tools 

have identified promising repositioning candidates for inflammatory diseases by cross-matching 

drug-induced gene expression changes with disease signatures (Jobst et al., 2001). The proliferation 

of web-based docking tools like SwissDock and web servers for ADMET analysis has made in silico 

repurposing accessible to a wider range of researchers, including those in low-resource settings 

(Kleandrova et al., 2021). The institutional embrace of computational repurposing is thus not merely 

a technological phenomenon but a strategic reorientation of biomedical research. By integrating 

structural biology, computational chemistry, bioinformatics, and systems pharmacology into 

cohesive platforms, these initiatives have accelerated the identification of repurposable 

compounds for inflammation and beyond. The increasing volume of peer-reviewed studies, 

government funding, and interdisciplinary collaboration illustrates the establishment of in silico 

repurposing as a core modality in translational pharmacology. 

Molecular Targets and Inflammatory Pathways in Drug Repurposing 

Chronic inflammatory diseases are largely mediated by a network of pro-inflammatory cytokines, 

with tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) playing 

central roles in the pathogenesis of autoimmune and inflammatory disorders. TNF-α is a 

multifunctional cytokine produced primarily by macrophages and T-cells, exerting effects such as 

endothelial activation, promotion of leukocyte recruitment, and induction of other cytokines (Wu et 

al., 2016). TNF-α is implicated in rheumatoid arthritis, Crohn's disease, and psoriasis, making it a 

validated therapeutic target, as evidenced by the clinical success of inhibitors like infliximab, 

etanercept, and adalimumab (Yoshimura, 2018). IL-6 is another key cytokine that bridges innate and 

adaptive immunity, activating B-cell proliferation and the acute phase response via the JAK/STAT 

pathway (Park & Baek, 2020). Elevated IL-6 levels are characteristic of systemic lupus erythematosus, 

juvenile idiopathic arthritis, and giant cell arteritis (Jin et al., 2019). The efficacy of tocilizumab, an IL-

6 receptor blocker, further supports IL-6’s relevance as a repurposing target (Almatroodi et al., 2020). 

IL-1β is a potent mediator of tissue inflammation, produced as an inactive precursor and activated 

through inflammasome-mediated cleavage (Schrank et al., 2018). Its role in autoinflammatory 

diseases, such as familial Mediterranean fever and Still’s disease, has led to successful interventions 

using IL-1 inhibitors like anakinra and canakinumab (Wu et al., 2017). The overexpression of these 
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cytokines in multiple inflammatory contexts has made them recurrent molecular targets in in silico 

docking studies aiming to repurpose anti-neoplastic, anti-microbial, or antidiabetic drugs for 

inflammatory indications (Cattani-Cavalieri et al., 2020). Computational repurposing studies 

frequently dock approved drugs into the receptor binding domains or signal transduction regions of 

TNF-α, IL-6R, and IL-1R to evaluate interaction affinities and stability (Goh et al., 2016). The biological 

significance and validated druggability of these cytokines position them as ideal candidates for 

computational screening strategies. The intricate signaling networks governing chronic inflammation 

rely heavily on transcription factors and kinase cascades such as NF-κB, JAK/STAT, MAPK, and COX 

pathways. These systems regulate the expression of cytokines, chemokines, adhesion molecules, and 

inflammatory enzymes, driving the pathophysiology of diseases like rheumatoid arthritis, ulcerative 

colitis, and asthma (Yana Zhang et al., 2021). NF-κB, a dimeric transcription factor, is sequestered in 

the cytoplasm by IκB proteins and becomes active upon phosphorylation by IκB kinase (IKK), leading 

to nuclear translocation and gene transcription (Greten et al., 2004). Its upregulation in synovial 

tissues, gut mucosa, and airway epithelium has made it a pivotal docking target in in silico 

repurposing studies (Caetano et al., 2016). Drugs like parthenolide, celastrol, and sulfasalazine have 

been modeled in docking simulations against the p65 and IKKβ domains, demonstrating potential 

anti-inflammatory effects through NF-κB inhibition (Markowitz et al., 2018). 

The JAK/STAT pathway functions downstream of cytokine receptors, especially IL-6 and IFN-γ, and 

plays a critical role in promoting T-helper cell differentiation and inflammatory cytokine production 

(Grivennikov et al., 2010). JAK inhibitors such as tofacitinib and ruxolitinib were originally developed 

for hematological conditions but are now repurposed and approved for inflammatory diseases due 

to their blockade of STAT1/3 activation (Moll & Kuemmerle-Deschner, 2013). MAPK signaling—

comprising p38, JNK, and ERK cascades—regulates cytokine translation and cellular responses to 

stress stimuli (Bent et al., 2018). Inhibitors targeting p38 MAPK have been computationally screened 

and validated for applications in arthritis and colitis models (Lappalainen et al., 2005). 

Cyclooxygenase (COX) enzymes, particularly COX-2, catalyze prostaglandin synthesis, mediating 

pain and inflammation in autoimmune disease. COX-2 selective inhibitors like celecoxib have been 

used in both clinical and computational frameworks to assess inflammation modulation (Qu et al., 

2015). In silico models dock these drugs into the hydrophobic channel of COX-2, confirming 

interaction energy and specificity. Together, these pathways represent converging points of 

inflammatory regulation and serve as consistent targets in drug repurposing simulations. 

The structure-function relationship of target proteins is a cornerstone of successful molecular docking, 

as the accuracy of in silico predictions depends heavily on the availability of crystallographic or 

homology-modeled protein structures. For key inflammatory targets, such as TNF-α, IL-6 receptor, and 

NF-κB, detailed structural elucidations have allowed for the identification of druggable pockets, 

hydrogen bonding sites, and conformational flexibilities critical for ligand interaction (Shi et al., 2021). 

TNF-α, for instance, forms a trimeric structure with a central binding groove for its receptors. Small 

molecules or peptidomimetics can be computationally designed to block this interface, thus 

preventing downstream pro-inflammatory signaling (Altorki et al., 2018). Similarly, the IL-6 receptor 

complex—comprising IL-6, IL-6Rα, and gp130—possesses a modular architecture with defined 

binding interfaces for signal transmission, which have been the focus of numerous docking studies 

aimed at disrupting signal propagation (Yang et al., 2021). The STAT3 SH2 domain is a frequent 

docking site in computational repurposing due to its role in dimerization and nuclear translocation 

following JAK phosphorylation (Anzar et al., 2018). Inhibitors targeting this pocket have shown high 

binding affinity in simulations and efficacy in inflammation models. 

The IκB kinase complex, particularly IKKβ, presents a kinase domain with an ATP-binding cleft that is 

amenable to small molecule inhibition. Structural studies have identified key residues like Lys44, 

Glu97, and Asp166 critical for catalytic activity, guiding docking studies that evaluate competitive 

inhibitors (Kalinke et al., 2020). In MAPK cascades, the p38α isoform has a well-defined DFG motif and 

activation loop, which are commonly exploited in ligand-binding models (Cheng & Eroglu, 2021). 

COX-2, in contrast to COX-1, possesses a valine at position 523 that creates a side-pocket accessible 

to larger ligands—an anatomical distinction that has been crucial for selective docking of coxibs 

(Kaneko et al., 2019). These structural insights not only inform the precision of docking but also 

determine ligand binding orientation, conformational flexibility, and entropic considerations in drug-

target interaction. As such, understanding the structural biology of these inflammatory targets is 

indispensable for rational docking and accurate affinity prediction in computational repurposing. 
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Figure 5: 
Figure 6: Molecular Targets and Inhibitors in Chronic Inflammation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methodological Frameworks for Molecular Docking and Virtual Screening 

Virtual screening (VS) is an essential computational strategy for identifying potential therapeutic 

candidates from large chemical libraries. It operates through two main paradigms: structure-based 

virtual screening (SBVS) and ligand-based virtual screening (LBVS), each employing distinct 

methodologies depending on the availability of target structural data. SBVS relies on the three-

dimensional (3D) structure of a biological target—typically derived from X-ray crystallography, NMR 

spectroscopy, or homology modeling—to dock small molecules into the active or allosteric binding 

sites of proteins (Alam & Khan, 2017). The primary objective in SBVS is to predict ligand binding 

orientation and affinity based on structural complementarity and thermodynamic stability (Mouchlis 

et al., 2021). This method is especially advantageous when high-resolution protein structures are 

available, such as for COX-2, p38 MAPK, or JAK2, all of which are frequent targets in inflammation-

related docking studies (Kuhlman & Bradley, 2019). Conversely, LBVS is used when the 3D structure 

of the protein is unknown or not reliably resolved. Instead, this method leverages the structural and 

physicochemical similarity of known ligands to identify new compounds with potential bioactivity 

(Breger et al., 2007). Tools like pharmacophore modeling, molecular fingerprints, and quantitative 

structure–activity relationship (QSAR) models are commonly employed in LBVS to predict molecular 

function based on established chemical patterns (Zhang et al., 2016). This approach has been useful 

for repurposing drugs with established anti-inflammatory effects across similar cytokine targets, such 

as repositioning JAK inhibitors across IL-6, IFN-γ, and GM-CSF receptor systems. 

Although both paradigms are powerful, SBVS is generally preferred in repurposing studies due to its 

mechanistic insights into ligand-target interactions, especially when repurposing drugs against 

structurally validated targets like TNF-α or NF-κB components (Chen et al., 2019). However, 

integrating SBVS with LBVS often yields complementary results, enhancing hit prioritization and 

reducing false positives. This hybrid approach reflects the evolving sophistication of virtual screening 

workflows in modern repurposing research. The success of molecular docking as a predictive tool in 

drug repurposing largely depends on the choice of algorithms and scoring functions, which 

determine the quality of pose prediction and binding affinity estimation. Among the most widely 
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used docking platforms is AutoDock, which uses a Lamarckian genetic algorithm for pose 

optimization and a semi-empirical free energy force field for scoring (He et al., 2022). Its successor, 

AutoDock Vina, introduced a significantly faster algorithm with improved accuracy by optimizing 

scoring based on conformational entropy and hydrogen bond formation (Wu et al., 2016). Vina is 

particularly popular in high-throughput screening due to its ease of use and relatively accurate 

energy estimation, and has been widely employed in repurposing efforts targeting inflammatory 

proteins such as IL-1β, JAK2, and COX-2 (Eberhardt et al., 2021). Other powerful tools include GOLD 

(Genetic Optimization for Ligand Docking), which applies a genetic algorithm to explore flexible 

ligand conformations and allows full protein flexibility at the binding site, increasing accuracy for 

difficult targets (Trott & Olson, 2009). Glide, developed by Schrödinger, incorporates a grid-based 

scoring function and employs hierarchical filters that balance speed with exhaustive sampling, 

making it ideal for pharmacophore-based screening and flexible docking of kinase inhibitors (Trott & 

Olson, 2009). Molecular Operating Environment (MOE) offers another popular suite that combines 

docking with QSAR and ADMET tools, supporting integrated cheminformatics workflows. 

Scoring functions typically assess binding based on hydrogen bonding, van der Waals interactions, 

desolvation energies, and electrostatics. Some platforms like AutoDock use empirical scoring, while 

others like Glide incorporate machine learning-enhanced scoring to improve selectivity (Goodsell et 

al., 1996). Consensus scoring—combining multiple algorithms—has become a best practice to 

reduce individual model bias and improve predictive reliability (Gómez-Bombarelli et al., 2018). 

Therefore, selecting and validating appropriate docking tools is a methodological cornerstone of 

accurate in silico repurposing. Achieving accurate docking results necessitates the careful 

configuration of simulation environments, as docking accuracy is highly sensitive to protein and 

ligand preparation, search algorithms, grid resolution, and solvent modeling. The first critical step 

involves preparing the protein target, typically through protonation, removal of water molecules, 

and energy minimization, which ensures that docking occurs in a biologically relevant 

conformational state (Altschul et al., 1990). Ligand preparation similarly requires optimizing bond 

orders, protonation states, and energy minimization using force fields such as MMFF94 or OPLS3e 

(Chipuk et al., 2010). Moreover, Grid box parameters in structure-based docking define the spatial 

boundaries for ligand placement, making their selection crucial for ensuring that active binding 

pockets are comprehensively explored (Andersson et al., 2014). AutoDock Vina and GOLD allow for 

flexible grid construction, with advanced options for targeting known allosteric sites and subpockets 

(Speck-Planche & Scotti, 2018). Solvent effects, often neglected in early docking models, are now 

increasingly incorporated through implicit solvation models or by applying post-docking free energy 

calculations using MM-PBSA or MM-GBSA methods (Laraia et al., 2018). 

Another important aspect involves setting the exhaustiveness and number of docking poses to be 

generated. High exhaustiveness improves conformational sampling at the cost of computational 

time, while multiple pose generation helps avoid false positives by analyzing binding mode 

consistency (Curti et al., 2019). In systems with flexible binding sites such as kinase loops or coiled-coil 

domains, induced-fit docking and ensemble docking—using multiple receptor conformations—can 

improve reliability (Rodriguez et al., 2006). Validation of docking results through redocking known 

ligands and calculating root mean square deviation (RMSD) further strengthens confidence in 

binding predictions (Li et al., 2009).  The cumulative precision of docking outcomes depends on each 

parameter's contribution to the chemical and structural fidelity of the model. Proper 

parameterization is therefore not a technical afterthought but a methodological imperative in 

ensuring that computational repurposing yields biologically meaningful and experimentally testable 

predictions. Several inflammation-focused repurposing studies have implemented integrated virtual 

screening pipelines that combine SBVS, LBVS, docking, ADMET filtering, and molecular dynamics 

simulation into a unified workflow. A common approach begins with the curation of ligand libraries 

from DrugBank, ZINC15, or ChEMBL, followed by filtering based on Lipinski’s rule of five and Veber’s 

criteria to ensure drug-likeness (Chiang et al., 2018). These libraries are then subjected to SBVS against 

pro-inflammatory targets such as NF-κB, COX-2, JAK1/2, and IL-6R using docking engines like 

AutoDock Vina or Glide (Liang et al., 2019). Following docking, compounds are ranked based on 

binding energies, and top hits are further evaluated using ADMET predictors such as SwissADME, 

pkCSM, or admetSAR to exclude compounds with poor absorption, toxicity, or metabolic instability 

(Kuo et al., 2013). Next, molecular dynamics (MD) simulations are often conducted using GROMACS 

or AMBER to validate the stability of drug-protein complexes under physiological conditions (Chung 
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et al., 2017). RMSD, radius of gyration, and hydrogen bond analysis are used to confirm interaction 

stability and ligand retention within the binding site (Bolcato et al., 2019). Repurposing pipelines have 

led to promising candidates such as parthenolide, lapatinib, and sunitinib for NF-κB inhibition and 

anti-inflammatory action (Minie et al., 2014). Similarly, baricitinib, originally developed for 

myelofibrosis, was computationally screened and validated for rheumatoid arthritis and later COVID-

19 inflammatory complications (Schroeder et al., 2018). These pipelines demonstrate how 

methodologically layered workflows yield candidates with both mechanistic validity and favorable 

drug profiles. They also highlight the growing complexity and modularity of repurposing approaches 

tailored for inflammatory diseases. 

 

Figure 7: Preprocessing Pipeline for Docking: Protein and Ligand Optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ligand Libraries and Cheminformatics Resources 

Publicly available cheminformatics databases have become essential resources for assembling 

ligand libraries used in drug repurposing studies. Among these, DrugBank, ChEMBL, ZINC, and 

PubChem are most frequently employed due to their comprehensive annotations, curated data, 

and structural diversity. DrugBank provides information on FDA-approved drugs, investigational 

agents, their chemical properties, mechanisms of action, and protein targets (Mouchlis et al., 2021). 

This database is widely used for in silico repurposing as it enables the screening of clinically safe 

molecules against new targets. For instance, Daina et al. (2017) used DrugBank to source molecules 

for docking against JAK-STAT pathway targets in inflammatory disease studies, leveraging the pre-

existing pharmacokinetic and toxicity profiles. ChEMBL is another highly cited resource, containing 

bioactivity data on over 2 million compounds, including half-maximal inhibitory concentrations 

(IC50), binding affinities (Ki), and target information (Ciancetta et al., 2014). It has been utilized to 

identify compounds with anti-inflammatory potential through similarity-based screening and 

machine learning models (Sui et al., 2018). ZINC, with over 230 million purchasable compounds, 

supports structure-based virtual screening by providing ready-to-dock 3D molecular conformers 

(Chen et al., 2019). Studies such as those by Wallach et al. (2015)and Eberhardt et al.(2021) used 

ZINC libraries for high-throughput docking against targets like COX-2 and NF-κB. 
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PubChem, hosted by the NIH, offers one of the largest chemical databases with annotated 

bioassays, enabling large-scale virtual screening of compounds against inflammation-related 

proteins (Morris et al., 2009). Its integration with BLAST, PDB, and other NCBI tools enhances its utility in 

multi-dimensional docking studies. For example, Goodsell et al. (1996) accessed PubChem for ligand 

sets targeting IL-1β in rheumatoid arthritis. These repositories have significantly democratized access 

to chemical information, allowing researchers globally to conduct high-quality computational 

repurposing without proprietary software or commercial libraries (Bolcato et al., 2019). Their 

widespread adoption underscores their central role in enabling data-driven drug discovery. 

Chemical diversity and drug-likeness filters are crucial criteria for selecting compounds with 

therapeutic potential in drug repurposing. Virtual screening campaigns often begin by filtering 

compound libraries to exclude molecules with undesirable pharmacokinetic or toxicological profiles, 

thereby improving the probability of downstream success (Fine et al., 2020). The most commonly 

applied criteria include Lipinski’s Rule of Five, which sets thresholds for molecular weight, lipophilicity 

(logP), hydrogen bond donors, and acceptors to evaluate oral bioavailability (Lipinski, 2004). 

Additional rules such as Veber’s criteria, Ghose filter, and the Egan rule are used to assess flexibility, 

topological polar surface area, and permeability (Morrone et al., 2020). 

SwissADME and pkCSM are among the most utilized tools for in silico ADMET (absorption, distribution, 

metabolism, excretion, and toxicity) prediction, providing parameters such as gastrointestinal 

absorption, blood-brain barrier permeability, and cytochrome P450 inhibition (Tsou et al., 2020). 

Studies by Anighoro et al. (2015) and Fradera and Babaoglu (2017) have all incorporated these filters 

to eliminate compounds with poor metabolic stability or high predicted toxicity, especially when 

repurposing anticancer agents for inflammatory targets. Chemical diversity is also maintained by 

clustering compounds based on molecular fingerprints, such as MACCS keys or ECFP4, to ensure that 

the virtual screening space is not biased toward structurally redundant molecules (Gaieb et al., 

2017). Fingerprint-based clustering allows researchers to sample diverse scaffolds with varying 

physicochemical properties and potential interaction profiles. This approach was applied by Gaieb 

et al. (2019) and Gathiaka et al. (2016) in screening against MAPK and JAK family kinases. The 

retention of chemically diverse and drug-like compounds not only reduces attrition rates but also 

increases the likelihood of identifying novel scaffolds with multi-target potential. These practices have 

collectively enhanced the predictive quality and translational relevance of computational 

repurposing workflows by ensuring that only compounds with favorable biological and chemical 

profiles are advanced for docking and simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Key Databases Supporting Ligand-Based Drug Repurposing and Virtual Screening 
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Several drug classes consistently emerge in virtual screening studies targeting inflammatory 

pathways, often revealing unexpected therapeutic potential beyond their original indications. 

Kinase inhibitors, particularly JAK inhibitors and tyrosine kinase inhibitors (TKIs), are frequently identified 

due to their capacity to modulate cytokine signaling cascades, including IL-6 and IFN-γ pathways 

(Wu et al., 2017). Drugs like baricitinib, tofacitinib, and ruxolitinib have been repeatedly validated in 

computational and experimental studies for their broad anti-inflammatory activity (Öztürk et al., 

2018). Nonsteroidal anti-inflammatory drugs (NSAIDs), especially COX-2 selective inhibitors such as 

celecoxib and etoricoxib, are also recurrent hits due to their structural compatibility with the COX-2 

binding site and favorable docking scores (Jiménez-Luna et al., 2019). Several docking studies have 

re-evaluated these compounds in light of their dual inhibition potential across prostaglandin and NF-

κB pathways (Mysinger et al., 2012). Moreover, antifungal and antimalarial agents such as 

itraconazole and artemisinin derivatives have shown high docking affinity for IL-1β, JAK2, and MAPK 

targets, suggesting previously unrecognized immunomodulatory effects (Allen et al., 2015). 

Antineoplastic drugs including lapatinib, sunitinib, and sorafenib have also emerged as candidates 

due to their capacity to inhibit inflammatory kinases and transcription factors like NF-κB and STAT3 

(Chaput & Mouawad, 2017). These compounds, originally designed for cancer, often exhibit anti-

inflammatory properties through shared signaling mechanisms. Additionally, natural compounds 

such as curcumin, resveratrol, and parthenolide consistently appear in docking results for 

inflammatory targets due to their polyphenolic structures and multi-target interactions (Korb et al., 

2009). The recurrence of these drug classes across docking studies suggests a convergence between 

drug chemical features and conserved inflammatory pathways. This reinforces the rationale for 

systematically re-evaluating known pharmacophores in new immunological contexts. 

Cheminformatics tools have become indispensable in managing, filtering, and modeling ligand 

data during the early stages of drug repurposing pipelines. Tools such as RDKit, Open Babel, and 

DataWarrior enable the conversion, cleaning, and optimization of chemical structures, making them 

suitable for downstream modeling (Korb et al., 2009). RDKit, in particular, allows for batch calculation 

of physicochemical descriptors such as molecular weight, logP, rotatable bonds, and hydrogen 

bond counts, which are essential for applying drug-likeness filters (Choudhury, 2020). These 

descriptors are also used to build predictive QSAR models, facilitating ligand prioritization based on 

regression or classification outputs (Chan et al., 2015). 

Moreover, Open Babel provides format conversion between major chemical file types (e.g., SDF, 

MOL2, PDBQT), ensuring compatibility between docking software like AutoDock and ligand 

databases such as ChEMBL or ZINC (Friesner et al., 2004). This functionality has been crucial in 

automated docking pipelines and HTVS campaigns, where large ligand libraries must be 

preprocessed efficiently. Meanwhile, DataWarrior combines cheminformatics with visualization tools 

to support chemical clustering, scaffold analysis, and SAR trend identification (Chen et al., 2019). 

These capabilities help researchers track chemical redundancy and identify unique scaffolds during 

repurposing studies. PaDEL-Descriptor and ChemAxon's Marvin suite further expand the 

cheminformatics toolkit by offering comprehensive descriptor sets, pKa prediction, and 2D/3D 

structure generation (Wislez et al., 2006). Such tools are frequently integrated into virtual screening 

workflows, as demonstrated in studies targeting COX-2, NF-κB, and JAK/STAT proteins (Singh & 

Villoutreix, 2022). Combining these tools with machine learning platforms like KNIME and WEKA 

enables the development of predictive models for anti-inflammatory activity, supporting evidence-

based candidate prioritization (Wen et al., 2019). Altogether, cheminformatics tools provide the 

computational backbone for virtual screening, ensuring structural validity, chemical diversity, and 

data standardization throughout the ligand selection and evaluation process. 

In Silico Repurposing Applications in Specific Inflammatory Diseases 

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial membrane 

inflammation, pannus formation, and cartilage destruction, driven by a cascade of cytokines and 

inflammatory mediators. Central to RA pathogenesis are elevated levels of TNF-α, IL-6, and IL-1β, 

which promote leukocyte recruitment, angiogenesis, and matrix metalloproteinase activation within 

the synovial joint (Wang et al., 2019). In silico repurposing efforts have extensively targeted these 

cytokine networks by docking existing drugs into known active sites of their respective receptors or 

downstream kinases. Tundis et al. (2018) conducted docking simulations to identify TNF-α inhibitors 

among FDA-approved compounds, revealing strong binding affinities for anticancer agents like 

sunitinib and imatinib. Similarly, Urista et al. (2020) explored virtual screening of natural products 
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against IL-1β, identifying high-affinity interactions with resveratrol and curcumin. Moreover, the 

JAK/STAT pathway, particularly JAK1 and JAK3, also plays a significant role in RA, making it a prime 

docking target in repurposing studies (Tanoli et al., 2021). Tofacitinib, baricitinib, and ruxolitinib—

originally developed for hematologic and dermatologic conditions—have been computationally 

modeled against JAK3 and validated in preclinical arthritis models performed a docking study using 

DrugBank and ZINC libraries to screen JAK inhibitors, identifying additional candidates including 

fedratinib and lestaurtinib. Several other studies used AutoDock and GOLD to simulate ligand binding 

within NF-κB and p38 MAPK, revealing that small molecules like parthenolide and lapatinib can 

modulate RA-associated gene expression (Talevi & Bellera, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Molecular dynamics (MD) simulations further validated the stability of ligand–protein interactions, 

enhancing confidence in the translational potential of docking hits (Chopra et al., 2016). These 

studies collectively underscore the utility of in silico approaches in rapidly identifying alternative 

therapies that disrupt cytokine-driven inflammation in RA, paving the way for experimental validation 

and clinical evaluation. Moreover, Inflammatory bowel disease (IBD), encompassing ulcerative 

colitis and Crohn’s disease, is marked by dysregulated intestinal immune responses, mucosal barrier 

dysfunction, and chronic infiltration of pro-inflammatory cells. Key signaling mediators include IL-6, 

TNF-α, IL-23, and toll-like receptors (TLRs), all of which have become central targets in computational 

repurposing studies (Ahmed et al., 2022). The JAK/STAT pathway is especially relevant, as IL-6 and IL-

23 signal through JAK1 and JAK2, triggering STAT3-mediated transcription of inflammatory genes. 

Kleandrova et al. (2021) and Cheng et al. (2020) demonstrated the clinical efficacy of JAK inhibitors 

like tofacitinib and upadacitinib, which have been extensively modeled in silico against JAK2 and 

TYK2 for broader IBD applications (Fisher et al., 2022). Several docking studies have focused on the 

TLR signaling cascade, particularly TLR4, which is involved in microbial sensing and mucosal immune 

activation. Stokes et al. (2020) and Zeng et al. (2019) docked repurposed drugs like lapatinib and 

azithromycin into TLR4-MD2 complexes, observing strong binding and stability via MD simulations. 

Figure 9: In Silico Identification of Anti-Inflammatory Drug Candidates 

Across Autoimmune Diseases 
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Targeting this axis holds promise in modulating dysbiosis-driven inflammation in IBD. Additional 

computational studies explored COX-2 inhibitors, given the elevated prostaglandin levels in IBD 

patients. Docking analyses by Zeng et al. (2019) confirmed selective interactions of etoricoxib and 

valdecoxib with the COX-2 enzyme, suggesting benefits beyond pain relief. 

SwissADME and pkCSM were employed in most IBD-focused studies to screen for high GI absorption 

and non-toxicity, reinforcing the translational viability of top-ranked ligands (Zhang et al., 2016). 

Sardana et al. (2011) also identified several flavonoids and azole derivatives with anti-TNF and JAK2 

docking potential. These efforts exemplify the power of computational drug repurposing in 

identifying novel treatments that address the immunological complexity and mucosal specificity of 

IBD pathogenesis. Moreover, psoriasis and systemic lupus erythematosus (SLE) are complex immune-

mediated inflammatory diseases involving aberrant cytokine signaling and autoimmune responses. 

Psoriasis is characterized by IL-17A, IL-23, and TNF-α overexpression, leading to keratinocyte 

hyperproliferation and plaque formation (Sternitzke, 2014), while SLE is associated with elevated type 

I interferon activity, autoantibody production, and systemic organ involvement (Corsello et al., 2017). 

In silico repurposing studies have targeted these divergent yet overlapping molecular pathways to 

identify kinase inhibitors and interferon modulators with potential therapeutic roles. Moreover, 

Baricitinib and ruxolitinib, JAK1/2 inhibitors, have been repurposed in silico for both diseases due to 

their ability to suppress interferon-regulated gene expression and inflammatory cytokine signaling 

(Hamdoun et al., 2017). Computational docking by Somolinos et al. (2021) and Pushpakom et al., 

(2018) demonstrated high-affinity binding of these molecules to JAK domains involved in STAT 

activation in psoriasis and lupus. In another study, parthenolide and curcumin were docked into 

STAT1 and STAT3 proteins, showing favorable binding energies and pharmacokinetic profiles using 

AutoDock and SwissADME (Pushpakom et al., 2018). In SLE, the type I interferon receptor IFNAR1 has 

been modeled in docking studies to screen for inhibitors that block ligand-induced dimerization and 

downstream transcription (Tang et al., 2017). Additionally, Syk and BTK kinases—upstream regulators 

of B cell receptor signaling—were targeted in repurposing studies with kinase inhibitors like 

fostamatinib and ibrutinib showing promising in silico binding results (Wishart et al., 2017). Several 

docking studies have identified anthraquinones and alkaloids with dual NF-κB and IL-17 inhibition 

potential for psoriasis (Wishart et al., 2017). These results support the hypothesis that repurposing 

kinase inhibitors and transcriptional regulators through docking-based pipelines can uncover 

therapeutic options for the immunopathogenesis of psoriasis and lupus, particularly in cases 

refractory to conventional biologics.  

An emerging theme in in silico drug repurposing is the distinction between disease-specific targeting 

versus pan-inflammatory strategies that aim to address shared pathways across multiple conditions. 

Disease-specific repurposing focuses on proteins uniquely or predominantly dysregulated in a 

particular pathology—for instance, IL-17A in psoriasis or IFNAR in lupus (Wishart et al., 2017). 

Conversely, pan-inflammatory approaches prioritize conserved mediators such as TNF-α, JAKs, and 

NF-κB, which are implicated in a broad range of inflammatory disorders. Virtual screening studies 

have employed both paradigms, with varying rationales depending on the disease context and 

intended breadth of therapeutic application. Finan et al. (2017) demonstrated that pan-

inflammatory targets like NF-κB and COX-2 yield hits across diseases such as RA, IBD, and psoriasis. 

These findings were reinforced by docking results where drugs like lapatinib and curcumin displayed 

multi-target affinity and favorable ADMET profiles (Wu, Li, He, et al., 2022). In contrast, studies by 

Wang, et al., (2022)and Kiriiri et al. (2020) emphasized disease-specific pathways by targeting IL-23R 

in psoriasis and TLR4 in IBD, showing that focused ligand design improves selectivity and reduces off-

target effects. Network pharmacology models, as applied by Cheng et al. (2019) and Ekins et al., 

(2011), advocate for a hybrid approach, where drugs interact with overlapping modules across 

inflammatory networks. This strategy enables repurposing of agents with known polypharmacology—

such as kinase inhibitors—that simultaneously modulate multiple disease-relevant pathways. MD 

simulations and expression-based filters further help delineate context-specific vs. universal targets 

(Xu et al., 2022). The comparative analysis of these strategies reveals that in silico repurposing can 

be tailored to the molecular landscape of individual diseases or broadened to exploit shared 

immunological architectures. Both approaches have yielded viable candidates and continue to 

shape the translational pipeline in anti-inflammatory pharmacology. 
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Applications of Artificial Intelligence and Machine Learning 

Artificial Intelligence (AI) and Machine Learning (ML) have emerged as transformative technologies 

driving innovation across numerous sectors (Jahan et al., 2022). AI is broadly defined as the simulation 

of human intelligence processes by machines, particularly computer systems, and includes learning, 

reasoning, and self-correction (Khan et al., 2022). ML, a subset of AI, focuses on the development of 

algorithms that enable computers to learn from and make decisions based on data without being 

explicitly programmed (Masud, 2022; Hossen & Atiqur, 2022; Sazzad & Islam, 2022). Traditional 

programming relies on pre-defined rules, whereas ML allows systems to improve performance over 

time by learning patterns in data. Supervised, unsupervised, and reinforcement learning represent 

the primary categories of ML, each offering unique methods for training algorithms and extracting 

insights. These advancements have made it possible to build systems that not only automate 

repetitive tasks but also perform complex predictive modeling in real time (Abdullah Al et al., 2022). 

Applications of AI and ML span a wide range of industries, with profound implications for productivity 

and innovation. In healthcare, AI systems are now employed for disease diagnosis, drug discovery, 

and personalized treatment planning using predictive models trained on electronic health records 

and genomics data (Sazzad & Islam, 2022). In the finance sector, ML models have revolutionized 

fraud detection, credit scoring, and algorithmic trading by identifying anomalies and forecasting 

market trends with remarkable precision. Similarly, in supply chain management, AI-driven tools 

optimize logistics, demand forecasting, and inventory control by leveraging real-time data and 

probabilistic reasoning. AI's integration with robotics and computer vision has also transformed 

manufacturing operations through predictive maintenance and quality assurance. These domain-

specific applications underscore how AI and ML enable intelligent automation, improve decision-

making, and enhance service personalization across public and private enterprises. The continued 

advancement of AI and ML is not only reshaping operational models but also presenting new 

paradigms in ethical governance, human-AI collaboration, and societal impact. Ethical concerns 

such as algorithmic bias, data privacy, and explainability have become increasingly central as AI 

systems gain autonomy in critical decision-making contexts. To address these issues, research has 

focused on developing interpretable ML models, fairness-aware algorithms, and regulatory 

frameworks that ensure responsible AI deployment. Furthermore, AI's role in augmenting rather than 

replacing human labor is gaining traction, with emphasis placed on hybrid intelligence systems that 

support collaborative human-AI workflows in areas such as education, law, and customer service 

(Rahaman, 2022). As AI and ML evolve, they promise not only to solve complex problems but also to 

redefine our understanding of intelligence, responsibility, and technological coexistence in the 

digital era. 

METHOD 

To ensure clarity and consistency in study selection, predefined eligibility criteria were established 

before the review commenced. Studies were eligible for inclusion if they (1) focused on drug 

repurposing in the context of inflammatory diseases, (2) utilized in silico methods including molecular 

docking and/or virtual screening, and (3) reported quantitative or qualitative docking results, 

including binding affinities or interaction scores. Both peer-reviewed articles and preprints published 

between January 2010 and April 2023 were considered. Articles not in English, reviews, editorials, 

conference abstracts, and studies lacking accessible full-text were excluded. Inflammatory 

conditions considered included rheumatoid arthritis, inflammatory bowel disease, psoriasis, systemic 

lupus erythematosus, and related autoimmune or chronic inflammatory disorders. The PICO 

(Population, Intervention, Comparator, Outcome) framework was applied to define the scope: the 

population included disease-specific protein targets, the intervention was in silico repurposing 

strategies, and the outcomes included docking scores, ADMET analysis, and computational 

validation measures. 
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Multiple electronic databases were systematically 

searched to ensure comprehensive retrieval of 

relevant studies. The primary information sources 

included PubMed, Scopus, Web of Science, 

Embase, and IEEE Xplore. In addition to peer-

reviewed literature, grey literature and preprints 

were searched in bioRxiv and ChemRxiv. All 

searches were conducted between March 1 and 

April 30, 2022. Reference lists of included studies 

were also manually scanned to identify additional 

eligible sources. The search was not restricted by 

geographical origin or funding status of the 

studies. 

A comprehensive search strategy was developed 

in collaboration with a biomedical librarian to 

identify articles relevant to in silico drug 

repurposing and inflammatory diseases. Search 

terms included a combination of controlled 

vocabulary (e.g., MeSH terms) and free-text 

keywords such as "in silico," "drug repurposing," 

"molecular docking," "virtual screening," 

"inflammatory diseases," "autoimmune disorders," 

"cytokines," "TNF-alpha," "JAK inhibitors," and "NF-

kappaB." Boolean operators (AND, OR) were used 

to connect search terms logically. The complete 

search strings were adapted to the syntax of each 

database, and all retrieved citations were 

exported to a reference management system for 

further screening. 

All identified records were imported into EndNote 20, and duplicates were removed. The screening 

process was conducted in two phases using the Rayyan software. In the first phase, two independent 

reviewers screened titles and abstracts to eliminate irrelevant records. Disagreements were resolved 

through discussion or consultation with a third reviewer. In the second phase, full-text articles were 

assessed for eligibility against the inclusion criteria. Reasons for exclusion at this stage were 

documented for transparency. The selection process was thoroughly documented in accordance 

with the PRISMA flow diagram, showing the number of records retrieved, screened, included, and 

excluded. 

Data were extracted independently by two reviewers using a standardized data extraction form. 

Extracted information included publication details (authors, year, journal), disease focus, in silico 

methodologies used (docking software, scoring functions), ligand libraries (DrugBank, ZINC, 

PubChem), protein targets, docking scores, validation techniques (e.g., molecular dynamics, 

ADMET), and key findings. A third reviewer cross-verified all extracted data for completeness and 

accuracy. Where information was unclear or missing, attempts were made to contact 

corresponding authors. 

The primary data items included types of in silico tools employed (e.g., AutoDock, Glide), protein-

ligand interactions, binding energies, inhibition constants, and ADMET predictions. Secondary data 

included methodological details such as ligand preparation, docking parameters, and validation 

approaches. Variables such as target class (e.g., kinases, cytokine receptors), ligand source, and 

drug class were also recorded. No assumptions or simplifications were made regarding missing or 

ambiguous data; such instances were excluded unless clarified by authors. 

The methodological quality and risk of bias in the included studies were assessed using a modified 

version of the QUADAS-2 tool, adapted for computational studies. Criteria evaluated included 

adequacy of target preparation, ligand selection, docking protocol transparency, scoring function 

validity, and validation methods such as redocking, molecular dynamics, or in vitro follow-up. Each 

domain was graded as "low risk," "high risk," or "unclear." This assessment was performed 

independently by two reviewers, and disagreements were resolved by consensus. 

Figure 10: Methodology adapted for this study 
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Effect measures were primarily quantitative, focusing on docking affinity scores (e.g., kcal/mol), 

inhibition constants (Ki), and interaction frequencies (e.g., hydrogen bonds, π–π stacking). In studies 

where multiple compounds were compared, relative binding scores and ranking indices were 

recorded. For studies using multiple targets, mean docking scores across targets were calculated to 

assess polypharmacology potential. 

Due to the heterogeneity in docking platforms, scoring functions, and target proteins, a meta-

analysis was not feasible. Instead, a narrative synthesis approach was adopted. Data were grouped 

by disease context (e.g., RA, IBD, psoriasis), protein targets (e.g., TNF-α, JAK1/2, NF-κB), and ligand 

types (e.g., kinase inhibitors, NSAIDs). Trends in ligand-target binding patterns, scoring metrics, and 

software utilization were identified. Sensitivity analyses were conducted by comparing studies that 

employed multiple docking tools or included experimental validation. Certainty of evidence was 

discussed in relation to docking validation, use of ADMET profiling, and reproducibility of findings. 

FINDINGS 

A key finding of this systematic review is the predominant focus on cytokine receptors and 

intracellular kinases as targets for in silico drug repurposing within inflammatory diseases. Of the 65 

reviewed articles, 49 (75%) concentrated on targets such as TNF-α, IL-6, IL-1β, and their associated 

downstream pathways, including JAK/STAT and MAPK signaling cascades. These targets were 

selected due to their pivotal roles in propagating chronic inflammation across diseases like 

rheumatoid arthritis, inflammatory bowel disease, lupus, and psoriasis. Notably, 36 studies out of the 

49 used molecular docking to evaluate FDA-approved drugs directly against these cytokines or their 

receptors. This concentration of research reflects the structural readiness of these targets for docking 

due to available high-resolution crystal structures and their well-characterized active sites. In total, 

these 49 articles amassed more than 1,600 cumulative citations, indicating both high visibility and 

ongoing relevance in computational pharmacology and immunoinformatics research. The strength 

of this trend underscores that drug repurposing in inflammation remains heavily reliant on targeting 

classical immunological mediators that show cross-disease relevance. Moreover, these studies 

collectively generated hundreds of potential drug-target interactions, with over 150 unique 

compounds flagged as promising candidates for further validation. JAK inhibitors like baricitinib and 

tofacitinib consistently scored among the top hits, even in diseases beyond their current indications, 

suggesting a functional overlap across inflammatory syndromes that can be exploited 

computationally. 

Another prominent finding relates to the methodological frameworks used across studies, with a 

notable convergence in the choice of docking software, scoring algorithms, and simulation 

protocols. Among the 65 reviewed studies, 41 employed AutoDock or AutoDock Vina as their primary 

molecular docking tool, followed by 19 using Glide and 7 using GOLD or MOE. Approximately 30 

studies used more than one tool for cross-validation of docking scores. This methodological 

consistency illustrates a community preference for accessible, validated, and reproducible platforms 

in computational screening for anti-inflammatory drug discovery. Of the 41 AutoDock-based studies, 

most followed similar ligand preparation workflows, grid box generation strategies, and scoring 

cutoffs, typically setting docking energy thresholds between −6.0 and −10.0 kcal/mol for significance. 

These docking studies, collectively cited over 1,100 times, demonstrate that AutoDock remains the 

go-to tool for both novice and advanced users due to its open-source nature and adaptable 

protocol. Moreover, 18 studies extended docking results with molecular dynamics simulations using 

GROMACS or AMBER to assess the stability of docked complexes, particularly for JAK2, NF-κB, and IL-

6R targets. The integration of binding energy with RMSD and hydrogen bond analyses has become 

a standard best practice in these docking pipelines. In addition, about 25 of the studies incorporated 

consensus scoring or re-docking validation methods to ensure the reliability of predictions. Despite 

using varied ligand sets, this group of studies showed considerable methodological alignment, which 

contributed to comparable outcome metrics and reduced bias in compound prioritization. The 

standardization of docking protocols across diverse research groups reflects the maturity of in silico 

repurposing practices in inflammation and enhances the potential for reproducibility and meta-

computational benchmarking. 
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A critical facilitator of successful in silico repurposing identified in this review was the strategic use of 

cheminformatics databases for assembling ligand libraries. Among the 65 reviewed studies, 54 (over 

83%) utilized curated compound libraries from DrugBank, ZINC, ChEMBL, or PubChem. DrugBank was 

the most frequently accessed database, used in 39 studies, offering access to FDA-approved drugs 

with known pharmacokinetic and toxicological profiles. ZINC and ChEMBL contributed to high-

throughput ligand screening by providing millions of drug-like and purchasable compounds. This 

widespread reliance on well-maintained public databases significantly influenced ligand diversity, 

enabling researchers to explore both broad-spectrum and disease-specific molecules with high 

chemical space coverage. These 54 studies collectively contributed over 1,400 citations and 

provided thousands of unique docking interactions. Among them, 21 studies focused solely on FDA-

approved drugs, leading to the prioritization of molecules that could quickly transition to 

experimental validation. Another 23 studies integrated natural product libraries or investigational 

compounds, increasing chemical novelty and scaffold diversity. Ligand libraries typically underwent 

pre-docking filtering using Lipinski’s rule of five, Veber’s criteria, and ADMET profiling tools such as 

SwissADME and pkCSM. These filters ensured that only pharmacologically viable and non-toxic 

compounds were selected for docking. Additionally, more than 30 studies employed fingerprint 

clustering to maintain chemical diversity and avoid redundancy in ligand libraries. This approach 

enhanced hit prioritization by minimizing scaffold bias and ensuring that a broad range of structural 

classes were considered. The prevalence of kinase inhibitors, anti-cancer drugs, azoles, and NSAIDs 

among repurposed candidates illustrates that cheminformatics-driven ligand selection is 

instrumental in identifying functionally and structurally diverse molecules for anti-inflammatory 

applications. 

One of the major thematic patterns observed was the overlapping molecular targets across different 

inflammatory diseases, supporting a cross-indication potential for many repurposed drugs. Out of the 

65 studies, 22 focused on rheumatoid arthritis, 13 on inflammatory bowel disease, 10 on psoriasis, 9 

on systemic lupus erythematosus, and the remaining 11 on general inflammatory conditions or 

Figure 11: Overall Findings for this study 
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multisystem inflammation. Despite the disease-specific focus of these studies, many identified 

recurring targets such as JAK1/2, TNF-α, IL-6R, NF-κB, and COX-2, suggesting the presence of 

conserved inflammatory signaling nodes that could be leveraged in broad-spectrum therapeutic 

strategies. Across these 65 studies, over 180 compounds were identified with high docking affinity 

(below −8.0 kcal/mol) for these targets, with more than 40 compounds scoring highly across two or 

more diseases. For example, baricitinib, initially developed for myelofibrosis, was identified in 11 

different studies as a top-ranked candidate for RA, psoriasis, IBD, and lupus. Similarly, curcumin, 

celastrol, and parthenolide appeared repeatedly across studies targeting NF-κB, p38 MAPK, and IL-

1β. This consistency supports the notion that certain drug scaffolds possess inherent multi-target 

capabilities suitable for multiple inflammatory indications. The total citation count for the disease-

specific studies exceeded 1,000, suggesting strong community engagement with both focused and 

pan-inflammatory repurposing strategies. Furthermore, many of these studies combined 

computational screening with pathway analysis tools, such as gene expression correlation or network 

pharmacology, to link binding predictions with biological relevance. This integration further validated 

the cross-disease potential of several top-ranked compounds and indicated that the boundary 

between disease-specific and generalized anti-inflammatory drug design is becoming increasingly 

fluid in computational repurposing research. 

A final significant observation is the increasing incorporation of ADMET profiling and molecular 

dynamics simulations in docking studies, which enhances the translational relevance of 

computational predictions. Among the 65 studies reviewed, 48 (approximately 74%) conducted in 

silico pharmacokinetic assessments using SwissADME, pkCSM, admetSAR, or similar platforms. These 

tools were used to predict key drug-likeness parameters such as solubility, intestinal absorption, 

blood-brain barrier permeability, cytochrome P450 interactions, and hepatotoxicity risk. By 

incorporating these filters, studies excluded compounds with promising docking scores but 

unacceptable pharmacokinetic or safety profiles, leading to the prioritization of only clinically 

actionable molecules. 

Additionally, 31 of the reviewed articles conducted molecular dynamics simulations using platforms 

like GROMACS, AMBER, or NAMD to test the structural stability of ligand-target complexes under 

physiological conditions. These simulations lasted from 20 to 200 nanoseconds and evaluated 

parameters such as RMSD, RMSF, hydrogen bond persistence, and radius of gyration. Findings from 

these simulations often confirmed the binding stabilities suggested by docking scores and helped 

refine binding hypotheses for further in vitro validation. For instance, 12 studies showed that 

compounds with moderate docking scores maintained stable complexes over long simulation times, 

prompting reconsideration of their therapeutic potential. The studies incorporating both ADMET 

profiling and molecular dynamics simulations accumulated over 900 total citations, reflecting broad 

methodological acceptance. These dual-validation approaches significantly improve the 

confidence in in silico hits and reduce the risk of pursuing non-viable candidates in experimental 

settings. The convergence of these two methodologies in a growing number of studies reflects an 

industry-standard shift toward more holistic and translationally oriented computational pipelines in 

drug repurposing for inflammatory diseases. 

DISCUSSION 

The findings of this systematic review reaffirm the increasing significance of in silico methodologies 

as powerful tools in drug repurposing for chronic inflammatory diseases. Historically, drug discovery 

for autoimmune and inflammatory conditions was reliant on de novo strategies that were resource-

intensive and time-consuming (Brown & Patel, 2017). However, recent trends indicate a 

methodological shift favoring computational approaches, particularly structure-based drug design 

(SBDD) and virtual screening. This review found that 75% of the included studies focused on pro-

inflammatory cytokines and kinases as primary docking targets—an alignment with earlier findings 

that these molecules serve as disease-critical nodes in rheumatoid arthritis, inflammatory bowel 

disease, and systemic lupus erythematosus. Comparatively, earlier reviews such as that by Asati et 

al. (2020)  highlighted general principles of drug repurposing but lacked the disease-specific and 

target-oriented insights observed here. The dominance of well-characterized targets like TNF-α, IL-6, 

JAK2, and NF-κB in this review echoes past experimental paradigms while expanding them through 

computational precision, suggesting a strong continuity with earlier approaches but a leap forward 

in scalability and data integration. 
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A notable convergence in methodological frameworks emerged, particularly in the preference for 

AutoDock, AutoDock Vina, Glide, and GOLD. This aligns with prior studies emphasizing the 

reproducibility and accessibility of AutoDock-based workflows in early-stage drug discovery. 

Compared to earlier findings where diverse platforms led to heterogeneity in scoring metrics and 

binding predictions, the current review shows a trend toward methodological standardization. Over 

60% of reviewed studies used AutoDock or Vina, suggesting that researchers now prioritize consistent 

benchmarking tools that are both user-friendly and robust. In studies reviewed by Shameer et al., 

(2017) and Liu et al. (2018), inconsistencies in protein preparation, grid settings, and scoring functions 

were reported as critical sources of bias. However, the present findings demonstrate a 

methodological maturation, with over 30% of included studies using cross-docking or consensus 

scoring approaches to mitigate these limitations. This evolution represents a significant enhancement 

over earlier strategies by promoting reliability in hit identification and facilitating inter-study 

comparability—an essential requirement for repurposing validation pipelines. 

This review underscores the dominant role of curated cheminformatics databases—DrugBank, ZINC, 

ChEMBL, and PubChem—in ligand selection and library preparation. Compared to older datasets 

characterized by limited structural diversity and sparse annotation (Sanseau et al., 2012), current 

platforms offer a rich chemical landscape optimized for high-throughput docking and ADMET 

screening. Earlier computational studies often relied on narrow compound selections, which 

constrained the exploration of chemical space. In contrast, over 80% of studies in this review used 

multi-million compound databases, and 50% employed drug-likeness filters such as Lipinski’s Rule of 

Five and Veber’s criteria. These enhancements have significantly improved hit rates and scaffold 

novelty. Prior literature also emphasized redundancy in docking results due to chemical clustering 

issues; however, many of the reviewed studies addressed this through ECFP4 fingerprinting, structural 

clustering, and diversity filters. As such, the quality and scope of ligand selection have progressed 

beyond earlier practices, suggesting a paradigm shift toward chemically diverse, pharmacologically 

relevant screening models that enable more nuanced repurposing outcomes. 

The comparative analysis between disease-specific and pan-inflammatory approaches reveals a 

complex landscape of shared and unique molecular mechanisms across different inflammatory 

disorders. This review found considerable overlap in docking targets among rheumatoid arthritis, 

psoriasis, inflammatory bowel disease, and systemic lupus erythematosus, aligning with earlier insights 

from Zheng et al. (2020), which described convergence in JAK/STAT and NF-κB signaling pathways. 

Interestingly, many of the top-ranked compounds in this review—including baricitinib, lapatinib, and 

parthenolide—exhibited favorable docking across multiple disease targets, confirming the 

polypharmacology hypothesis proposed by Lee et al. (2018) and validated experimentally in recent 

multi-target drug design studies. In earlier reviews, most repurposing studies were disease-centric, 

limiting their translatability across conditions . In contrast, the present review supports a more flexible, 

modular strategy that allows for both focused and broad-spectrum screening. Furthermore, network 

pharmacology approaches used in several included studies offer deeper insights into off-target 

effects and synergistic interactions—an advancement over early linear target-based models. These 

findings mark a transition from siloed disease frameworks toward integrated inflammatory systems 

modeling. 

The inclusion of ADMET filtering and molecular dynamics simulations in nearly three-quarters of 

reviewed studies signifies a methodological evolution toward translational fidelity. Earlier 

computational repurposing research often suffered from poor in vivo correlation due to lack of 

pharmacokinetic consideration and dynamic stability assessment (Rastegar-Mojarad et al., 2015). 

However, the present review demonstrates widespread adoption of tools such as SwissADME, 

pkCSM, and admetSAR to evaluate drug-likeness, absorption, and toxicity profiles. Compared to 

older studies, where docking hits were pursued without downstream evaluation, current workflows 

integrate ADMET profiles to de-risk candidate selection. Similarly, over 30% of studies used molecular 

dynamics simulations—particularly GROMACS and AMBER—to assess the temporal stability and 

conformational flexibility of ligand-target complexes. These simulations enhance predictive power 

by contextualizing static docking poses within dynamic biological systems, an advancement 

supported by prior work from Dakshanamurthy et al. (2012). Thus, the incorporation of post-docking 

validation tools represents a critical step forward in bridging computational predictions with 

experimental and clinical viability. 
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The repeated identification of natural compounds such as curcumin, parthenolide, and celastrol, as 

well as approved kinase inhibitors like baricitinib and sunitinib, underscores evolving priorities in drug 

repurposing for inflammation. Compared to earlier eras where NSAIDs and corticosteroids 

dominated anti-inflammatory drug pipelines (Urista et al., 2020), current research focuses on 

targeting intracellular kinases and transcription factors using structurally diverse scaffolds. The 2020 

review by Sliwoski et al. had already suggested that natural compounds may offer favorable ADMET 

profiles and multi-target capacity, and this has been strongly validated in the present review, where 

over 20 studies evaluated phytochemicals through docking and pharmacokinetic filters. Similarly, 

kinase inhibitors—originally designed for oncology—were successfully modeled against inflammatory 

targets such as JAK1, STAT3, and NF-κB, supporting the notion of therapeutic crossover between 

cancer and inflammation. This aligns with the earlier cross-pathway analysis by Lavecchia and Di 

Giovanni (2013), who proposed kinase inhibition as a strategy for immune modulation. The 

emergence of these molecular classes signifies a conceptual departure from symptom control to 

targeted pathway interruption, with potential for long-term disease modification.  

A final point of discussion is the overall maturation of computational drug repurposing as a scientific 

discipline, especially in the context of inflammatory diseases. The review highlights a strategic 

integration of docking, cheminformatics, ADMET modeling, and molecular dynamics as part of 

cohesive, replicable pipelines. Earlier critiques of in silico methods—citing poor validation rates and 

inconsistent reporting—are being addressed through standardized protocols, open-source tools, and 

transparency in ligand and target preparation. Compared to studies from the early 2000s, where 

computational hits were rarely pursued experimentally, many of the reviewed articles in this study 

report in vitro or in vivo follow-ups, often confirming binding predictions and biological efficacy. This 

synergy between computational screening and experimental science mirrors the vision proposed in 

contemporary frameworks such as the NIH’s NCATS platform and the European Open Targets 

initiative. By providing a high-throughput, low-cost, and hypothesis-driven entry point for anti-

inflammatory drug discovery, in silico repurposing has transitioned from a supplementary technique 

to a core strategy in modern pharmacology. The reviewed studies collectively reflect this evolution, 

marking a decisive step forward in rational drug design for complex immune-mediated conditions. 

CONCLUSION 

This systematic review consolidates advancements in the application of in silico methodologies—

particularly molecular docking and virtual screening—for drug repurposing in chronic inflammatory 

diseases, underscoring both methodological maturity and strategic alignment with contemporary 

pharmacological frameworks. Analyzing 65 studies published between 2010 and 2022 under PRISMA 

2020 guidelines, the review reveals a predominant focus on cytokine receptors (e.g., TNF-α, IL-6R, IL-

1β) and intracellular kinases (e.g., JAK1/2, p38 MAPK), reflecting a consistent targeting strategy 

across diseases such as rheumatoid arthritis, IBD, lupus, and psoriasis. These studies increasingly 

utilized standardized computational workflows, employing tools like AutoDock, Glide, Vina, and 

GOLD, along with curated ligand libraries from DrugBank, ZINC, ChEMBL, and PubChem. Over 70% 

of studies incorporated pharmacokinetic and toxicity filters (SwissADME, pkCSM) and molecular 

dynamics simulations to assess ligand-target binding stability. This integration of cheminformatics, 

ADMET profiling, and dynamic simulations marks a clear evolution from earlier, less-validated 

computational studies. Recurrent identification of compounds such as baricitinib, sunitinib, and 

ruxolitinib across multiple diseases supports a polypharmacology paradigm, indicating cross-disease 

therapeutic potential. Additionally, over 30% of the reviewed studies extended computational 

findings with wet-lab validations, signaling increasing translational relevance. Collectively, this review 

affirms that in silico repurposing has transitioned from theoretical modeling to a core preclinical 

strategy in immunopathology, offering scalable, reproducible, and biologically anchored 

approaches for anti-inflammatory drug discovery. 
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