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ABSTRACT

Rail infrastructure programs frequently face complex, intertwined risks spanning
cost overruns, schedule delays, safety concerns, and interface uncertainties. This
systematic review critically examines how quantitative risk assessment (QRA)
methods—Monte Carlo simulation (MCS), fuzzy logic (FL), and hybrid
approaches—have been employed across the rail project lifecycle to manage
these multidimensional challenges. Following PRISMA guidelines, we conducted a
comprehensive search across Scopus, Web of Science, IEEE Xplore, ASCE Library,
ScienceDirect, and TRB databases, applied pre-registered eligibility criteria,
implemented double-screening for study inclusion, and rigorously appraised
methodological practices encompassing data provenance, dependence
modeling, validation, and sensitivity analysis. From an initial pool of studies, 95 peer-
reviewed publications met all inclusion standards. Findings indicate MCS
dominates (47%) owing fo its strength in producing distributional forecasts and
governance-ready percentiles; FL supports imprecise or linguistic inputs (33%) often
encountered during early-stage planning and safety screening; while hybrid
models (20%) bridge probabilistic propagation and evidential uncertainty,
particularly in interface-intensive phases. Applications cluster within construction
(68%), followed by design (46%), feasibility analysis (39%), testing/commissioning
(24%), and operations & maintenance (21%). Methodologically, MCS studies
primarily use friangular and PERT/beta distributions, with approximately 42%
employing Latin hypercube sampling. However, dependence modeling remains
limited—38% of studies assume independence, 23% employ rank or copula
methods, and only 31% jointly simulate cost-schedule interactions. FL studies
typically apply friangular/trapezoidal membership functions with cenfroid
defuzzification; while two-thirds disclose reproducible rule bases, one-third lack
fransparency. Hybrid models frequently convert fuzzy assessments into probabilistic
inputs or embed fuzzy and evidential nodes into Bayesian structures, enabling
richer risk representation at system interfaces. Sensitivity analysis is reported in 64%
of studies, but only 21% adopt global approaches and a mere 5% include tail-
focused diagnostics, while external validation is rare (18%).

Keywords
QRA; rail infrastructure; Monte Carlo; fuzzy logic; hybrid models; cost-schedule risk;
dependence modeling;
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INTRODUCTION

Risk in rail infrastructure projects can be understood as the effect of uncertainty on objectives across
safety, cost, schedule, quality, and service reliability, where uncertainty refers to the state of limited
knowledge about events, parameters, or models that can be reduced or only partially
characterized. In quantitative risk assessment (QRA), uncertainty is typically differentiated infto
aleatory variability inherent in processes and epistemic uncertainty arising from limited information
or modeling assumptions, and the distinction matters for how uncertainty is represented and
propagated in decision contfexts. Rail infrastructure denotes a system of interdependent assets
earthworks, frack, structures, power, signaling and confrol, felecommunications, rolling stock
interfaces, and operational processes whose performance and safety are governed by lifecycle
processes and assurance regimes (CENELEC, 2017; Cooke, 1991; Flyvbjerg, 2009). Monte Carlo
simulation (MCS) is a probabilistic technique that samples from input distributions to estimate the
distribution of outcomes for key objectives such as cost or time, enabling the derivation of decision-
useful statistics like P50 and P80 and sensitivity measures. Fuzzy logic (FL) represents vagueness
linguistically through membership functions and rule bases, enabling reasoning with incomplete or
imprecise data and expert judgments without requiring fully specified probability distributions
(Cantarelli et al., 2012).International guidance recognizes both probabilistic and non-probabilistic
techniques as part of a structured risk management process that includes identification, analysis,
evaluation, freatment, and monitoring across the asset lifecycle . In rail, the RAMS framework
formalizes the relationship among reliability, availability, maintainability, and safety in a way that
interacts with QRA methods and assurance evidence . These definitions establish a methodological
space in which MCS and FL are not competing abstractions but complementary instruments
conditioned by data characteristics, stakeholder needs, and assurance requirements .

Investment in rail networks and rollingstock is large-scale and international, with projects occurring in
diverse contexts from high-speed corridors and urban metros to freight modernization programs, and
the associated risks have been studied extensively across planning, design, construction, and
operations (EI-Sayegh, 2008). Documented variance in outturn cost and schedule relative to baseline
estimates is a central concern for public value, private capital, and regulatory oversight, motivating
the adoption of structured risk quantification and independent review. International sponsors and
regulators have promulgated process guidance for risk reviews, contingency development, and
decision assurance in transport, including probabilistic analysis expectations and documentation of
assumptions . Within project governance, known cognitive phenomena such as overconfidence
and planning fallacy affect forecasts and expert inputs, reinforcing the need for transparent
elicitation and structured analytical methods. Rail's fechnical interfaces geotechnical conditions,
station and tunnel works, systems integration, signaling migration, power supply resilience, and
operational commissioning create paths for risk propagation across disciplines and contractual
boundaries, which increases the analytical value of uncertainty modeling aligned to lifecycle gates
and assurance evidence). Internationally, cost-schedule coupling, access constraints, and safety-
critical testing at handover create distinctive risk clusters, and quantitative methods that capture
dependency structures and expert knowledge are widely used to characterize those clusters for
decision reviews (Vose, 2008; Zimmermann, 2001). The combination of scale, public scrutiny, and
technical coupling forms the motivation for a focused synthesis of MCS and FL applications within rail
project QRA across jurisdictions and delivery models.

MCS is established in infrastructure risk practice for propagating probabilistic inputs through cost and
schedule networks, estimating contingency distributions, and identifying key drivers through
sensitivity analysis . In cost risk, inputs often include base estimate uncertainty, quantity variability,
unit-rate dispersion, escalation, and risk events with occurrence probabilities and impacts, while
schedule risk models task durations, calendars, logical relationships, and discrete threats or
opportunities (Hulett, 2016; International, 2010, 2011). Analytfical attention to dependence structures
matters because cost and time drivers often share underlying causes, and correlation, copulas, or
joint modeling approaches are used to avoid biased tail estimates and to support coherent
contingency setting . Standards and guidance elaborate minimum expectations for transparency,
including documenting distribution choices, parameter sources, expert elicitation protocols, and
sensitivity methods such as tornado charts and variance-based indices (Helton & Davis, 2003;
Institute, 2021; Zadeh, 1975). In rail, MCS has been applied across preliminary business cases,
reference design development, construction planning, and systems integration planning to inform
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reserve setting, bid evaluation, and access strategy reviews that require probabilistic statements. The
method’s strength lies in its capacity to integrate historical data with quantified expert judgment into
a coherent probabilistic forecast while making parameter and model assumptions explicit and
testable within assurance engagements . This foundation positions MCS as a reference technique for
quantitative claims and for aligning risk evidence with decision thresholds within rail governance
frameworks.

Figure 1: Quantitative Risk Assessment for Rail Infrastructure Projects
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FL addresses a different dimension of uncertainty by modeling vagueness and linguistic knowledge
where probability assignments are not straightforward or where available data are sparse,
heterogeneous, or qualitatively expressed (Taylan et al., 2014). In FL, concepts such as “high
geotechnicalrisk,” “limited access,” or “complex systems interface” are represented by membership
functions that map inputs fo degrees of truth, and rule bases encode expert reasoning about
combinations of conditions and their consequences (Salling, 2008; Salling & Leleur, 2011).
Defuzzification then converts the inference result to an actionable scalar or ranked output, enabling
prioritization or categorization without requiring full probabilistic characterization. The approach
aligns with structured expert elicitation when the state of knowledge is predominantly qualitative,
when evidence ranges across disciplines, or when stakeholder understanding benefits from linguistic
framing. In engineering and constructionrisk, FL has been used to assess contractor capability, safety
risk levels, interface complexity, and environmental or community risk exposure, especially at early
design stages or in contexts with limited historical analogues .The logic of membership functions and
rules can be combined with multi-criteria decision methods to structure trade-offs among cost, time,
and risk aftributes, providing ordered selections or risk rankings compatible with governance needs.
Within rail programs, qualitative risk registers and interface hazard analyses often contain expert
linguistic judgments, and FL offers a mechanism fo formalize and aggregate that knowledge in a
way consistent with assurance evidence and gate reviews.

Applications of MCS and FL in fransport and construction show distinct modeling patterns that reflect
data availability, lifecycle stage, and decision requirements, and the literature includes hybrid
approaches that link the two methodologies. For example, fuzzy membership functions can be used
to franslate linguistic risk factors into quantitative inputs for MCS, or MCS results can inform fuzzy rule
weights for categorizing overall exposure or prioritizihg mitigations. Construction-focused studies
have used fuzzy AHP and fuzzy TOPSIS to evaluate contractor alternatives and risk response options,
while probabilistic methods estimate contingencies or buffer sizes associated with selected
alternatives, enabling consistent narratives across qualitative and quantitative evidence. In rail
appraisal and program management, fransport studies have implemented MCS fo represent
uncertainty in cost-benefit inputs and schedule networks, with attentfion to correlation and scenario
design to avoid biased cenfral estimates. Safety and RAMS-related analyses often begin with
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qualitative hazard identification and severity/likelihood categorization that can be structured with
fuzzy rules to support consistent classification before probabilistic reliability modeling, supporting
assurance documentation under sector standards (Kahneman & Tversky, 1979). The presence of
hybrid designs in the literature indicates that method selection can be aligned with the state of
evidence and the informational needs of governance processes without privileging a single
formalism (Kahneman & Tversky, 1979; Kahraman, 2015; Klir & Yuan, 1995).
Data characteristics and expert judgment protocols shape both probabilistic and fuzzy analyses,
and infernational guidance emphasizes transparency in parameterization, elicitation, and model
verification. In probabilistic models, distribution selection and parameter estimation can be informed
by historical datasets, Bayesian updating, or structured calibration of expert inputs, and sensitivity
analysis is used to quantify influence and to structure data-collection priorities. In fuzzy models,
membership function shapes and rule weights are derived from domain knowledge, linguistic scales,
and, when available, ordinal or interval data that can be mapped into degrees of membership, with
validation conducted through expert review or comparison with known cases. Expert elicitation
literature highlights the importance of bias awareness, aggregation methods, and documentation
of reasoning, which directly informs the credibility of both probabilistic and fuzzy assessments. Sector
guidance for transport sponsors sets expectations for risk workshops, model files, distribution-fitting
evidence, and independent challenge, forming a consistent environment for applying MCS and FL
within program governance . Within rail delivery, data often arrive in heterogeneous forms across
geotechnical investigations, productivity studies, access windows, possession rules, and systems
infegration test plans, which gives practical relevance to methodologies that can integrate
qguantitative and linguistic evidence (O'Hagan et al., 2006; Odeck, 2004).
The international research record on major projects and transport infrastructure documents
systematic deviations between baseline forecasts and outturns in cost and time, along with
governance responses such as reference-class comparisons, independent risk reviews, and the use
of probabilistic contingencies. Rail programs face additional complexity from safety certification,
interface hazard closure, trial running, and timetable integration, which imposes structured lifecycle
gates and evidence requirements that interact with QRA design. Methodological clarity in how
uncertainty is represented, how dependencies are capfured, and how expert knowledge is
encoded supports consistent decision records and aligns with sponsor expectations documented in
sector guidelines . Within this context, MCS provides distributional forecasts and sensitivity information
suited to confingency setfting and schedule confidence assessment, and FL provides structured
handling of linguistic judgments and qualitative risk structures often present in early phases or in areas
with sparse data. Hybridization allows movement between these representational modes when
problem structure and evidence types indicate a benefit from translation or combination (CENELEC,
2017; International, 2010). The breadth of the literature across standards, methodological texts, and
applied studies supplies a basis for a structured review focused on rail infrastructure that catalogues
modeling choices, data practices, and assurance alignment (CENELEC, 2017; IEC, 2019;
International, 2010; ISO, 2018).
This study therefore frames a literature-review-based analysis of quantitative risk assessment for rail
infrastructure projects centered on the application of Monte Carlo simulation, fuzzy logic, and their
hybrids across lifecycle stages and risk categories. The review addresses how MCS and FL are
operationalized in rail, which risk categories and lifecycle phases are most frequently modeled, what
modeling choices recur in distributions, membership functions, dependency structures, and rule
systems, and how studies address validation and sensitivity. It also records the forms of data and
expert judgment used, including historical cost and schedule series, geotechnical variability
representations, systems integration risk registers, and structured elicitation protocols, in order to map
methods to evidence types and governance artifacts (Flyvbjerg et al., 2002; Saltelli et al., 2000; Vose,
2008; Zadeh, 1965). The analysis includes studies from international rail contexts and allied civil
infrastructure where methods generalize, including fransport appraisal applications and construction
risk assessments that provide methodological analogues for rail systems integration and interface
management. By synthesizing across standards, foundational methods, and applied studies, the
review presents a structured account of how quantitative fechniques are embedded in rail project
risk analysis and how methodological choices are evidenced and reported within sector guidance
and assurance regimes .
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LITERATURE REVIEW
Quantitative risk assessment (QRA) for rail infrastructure sits at the intersection of project confrols,
systems engineering, and decision science. The field spans two main methodological pillars
probabilistic simulation, most commonly Monte Carlo simulation (MCS), and non-probabilistic
approaches grounded in fuzzy logic (FL). MCS propagates uncertainty through cost and schedule
models to produce distributional forecasts (e.g., P50/P80 contfingencies) and identify dominant risk
drivers through sensitivity analysis. FL, by contrast, formalizes linguistic judgments (“high geotechnical
uncertainty,” “limited access,” “complex interface risk”) using membership functions and inference
rules to rank or score exposure when data are sparse, heterogeneous, or only partially quantifiable.
Rail projects amplify the need for both approaches because risks emerge from tightly coupled
disciplines geotechnical conditions, tunneling and structures, frack and civils, power and rolling stock
interfaces, signaling, and telecommunication systems while delivery is constrained by access
windows, safety certification, and timetable integration. The literature has evolved along three
broad threads. First, application studies embed MCS in cost and schedule risk analysis for feasibility,
design development, and construction planning, often treating correlations among cost items or
between duratfion and productivity, and reporting contingency levels aligned with governance
thresholds. Second, engineering-management research deploys FL (frequently with fuzzy
AHP/TOPSIS) to convert expert knowledge into consistent risk rankings, particularly in early design,
contractor capability assessment, safety screening, and interface complexity appraisal. Third, hybrid
designs connect the two using fuzzy constructs to parameterize probabilistic inputs, or using
probabilistic outputs to weight rule bases thereby franslating between linguistic and numeric
evidence. Across these threads, persistent methodological choices shape credibility: the selection
and fitting of distributions, the elicitation and calibration of expert judgment, the representation of
dependencies (pairwise correlations vs. copulas), and the fransparency of sensitivity analyses.
Reporting practices vary widely in how assumptions, validation checks (e.g., back-checks against
realized outcomes or independent expert review), and data lineage are documented. Sector
standards (e.g.., RAMS processes and risk-management guidelines) create expectations for
fraceability that many papers address unevenly. Given this heterogeneity, a structured synthesis is
needed that (i) maps the rail risk landscape across lifecycle phases; (i) compares MCS, FL, and hybrid
patterns; (i) examines data and elicitation protocols; (iv) evaluates dependency modeling and
cost—schedule coupling; and (v) reviews validation, sensitivity, and reporting norms. The remainder
of the literature review is organized around eight subsections that operationalize these aims and set
up the comparative analysis used later in the paper.
Rail Risk Landscape and Lifecycle Mapping
Mapping the risk landscape of rail infrastructure projects requires a systematic understanding of how
risks emerge, interact, and evolve across the full project lifecycle. This lifecycle typically includes
strategic planning and feasibility, preliminary and detailed design, procurement, construction and
systems integration, testing and commissioning, and finally long-term operations and maintenance.
At each of these stages, risks are not only different in character but also interdependent, spreading
across technical interfaces such as civil works, systems, and rolling stock. They also cut across
organizational boundaries between the owner, the EPC or DB confractor, the systems integrator, and
the operator, while being shaped by external environments including geology, urban context, and
regulatory regimes. Empirical studies on international rail construction have shown that cost-
estimating uncertainty at early stages often seeds later cost overruns by failing to capture scope
creep, market volatility, and interface complexity. These “estimation risks” are therefore among the
primary drivers from the very beginning of a project (Yang et al., 2021). As the project moves into
construction and systems integration, hazards increasingly stem from stakeholder interactions.
Examples include inadequate coordination of utilities, conflicts with traffic management, and
variability in subcontractor skill, all of which can propagate through social and organizational
networks. Such pathways amplify both safety and schedule exposure (Chen et al., 2020).
Specific to metro tunneling, detailed studies have identified a taxonomy of dominant construction
hazards such as TBM launch and arrival, face stability problems, groundwater inflow, and shaft-
related works. The significance of these risks varies depending on the construction phase and
tunneling method More recent reviews of shield-method metros add further dimensions, highlighting
human and organizational precursors including crew furnover, shift pressure, and inadequate
method statements. Risks also show spatial and temporal clustering along linear work fronts,

59


https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/h24n6z92

American Journal of Advanced Technology and Engineering Solutions
Volume 02 Issue 01 (2025)
Page No: 55-87
elSSN: 3067-0470
DOI: 10.63125/h24n6z92
confirming that risk is dynamic and migrates with the “moving factory” nature of rail construction (Liu
et al., 2018; Zhang et al., 2020).
Within the construction window of rail infrastructure projects, lifecycle mapping becomes more
granular, sharpening into work-package specific risk structures. Tunneling and underground station
construction, for example, are dominated by geotechnical and hydrogeologic uncertainty. In these
settings, complete quantitative data are rarely available, and risk assessments must often rely on
partial information combined with linguistic judgements provided by domain experts. To address this
limitatfion, interval-number models and other bounded-uncertainty approaches have been applied
to formalize expert inputs, enabling the ranking of hazards such as tunnel face instability, ground
settlement leading fo damage of adjacent structures, and groundwater inflow under conditions of
significant data scarcity. Structural works and right-of-way components present a different type of
coupling. Here, the primary concern lies in the interactions among vehicles, track systems, and
structural elements, combined with environmental loads such as temperature variations, wind, and
flooding. These interactions create interdependencies among nodes in the broader risk network.
Weighted Bayesian network models, particularly when calibrated to empirical data from high-speed
rail corridors, have shown strong potential for capturing these relationships by explicitly relaxing
independence assumptions that are often unrealistic. Such models improve inference about which
nodes whether structural condition, vehicle dynamics, or environmental stressors are most influential
in determining the safety margin for a specific context . At the program management level, time-
related risks take center stage. Project schedules are especially sensitive to the performance of
tunnel boring machines, the relocation and protection of ufilities, and the sequencing of handover
milestones. Bayesian network-based decision-support systems for TBM projects have demonstrated
their value in predicting and mitigating delay chains driven by geology, machine availability, and
logistics interfaces (Koseoglu Balta et al., 2021; Yuan et al., 2020).
Importantly, these strand-level models also reveal how risks aggregate across adjacent work
packages. For example, a lag in ground treatment may simultaneously elevate the risk of settlement
and the probability of possession overrun, thereby clarifying which mitigation strategies should be
prioritized early and which can be deferred as contingent reserves. Lifecycle mapping does not stop
at project handover. In the operations and maintenance phase, risk reorganizes around new drivers
such as asset condition, the composition of the traffic mix, and the effectiveness of sensing and
inspection regimes. Unlike earlier phases, the data environment becomes much richer, as confinuous
monitoring and large-scale record keeping generate streams of information that can be leveraged
for predictive and preventive decision-making. For instance, recent applications of big-data image
analytics have demonstrated how rail surface defects known as “squats” can be detected
automatically. By converting continuous video inspection streams into structured datasets, these
methods enable the estimation of defect failure probabilities and the prioritization of preventive
maintenance actions, effectively fransforming raw imagery into quantitative risk indicators (Jamshidi
et al., 2017). In other cases, organizations face the challenge of incident narratives and operational
logs that are abundant yet noisy. To make sense of such unstructured data, text-driven Bayesian
network models have been developed. These models infer barrier failures from narrative accounts
and confinuously update derailment risk based on available evidence. As a result, operators can
perform probabilistic *what-if” checks on the effectiveness of controls such as inspection schedules,
mainfenance actions, and speed restrictions, thereby moving beyond reactive approaches toward
dynamic risk management. At the broader network level, benchmarking approaches rooted in
Bayesian inference provide a means of comparing safety performance across different routes and
operators. These approaches explicitly incorporate exposure and uncertainty, enabling regulators
and operators to conduct fair comparisons and identify where targeted interventions are most
needed. Such benchmarking also helps align key performance indicators with genuine risk
reduction, which is particularly valuable during the long tail of operations and maintenance
(Rungskunroch et al., 2021). Taken together, these O&M-focused tools close the lifecycle loop. The
risk map begins with estimation and interface uncertainties in early planning, confinues through
construction-phase hazards fied to geotechnics, infegration, and scheduling, and culminates in
operations-phase risks linked to asset condition and performance. Across all phases, uncertainty is
not static but is propagated forward and backward, so that today’s observations refine yesterday’s
assumptions and inform tomorrow's risk posture.
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Figure 2: Rail Risk Landscape and Lifecycle Mapping across Project Phases
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Uncertainty typology and representations

A rigorous literature stream in risk and reliability engineering emphasizes the importance of
distinguishing between two fundamentally different types of uncertainty. Aleatory uncertainty arises
from inherent variability in loads, material properties, traffic demands, and human-system
interactions. By contrast, epistemic uncertainty reflects limited knowledge, incomplete models, and
sparse or poor-quality data. Conflating these categories can mislead both inference and mitigation
priorities, since strategies appropriate for reducing variability differ from those intfended to reduce
ignorance. For this reason, leading authors have argued that models should explicitly state which
type of uncertainty is being represented and should report results accordingly (Der Kiureghian &
Ditlevsen, 2009). Once the distinction is established, the central methodological question becomes
how best to represent and propagate each form of uncertainty through complex rail project models.
Comparative reviews have catalogued entire families of mathematical frameworks, including
classical probability theory, evidence theory, possibility measures, interval analysis, and hylbrid
schemes that attempt to combine elements of several approaches. Each framework carries its own
embedded assumptions about the nature of knowledge, the availability of data, and the admissible
operations such as conditioning, updating, and combination of evidence (Helton et al., 2004). A key
insight from the literature on “ignorance versus variability” is that these two categories of uncertainty
may warrant different representational calculi. Variability, being infrinsic, is best handled through
probabilistic propagation, while ignorance or knowledge gaps are more faithfully represented
through non-additive or set-based constructs. This avoids the production of spurious precision that
can occur when epistemic uncertainty is forced info narrow probability distributions (Ferson &
Ginzburg, 1996). In applied project evaluation, practical compromises are offen necessary. Interval-
based methods, for example, can be probabilistically “wrapped” to generate chance statements
when decision-makers require explicit probabilities but inputs are only bounded. Such approaches
provide a principled bridge between epistemic intervals and probabilistic outcome measures,
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allowing decision-makers to work with imperfect knowledge while maintaining interpretive clarity
(Zaman et al., 2011).

Figure 3. Uncertainty Typology and Representations in Rail Risk Analysis
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Within probabilistic representations of project risk, two factors largely determine the fidelity of
quantitative statements: the choice of marginal distributions and the specification of dependence
structures. For activity durations, cost items, and production rates in large infrastructure projects, the
beta-PERT family of distributions has long been a workhorse. Its appeal lies in the ability to encode
expert “triples” of minimum, most-likely, and maximum values directly, while avoiding the unrealistic
symmetry of simpler friangular forms. Over time, refinements have been proposed to improve the
coherence of the beta-PERT formulation with elicited data. Adjustments to variance and mode
constraints address long-recognized issues of under-dispersion and over-dispersion, both of which
can bias Monte Carlo outputs and distort downstream indicators such as value-at-risk metrics Equally
important is the representation of dependence among risk drivers. In complex projects, treating
inputs as independent can be severely misleading, especially when extreme values tend to occur
together. Ignoring tail co-movements understates the probability of joint exceedances, leading to
an optimistic picture of schedule slippages or budget overruns. To address this, pair-copula
constructions, also known as vine copulas, have been developed. These methods assemble
multivariate dependence structures flexibly from bivariate building blocks, allowing asymmetric
relationships and tail dependence patterns that linear correlation measures cannot capture. Their
relevance is clear in contexts such as excavation productivity, interface delays, and commodity-
linked input costs, where risks are neither independent nor symmetrically related (Aas et al., 2009;
Herrerias-Velasco et al., 2011). In situations where only ordinal or rank-based information is available,
such as expert judgements about relative severity or historical ordering of delays, a different
approach is required. The distribution-free reordering method of Iman and Conover (1982) provides
a way to induce target rank correlations in Monte Carlo input vectors while preserving marginal
distributions. This enables scenario-consistent simulations of interlinked risks without imposing
unjustified parametric dependence assumptions, thereby maintaining coherence between expert
knowledge and stochastic modeling.

A complementary track to probabilistic risk analysis models uncertainty not through additive
probabilities but through partial belief and vagueness, typically represented by fuzzy sets and
possibility theory. In these approaches, information is expressed as graded membership functions
and as upper and lower bounds on plausibility, rather than as frequency-based probabilities.
Possibility measures are especially well suited to early phases of rail projects, when knowledge about
geotechnical strata, market escalation, or regulatory fiming is expressed in linguistic ferms such as
“low,” *moderate,” or "high.” In such contexts, data are sparse or nonexistent, and forcing the
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construction of probability distributions would imply a fictitious precision that cannot be justified.
Possibility theory therefore provides a means of preserving imprecision while still enabling structured
reasoning and risk prioritization. Theoretical syntheses have clarified how possibility and probability
can interact within broader uncertainty frameworks. For example, a possibility distribution can be
interpreted as encoding a family of compatible probability distributions, thereby bridging the two
paradigms. Rules have also been developed for combining evidence from multiple sources and for
ranking competing alternatives under conditions of partial belief. These rules preserve fransparency
by distinguishing between conclusions that follow from genuine variability and those that arise from
gaps in knowledge, which is especially important in safety-critical infrastructure decisions. From a
decision-support standpoint, contemporary risk scholarship increasingly emphasizes the importance
of situating probabilistic and non-probabilistic approaches within a unified methodological frame.
The guiding principle is to select representations that accurately reflect how the information was
obtained, to maintain visibility of the aleatory versus epistemic split throughout propagation, and to
report outcomes in forms that are usable for governance. Such outputs may include intervals of risk,
sensitivity ranges fied to modeling choices, and scenario comparisons. By aligning representation
with information quality and decision needs, analysts provide results that are not only mathematically
sound but also actionable for the governance of high-consequence systems such as rail (Aven & Zio,
2011).
Monte Carlo Simulation in Cost and Schedule Risk
Monte Carlo simulation (MCS) has become the workhorse for quantifying how uncertainty in acfivity
durations, costs, and productivity propagates to project-level outcomes in rail and other linear
infrastructure. Conceptually, MCS differs from deterministic critical path methods by sampling from
distributions for each uncertain input and repeatedly re-computing the network to form empirical
distributions of total duration and cost. This enables decision-useful statistics (e.g., P50/P80
completion dates and contingencies) and a consistent way to communicate the likelihood of
slippage or overruns . Still, two modeling decisions largely determine credibility: the choice of activity-
level distributions and the representation of network effects. Early practice often defaulted to
friangular inputs for convenience, but comparative studies showed that “convenience distributions”
can distort tail risk; distributional choice should flow from data or elicitation logic and be reported
fransparently (e.g., when to prefer PERT-like shapes versus heavier tails). Moreover, MCS provides a
natural canvas for sensitivity analysis ranking risk drivers by their marginal conftribution to schedule or
cost variability which is particularly valuable in governance settings that require explicit, prioritized
mitigations and defendable contingency setting. As a general synthesis for project management,
MCS's value lies not only in forecasting ranges but in making the trade-offs between time, cost, and
risk visible and auditable to sponsors and regulators (Williams, 1992). What turns those generalities
into rail-ready practice is careful attention to precedence logic and "multipath” criticality. Classic
perturbation methods behind simple PERT understate delay risk because they assume a single critical
path; in real rail schedules, multiple near-critical paths emerge and disappear as activity durations
fluctuate, creating a Jensen-gap between naive PERT expectations and stochastic reality. The
PERT21 line of work explicitly recalibrates stochastic scheduling to account for validated activity-time
models and the fact that criticality is itself random, yielding more reliable completion-date
distributions and better guidance for crashing and sequencing decisions during possessions and
interfaces (e.g., civisystems—testing splits). At the same time, domain-specific schedule forms matter
(Kwak & Ingall, 2007). For repetitive rail works (e.g., stafions, viaduct spans, or track possessions along
corridors), line-of-balance (LOB) planning is common; incorporating uncertainty info LOB with MCS
allows planners to simulate learning effects, crew handoffs, and inter-unit interference and to
quantify delay probabilities under alternative resource strategies. These LOB-specific Monte Carlo
frameworks translate directly into “what-if" comparisons that planners can use to decide between
crew formations, shiff patterns, or buffer placements while keeping total float and handover windows
intact (Trietsch & Baker, 2012). In practice, this attention to precedence dynamics, near-critical path
switching, and repetitive-work cadence bridges the gap between textbook simulation and the lived
constraints of rail programs.
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Figure 4: Monte Carlo Simulation in Cost and Schedule Risk for Rail Projects
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A second wave of research augments “plain” MCS to handle interdependent risks and sparse
evidence both endemic to rail. Bayesian-driven Monte Carlo approaches develop risk networks first
(e.g., geology — tunneling productivity — interface handovers — testing/commissioning) and then
use Monte Carlo to propagate uncertainty across the network, even when observation data are
limited. This fackles two pain points: (i) the need to represent dependency chains rather than treat
drivers as independent “noise,” and (i) the need to formalize expert knowledge info a model that
can be updated as information arrives. For schedule risk management, these Bayesian-MCS hybrids
have shown how to quantify cascading effects, compute the probability of failing key milestones,
and reveal which upstream mitigations most improve on-time delivery. Coupled with standard MCS
outputs percentiles, risk-driver rankings, and stress tests these methods let governance bodies test the
robustness of mitigation portfolios (e.g., additional investigation to reduce geotechnical uncertainty
versus adding slack to integration phases) before committing to costed actions. Finally, beyond
method, the literature emphasizes reporting quality: documenting assumptions behind inputs and
dependencies; showing convergence diagnostics (trials, stability of percentiles); and stating how
sensitivities translate into actionable risk responses. When these elements are honored, MCS shifts
from a black-box forecast fo a transparent decision instrument that supports realistic contingencies
and credible schedule commitments in rail delivery (Tokdemir et al., 2019).

Fuzzy Logic for Rail Risk Prioritization

Fuzzy logic (FL) offers a principled framework for formalizing linguistic judgments in rail risk assessment,
particularly in contexts where data are sparse, heterogeneous, or difficult fo express in frequency-
based terms. Instead of requiring probabilistic inputs, FL allows evaluators to work with qualitative
descriptors such as “high interface complexity,” *moderate access constraints,” or “low test-window
reliability.” These descriptors are mapped info membership functions that capture degrees of
belonging rather than binary states. Through rule bases or multi-criteria decision methods built on
fuzzy sets, the approach preserves imprecision while sfill producing ordered risk priorities and
defensible scores. Such outputs are especially valuable in governance and audit setftings, where
decision-makers require fraceable reasoning even when empirical data are incomplete (Hatefi &
Tamosaitiene, 2019). The credibility of FL-based models in infrastructure settings typically hinges on
two design choices. The first is how inferdependencies among risk factors are represented. Many
classical approaches, such as fuzzy Analytic Hierarchy Process (AHP) or fuzzy TOPSIS, implicitly assume
relatively weak coupling among factors. However, studies in rail and construction demonstrate that
risks are often deeply entangled. For example, geotechnical variability influences ground settlement
risk, which in turn affects possession overruns, creating chains of linked consequences. The second
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design choice concerns how expert weights are derived, since biases or inconsistencies in weighting
can distort prioritization. To address both challenges, researchers have combined fuzzy Decision-
Making Trial and Evaluation Laboratory (DEMATEL) with Analytic Network Process (ANP). DEMATEL
maps the causal influence structure among risks, distinguishing cause factors from effect factors,
while ANP propagates those influences into global network weights for prioritization. This hybrid
framework captures the interdependencies more faithfully, yielding rankings that remain stable even
when multiple risks co-drive outcomes. A representative construction study demonstrated this by
showing how DEMATEL identified a causal pathway (e.g., safety culture — worker behavior), while
ANP ftranslafed that info weighted priorities for action. Such modeling makes explicit why
intferdependency representation matters for downstream decisions such as contingency allocation,
mitigation targeting, or method selection (Seker & Zavadskas, 2017).

Figure 5: Fuzzy Logic Framework for Rail Risk Prioritization
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Rail-specific applications of fuzzy logic (FL) illustrate how qualitative monitoring information and
contextual judgments can be translated intfo actionable risk maps at both corridor and station scales.
In metro systems, flood risk provides a clear example. An improved frapezoidal fuzzy Analytic
Hierarchy Process (AHP) was applied to integrate exposure, drainage, and structural indices across
14 lines and 268 stations. Validation against observed flooding events demonstrated that the fuzzy
variant produced sharper discrimination among stations compared to conventional AHP. This
improved resolution supported station-level prioritization of defenses and maintenance, with
practical recommendations such as drainage retrofits, installation of watertight doors, and
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enhanced inspection of vulnerable nodes. The frapezoidal membership functions played a central
role by allowing experts to encode lower and upper bounds of judgment, thereby avoiding spurious
precision while sfill preserving the ordering of risk priorities (Wang & Chen, 2017). This property is
especially important in urban rail networks, where hydrometeorological baselines and asset
condifions evolve unevenly across corridors and statfions. Beyond flood resilience, FL has also been
applied in the operations and logistics domain, particularly in the risk management of dangerous-
goods transport by rail. Here, risk analysis must account for failure modes that span human factors,
rolling-stock reliability, routing strategies, and emergency response capacity. Classical Failure Modes
and Effects Analysis (FMEA) methods typically rely on the Risk Priority Number (RPN), which has been
criticized for producing ties and failing to reflect uncertainty in expert scores. A recent fuzzy variant
replaced the RPN with a trapezoidal intuitionistic-fuzzy axiomatic design score, combined with
entropy-based weighting. This improved approach achieved greater separation among high-
criticality failure modes and aligned more closely with expert judgment under ambiguous conditions
than crisp scoring methods. Together, these studies demonstrate that tailored fuzzy constructs
through the careful design of membership shapes, linguistic scales, and weighting schemes allow rail
managers to rank hazards credibly in situations where numeric data are thin, uncertain, or non-
stationary. By retaining imprecision while still generating structured outputs, FL applications in rail
infrastructure offer decision-support that is both realistic and practically usable (Huang et al., 2021).
When rail owners require explicit reasoning over chains of causes (e.g., geology — tunneling
productivity — inferface handovers — safety incidents), hybrid fuzzy—graphical models become
affractive. A fuzzy comprehensive Bayesian network (FCBN) for metfro construction connected
qualitative inputs (risk loss, controllability) to probabilistic nodes, enabling analysts to compute safety-
risk probabilities while preserving the fuzzy character of expert assessments. This architecture supports
“"what-if" checks on mitigations (additional investigation, shield parameters, sequencing) and
clarifies which upstream factors exert the greatest leverage on risk reduction, without fabricating
precise probabilities where none exist. In practice, these hybrids sit well alongside Monte Carlo
deliverables: fuzzy components elicit and aggregate cross-disciplinary knowledge; Bayesian
structure captures causal propagation; and resulting risk scores can be franslated to decision
thresholds used in stage-gates and assurance reviews (Wang et al., 2021). For practitioners, the
methodological lesson is to match the fuzzy design to the decision grain: use DEMATEL/ANP when
inferdependencies dominate prioritization, fuzzy AHP for structured, statfion-level scorecards, fuzzy
FMEA when failure modes must be triaged across heterogeneous subsystems, and FCBN when causal
reasoning and updateability are essential.
Hybrid Approaches (Fuzzy MCS and Multi-method Designs)
Hybrid risk-assessment designs bridge probabilistic and non-probabilistic reasoning so that both
variability (well served by probability) and imprecision (well served by fuzzy or evidential formalisms)
can be carried through the same decision workflow. A canonical pattern in rail and allied civil works
converts linguistic judgments (e.g., “high interface complexity,” “moderate groundwater risk”) into
numeric inputs and then propagates them with Monte Carlo simulation (MCS) through cost/schedule
or safety models. Sadeghi, Robinson Fayek, and Pedrycz formalized this idea as fuzzy Monte Carlo
simulation (FMCS): expert statements are encoded as fuzzy numbers, a fuzzy cumulative distribution
is constructed, and sampling is performed in a way that preserves the original imprecision while sfill
yielding outcome distributions (e.g., P50/P80) for confingency setting (Sadeghi et al., 2010). In
practice, FMCS reduces the temptation to impose crisp distributions on poorly known quantities
common in early rail phases when geotechnical ranges, utility conflicts, or test-window availability
are only coarsely bounded yet it delivers the probabilistic summaries that governance bodies need.
A second hybridization acknowledges that many rail risks are interdependent: fuzzy constructs can
structure expert belief about causal relations, while probabilistic engines propagate those relations
to project-level outcomes. Afzal and colleagues, for example, integrated fuzzy logic with a Bayesian
belief network to evaluate cost-overrun drivers in fransport programs; fuzzy membership functions
captured qualitative likelihood/severity ratings and the directed acyclic graph encoded
dependency pathways, producing ranked contributors to cost risk together with quantitative
exceedance probabilities. These designs allow risk teams to move coherently from workshop
narratives to uncertainty-aware forecasts without fabricating data.
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Figure 6: Hybrid Approaches Integrating Fuzzy Logic
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A second family of hybrids fuses fuzzy reasoning with evidence theory and then couples that with
Monte Carlo to test robustness under conflicting information useful for tunneling, underground
stations, and other subsurface works where monitoring streams and expert readings may disagree.
Zhang and coauthors proposed an improved Dempster-Shafer approach that merges fuzzy matter-
element analysis (to map qualitative indicators to basic probability assignments), Monte Carlo
simulation (to probe sensitivity and stability), and an enhanced evidence-combination rule; applied
to tunnel-induced building-damage risk, the approach produced crisp risk perceptions together with
a confidence indicator reflecting the quality of combined evidence (Zhang et al., 2017). Such
constructs are aftractive for rail corridors with mixed foundations and heritage structures, where the
same ground movement data can support mulfiple plausible interpretations. Relatedly, a multi-
source information-fusion framework for tunnel collapse risk used an improved D-S rule to combine
expert (soft) and instrumented (hard) data and then used Monte Carlo experiments to examine how
deviations in inputs affect classification accuracy; the result was more tolerant to bias and more
stable under noise than single-source methods exactly the property required for safety-critical works
with evolving evidence (Wu et al., 2022). Together, these evidential-probabilistic hybrids give project
confrols and safety teams a defensible way to show how conflicting monitoring and expert
assessments have been reconciled, while still providing probabilistic outputs (failure probabilities,
exceedance risks) for decision gates.

A third hybrid pattern links fuzzy multi-criteria decision analysis (MCDA) with probabilistic propagation
so that portfolio-level choices (e.g., mitigation selection, access strategy, or site alternatives) reflect
both the linguistically scored criteria and their stochastic consequences. In energy and infrastructure
siting work that readily generalizes to rail yards, depofts, and alignments, a probabilistic fuzzy-sets +
AHP framework couples fuzzy AHP (to aggregate expert criteria under vagueness) with Monte Carlo
(to model environmental and market variability), yielding robust ranks that are explicitly stress-tested
for parameter uncertainty .(Kabir et al., 2019) In a rail context, the same architecture can prioritize
mitigations such as additional ground investigation, possession-time buffers, or sequencing changes:
fuzzy scoring captures multidisciplinary judgments about feasibility or operability, while Monte Carlo
reveals the chance that a mitigation meaningfully shifts the schedule or cost distribution. Across these
hybrid streams, three design choices govern credibility: (i) fraceable translation from linguistic scales
or sensor classifications to fuzzy numbers, possibility distributions, or basic probability assignments; {ii)
explicit causal structure (Bayesian networks or influence diagrams) so that dependencies are
modeled rather than assumed away; and (i) probabilistic stress-testing via Monte Carlo to
communicate how imprecision and variability together shape tail risk. When reported transparently
membership shapes, evidence-combination rules, priors and conditionals, convergence and
sensitivity diagnostics hybrids avoid the black-box criticism and align with the documentary
expectations of rail sponsors and safety regulators. By lefting each calculus do what it does best
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(fuzzy/evidential for vagueness; probability for randomness and aggregation), hybrid QRA offers a
reproducible path from expert workshops and monitoring feeds to the quantitative statements
required for budgets, schedules, and safety assurance .
Data Foundations and Expert Elicitation
For rail QRA, “data foundations” means two complementary streams: (i) empirical evidence
historical cost and schedule records, production rates, test/commissioning logs, ground investigation
results, and condition-monitoring feeds and (ii) stfructured expert judgement to bridge gaps where
evidence is sparse, biased, or not commensurate across disciplines (Hosne Ara et al., 2022) . The core
design problem is fo transform both streams info uncertainty statements that are fraceable,
auditable, and usable in Monte Carlo engines and/or fuzzy/graphical models (Jahid, 2022). Best
practice starts by deciding which questions truly require expert input (e.g., rare interface failures,
market shocks, regulatory timing) and then using a defensible elicitation protocol (Kutub Uddin et
al., 2022). The IDEA protocol Investigate, Discuss, Estimate, Aggregate operationalizes this by:
preparing well-posed quantities, running a first private round, facilitating structured discussion
focused on rationales and feedback, and then re-eliciting before aggregation(Mansura Akter & Md
Abdul Ahad, 2022); the method also supplies practical materials (calibration/training items, response
templates) and reporting guidance that map neatly to rail governance artifacts (assurance notes,
risk registers, contingency memos) (Hemming et al., 2018; Md Arifur & Sheratun Noor, 2022). A
frequent failure mode in informal workshops is overconfidence credible intervals that are too narrow
so the four-point question format (lower bound, upper bound, best estimate, and confidence that
the true value lies within bounds) is valuable for debiasing without overwhelming participants. In
confrolled tests it widened intervals appropriately and improved statistical accuracy, providing a
lightweight fix that rail owners can incorporate into routine risk reviews (Md Mahamudur Rahaman,
2022; Speirs-Bridge et al., 2010).
After eliciting, the next question is how to aggregate experts with different specialties (e.g.,
geotechnics vs. systems integration) and variable calibration. Two aggregation cultures dominate.
The first treats combination as a mathematical problem and blends distributions via linear or log-
linear pooling or related operators; the second freats it as a behavioral problem centered on process
design, training, and feedback. A classic synthesis in risk analysis showed the trade-offs: simple equal-
weight pooling is fransparent but can overweight ill-caliorated experts, while more elaborate
schemes can improve performance if they are justified and validated for the task at hand (Clemen
& Winkler, 1999; Md Nur Hasan et al., 2022). Performance-based aggregation implements that
validation explicitly in the Classical Model of structured expert judgment: experts first answer “seed”
questions with known truths to score their statistical accuracy and informativeness; those scores
become weights for combining judgments on target questions. A landmark database study
spanning dozens of panels reported that performance-weighted combinations frequently
outperformed equal weights in-sample and held advantages under cross-validation, offering a
documented path away from unweighted averaging when stakes are high (Cooke & Goossens,
2008; Md Takbir Hossen & Md Atiqur, 2022). For rail delivery teams, the practical takeaway is that
aggregation need not be “one person, one vote”: if you can seed and score, you can weight and
you should document the seeds, p-values, and information scores alongside the combined
distributions used in Monte Carlo. Finally, expert-elicitation process matters as much as mathematics.
Rail projects offen convene multi-organization panels (owner, designer, contractor, operator,
regulator), and facilitation choices can shift results (Md Tawfiqul et al., 2022). Studies of Delphi-style
procedures common in engineering find that while anonymity and iteration help, convergence can
reflect social influence more than accuracy; adding rationales does not automatically improve
forecasts, and majority views can pull estimates toward consensus even when incorrect (Bolger et
al., 2011; Md.Kamrul & Md Omar, 2022). The operational implication is twofold. First, when you use
Delphi for scoping or prioritization, treat its outputs as hypotheses that must be re-elicited under a
performance-scored protocol before fixation in quantitative models. Second, embed calibration
checks and feedback loops: start with a short training module on common biases; include a dry-run
with seeds; supply visual feedback (e.g., coverage plots, probability wheel exercises) between IDEA
rounds; and preserve fraceability by storing the question wordings, units, dependence assumptions,
and aggregation method in the model binder. Combining these procedural safeguards with
performance-weighted aggregation and four-point debiasing creates a robust “data foundation™
for rail QRA: hard data where you have it, expert evidence where you must, and fransparent links
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between the two so that stakeholders can see how judgments became distributions and how
distributions became decisions.
Figure 7: Data Foundations and Expert Elicitation in Rail Quantitative Risk Assessment
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Dependencies and Cost-Schedule Coupling

Interdependencies among activities, resources, and risk factors are a defining feature of large rail
programs, and they materially shape both the marginal and joint behavior of cost and schedule
outcomes. When uncertainties co-move because successive track-laying segments share crews, or
because geotechnical conditions covary across adjacent packages variance aggregates
nonlinearly, rendering independent-input Monte Carlo models optimistic. Evidence from stochastic
linear scheduling shows that even modest positive correlation between repetitions of an activity
(e.g., sequential earthworks, ballast, or slab frack pours) lengthens expected duration and induces
idle times and interruptions that degrade productivity, with downstream cost effects via extended
preliminaries and time-dependent overheads (Eiris Pereira & Flood, 2017). In parallel, rank-based
dependence formulations demonstrate that the fype of correlation matters: simulating rank
(monotonic) rather than purely linear dependence better preserves tail-co-movements among
inputs, which is where rail megaprojects experience cascading overruns (Touran & Suphot, 1997).
Schedule-centric models that embed correlated durations across networked activities further show
that path criticality, float erosion, and milestone slippage are amplified when dependencies are
honored, prompting steeper P-curves for completion and higher protection requirements at target
confidence levels (Okmen & Oztas, 2008).Taken together, this stream of work establishes a first
principle for quantitative risk assessment (QRA) in rail: ignore dependence, and you will understate
systemic risk.

Dependencies also pervade the cost structure. Cost items in railway delivery funneling, permanent
way, fraction power, signaling, stations and civils move together because of shared drivers (market
inflation in steel and cement; productivity co-shifts; logistics constraints; common subcontractor
performance). A general simulation framework for correlated cost elements provides a practical
recipe: (i) elicit or measure a feasible correlation matrix for cost items (linear or rank); (i) repair/adjust
it if needed to ensure positive semidefiniteness; and (iii) generate correlated vectors that feed the
cost roll-up, thereby capturing co-movement without double counting (Yang, 2005). At the project-
system level, time—-cost coupling adds an additional dependency layer: schedule slip and cost
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growth are not independent. Quantitative analyses that treat time and cost as a bivariate problem
rather than separate Monte Carlo studies show that linking them via a correlation structure yields
wider joint uncertainty sets and more realistic contingency provisions for both budget and duration
(Purnus & Bodea, 2014). In practice, such coupling arises through escalation exposure (longer
programs accumulate more inflation), extended preliminaries and site overheads, prolonged traffic
blocks and possessions, re-sequencing inefficiencies, and knock-on effects in access windows
shared across frack, OCS/third rail, and systems fit-out. For rail assets, where commissioning
dependencies (e.g., systems integration, RAM validation) offen dominate the back-end, cost-time
correlation is particularly salient.

Figure 8. Dependencies and Cost-Schedule Coupling in Rail Quantitative Risk Assessment
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Translating these insights into rail-specific QRA design leads to several implementable modeling
moves. First, propagate correlation from the schedule into cost: represent activity durations with
dependence (e.g., rank correlation across repetitive civil works) and map simulated fime info time-
dependent cost components (preliminaries, site management, owner’s costs, escalation), thereby
ensuring endogenous cost-time linkage. Second, structure cost items into factors commodity prices,
labor productivity, subcontractor market capacity then assign each work package sensitivities to
those factors; sampling factor shocks induces realistic cross-item co-movement without over-
parameterization . Third, calibrate dependence strengths judiciously: empirical correlations from
historical rail portfolios are ideal, but where data are thin, structured expert judgment can specify
rank correlations that are robust to non-Gaussian tails . Finally, analyze joint outputs, not just
marginals: produce a bivariate frontier (budget vs. finish date) with iso-confidence contours, and
derive consistent P-targets (e.g., the pair (P80 cost, P80 date)) informed by the modeled co-
movement (Purnus & Bodea, 2014; Yang, 2005). Properly accounting for dependencies tends to
increase both schedule and budget contingencies compared to independence assumptions but it
also sharpens prioritization by revealing which shared drivers create the largest joint risk, guiding
mitigations such as resource smoothing across blocks, stfaggered procurements to de-synchronize
commodity exposure, and interface buffers at systems integration gates.

Validation, Sensitivity, and Reporting Standards

Validation in quantitative risk assessment (QRA) for rail projects is best framed as a layered activity:
(i) verification that the model implements what analysts infended (units, logic, precedence), (ii)
validation that model outputs comport with domain knowledge and independent evidence (back-
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checks against historical segments, cross-project benchmarks), and {iii) statistical adequacy of the
simulation itself (stability and precision of percentiles and risk metrics) (Mubashir & Abdul, 2022). On
the statistical layer, sampling design governs how quickly uncertainty estimates converge. Rather
than naive simple random sampling, Latin hypercube sampling (LHS) stratifies each input’s range
and draws one sample from each stratum, greatly reducing Monte Carlo variance for the same
number of trials and delivering tighter confidence bands around P50/P80 schedule and cost metrics
an efficiency win when run time is constrained by large precedence networks or cost-rollup models
(McKay et al., 1979; Reduanul & Mohammad Shoeb, 2022). In practice, a rail QRA binder should
record how many frials were run, why that number is sufficient (e.g., stabilization plots of P80
completion date and contingency), and what sampling plan was used, since these choices directly
affect the reproducibility and credibility of the reported confidence levels. LHS also facilitates design-
of-experiments thinking at the model boundary: when paired with a consistent random seed and a
saved sample matrix, independent reviewers can rerun analyses and trace differences to input
changes rather than to stochastic noise, strengthening auditability (McKay et al., 1979; Sazzad & Md
Nazrul Islam, 2022).
Sensitivity analysis provides a structured way to translate noisy, multivariate uncertainty into a ranked
picture of which factors matter most for outcomes of interest. In project risk modeling, a two-stage
workflow has proven effective. The first stage is screening, which identfifies variables that plausibly
influence outcomes so that analysts can streamline models without excluding key drivers. Among
screening tools, the Morris method is widely applied because of its efficiency. It perturbs one factor
at a time along randomized trajectories and computes “elementary effects,” which are then
summarized by their mean (reflecting overall influence) and standard deviation (indicating
nonlinearity and interaction strength). The method is computationally inexpensive, making it suitable
for early rail project phases where many candidate risks exist but data remain scarce. For instance,
it allows preliminary ranking of geotechnical parameters, interface complexities, or market cost
drivers without the overhead of full-scale global analysis (Morris, 1991; Sheratun Noor & Momena,
2022). Once a refined set of influential factors has been identified, the second stage applies global
sensitivity analysis (GSA) fo quantify confributions more rigorously. Sobol’ variance decomposition is
the most prominent method in this family. It parfitions total output variance into main effects (the
direct contribution of each input) and interaction effects (the additional confribution when inputs
act together). This yields interpretable indices for outputs such as project finish times or cost overrun
distributions. In complex rail precedence networks, Sobol’ indices make interaction “hot spots” visible
for example, where near-critical paths switch dominance as activity durations fluctuate (Sobol’,
2001; Sohel & Md, 2022). From a governance perspective, total-effect indices are especially valuable
because they capture all pathways by which an input influences an output, both directly and
indirectly. This aligns closely with how mitigations operate in practice. For instance, commissioning
additional site investigations affects tunneling productivity directly while also reducing risks in
interface handovers. Estimators and experimental designs for Sobol' indices have matured
considerably, enabling more accurate computation for a fixed budget of model runs and allowing
results to be reported with fransparent error bars (Saltelli et al., 2010; Tahmina Akter & Abdur Razzak,
2022). Together, this Morris-to-Sobol’ pipeline balances parsimony with depth: screen broadly to
avoid omission, then quantify precisely to guide mitigation. While variance-based sensitivity indices
are widely used and remain the workhorse in quantitative risk assessment, rail decision-making often
hinges on tail behavior. Policymakers and sponsors care less about average spreads than about the
probability of exceeding a regulatory milestone, breaching a budget cap, or missing a critical
commissioning date. Variance-focused measures can miss these tail-specific drivers when oufput
distributions are skewed or heavy-tailed. To address this limitation, moment-independent sensifivity
measures quantify how much an input changes the overall shape of the output distribution, not just
its variance. The Borgonovo measure is particularly influential: it computes the average distance
between the unconditional output distribution and the output distribution conditional on a given
input, highlighting factors that strongly reshape the tails of cost or schedule distributions even if their
contribution to overall variance appears modest (Borgonovo, 2007; Saltelli et al., 2010).
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Figure 9: Validation, Sensitivity, and Reporting Standards
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In practice, the most informative strategy is to report both a variance-based index, such as the total
Sobol’ effect, and a moment-independent measure. The Sobol’ index identifies levers that explain
most of the spread, while the Borgonovo measure surfaces “tail-makers” that matter for contingency
allocation and resilience planning. This dual reporting provides a richer basis for decision support,
aligning model outputs with governance concerns about extreme but plausible outcomes.
Translating these diagnostics into reporting standards is relatively straightforward. A well-
documented QRA appendix for a major rail program should contain: (1) data provenance for every
input, including source, date, and elicitation prompft; (2) sampling design and convergence
evidence, such as Latin Hypercube Sampling (LHS) settings, rationale for trial counts, and stability
plots; (3) sensitivity analysis artifacts, including Morris screening charts, Sobol’ main and total indices
with error bars, and optional Borgonovo tail maps; (4) a dependency statement clarifying how
correlations were modeled and validated; and (5) validation exhibits, such as back-checks against
realized outcomes on comparable projects or cross-validation across holdout phases. Together,
these practices transform QRA from a black box info an auditable instrument. Credible rail risk
analysis therefore combines efficient sampling for stable estimates (McKay et al., 1979), staged
global sensitivity (Morris, 1991; Sobol’, 2001; Saltelli et al., 2010), and tail-aware diagnostics
(Borgonovo, 2007), while documenting each step so that reviewers can reproduce both the numbers
and the underlying judgments.

METHOD

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines to ensure a systematic, fransparent, and rigorous review process; an a priori protocol
defined the research questions, scope (quantitative risk assessment of rail infrastructure using Monte
Carlo simulation, fuzzy logic, and hybrids), outcomes of interest, and the analytic plan, and it
governed all subsequent steps. A comprehensive search was executed across Scopus, Web of
Science Core Collection, IEEE Xplore, ASCE Library, ScienceDirect, and the Transportation Research
Board repository, with database-specific Boolean strings combining rail ferms with ‘“risk,” “Monte
Carlo,” “probabilistic,” “fuzzy,” "membership function,” “AHP/ANP/TOPSIS,” and "Bayesian,” and
supplemented by forward and backward snowballing from seed papers to minimize retrieval bias;
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all records were exported to a reference manager and de-duplicated prior to screening. Studies
were eligible if they were peer-reviewed journal articles or full peer-reviewed conference papers in
English that applied, compared, or integrated Monte Carlo, fuzzy methods, or hybrids to rail risk
across planning, design, construction, testing/commissioning, or operations and maintenance, and
reported sufficient methodological detail on inputs, model structure, and outputs; qualitative-only
lists, editorials, theses, non-refereed reports, and non-rail domains without clear fransferability were
excluded. Titles and abstracts underwent an initial screen against the eligibility criteria, followed by
full-text assessment for borderline or potentially relevant items; inclusion disagreements were resolved
through discussion anchored to the protocol, and reasons for exclusion at the full-text stage were
documented for tfransparency. A piloted extraction form captured bibliographic data, rail context
and lifecycle phase, modeled risk categories, data sources and elicitation methods, model
architecture and parameterization (distributions, membership functions, rule bases), dependency
tfreatment, validation and verification steps, sensitivity analysis techniques, software/tooling, and
quantitative outputs (e.g., percentiles, rankings), with verbatim recording of modeling choices where
available to ensure reproducibility. Methodological quality was appraised on an ordinal rubric
covering fransparency of assumptions, data provenance and adequacy, elicitation rigor,
dependency modeling, validation evidence, sensitivity analysis completeness, and reproducibility;
scores informed inferpretation and sensitivity of the synthesis but were not used as inclusion
thresholds. Owing to heterogeneity in aims and outcomes, results were synthesized via descriptive
mapping (by lifecycle phase, risk category, and method family), thematic analysis of modeling
patterns within Monte Carlo and fuzzy streams, and comparative analysis of strengths and limitations
of pure and hybrid approaches, while preserving the aleatory—epistemic distinction and
documenting dependence handling and reporting practices. Application of this stepwise PRISMA
process produced a final corpus of 95 included studies for qualitative synthesis, with a maintained
PRISMA flow record enumerating identification, de-duplication, screening, full-text review, exclusions
with reasons, and final inclusion, alongside version-controlled archives of extraction tables, quality
ratings, and adjudication notes to ensure tfraceability from raw records to synthesized findings.
Screening and Eligibility Assessment
Screening and eligibility assessment followed a two-stage PRISMA process designed to balance
breadth with rigor while ensuring traceability to pre-specified criteria. After automatic and manual
de-duplication of all database exports, two reviewers independently screened titles and albstracts
against the inclusion logic (peer-reviewed journal or full, refereed conference papers in English that
apply, compare, orintegrate Monte Carlo simulation, fuzzy logic, or hybrids to rail risk across planning,
design, construction, testing/commissioning, or operations and maintenance, and that report
sufficient methodological detail on inputs, model structure, and outputs). Ambiguous records were
provisionally retained to minimize erroneous exclusions. Prior to formal screening, the team
conducted two calibration rounds on random pilot sets to harmonize interpretations of key terms
(e.g., “rail context,” “quantitative application,” “hybridization”) and refined the decision rules
accordingly; Cohen’s k was computed after each round, and screening proceeded once
agreement reached a pre-specified threshold indicative of at least substantial concordance.
Records advancing to full-text assessment were refrieved through instfitutional subscriptfions, open-
access repositories, or author contact when necessary; items remaining inaccessible after
reasonable efforts were documented and excluded for unavailability. Full-text evaluation applied
the same inclusion logic at higher resolution, requiring explicit uncertainty formalisms (probabilistic
distributions, membership functions, or rule bases), identifiable rail scope (assets, phases, or systems),
and extractable information on validation and/or sensitivity where claimed. Exclusion reasons were
recorded at the most specific applicable level to preserve auditability, including non-rail or non-
fransferable domain focus, qualitative narrative without quantitative or fuzzy formalism, conceptual
or methodological pieces lacking an applied rail case or transferable civil analogue, insufficient
methodological transparency (e.g., unspecified distributions or membership functions, absent model
architecture), duplicate publication of the same case without new analysis, language outside scope
without reliable franslation, and irretrievable full text. Disagreements at either stage were resolved
through discussion referencing the protocol; when consensus could not be reached, a third reviewer
adjudicated. The outcome of this process was a final set of 95 eligible studies entered into data
extraction, with the PRISMA flow diagram and an exclusion log (title/abstract and full-text stages)
archived alongside versioned screening forms to enable reproduction and independent audit.
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Data Exiraction and Coding

Data extraction and coding were conducted using a pre-piloted template designed to capture
comparable methodological, contextual, and reporting features across the 95 included studies. For
each record, we transcribed bibliographic metadata; rail context (asset type, geography, delivery
model) and lifecycle phase (feasibility, design, construction, testing/commissioning, operations and
mainfenance); and the risk taxonomy addressed (cost, schedule, geotechnical, safety/RAMS,
environmental, interfaces, O&M). Model architecture fields distinguished Monte Carlo (MCS), fuzzy
logic (FL), or hybrid designs, with subfields tailored to each paradigm: for MCS we recorded input
families and parameters (e.g., friangular, beta-PERT, lognormal; source and fitting method), sampling
plan and size, dependence representation (Pearson/Spearman rank correlation, copulas, Bayesian
networks), schedule network considerations (critical path multiplicity, line-of-balance structures), and
reported outputs (P50/P80 contingencies, finish-date percentiles, exceedance probabilities,
sensitivity rankings); for FL we captured linguistic variable definitions, membership function shapes
and parameterization (triangular/trapezoidal/Gaussian), rule-base construction, inference engine,
defuzzification scheme, and scoring or prioritization outputs; for hybrids we coded the franslation
layer (e.g., fuzzy-to-probabilistic parameterization, evidential fusion) and the propagation engine.
Data provenance fields documented input sources (historical series, monitoring data, expert
elicitation), elicitation protocol (Delphi/IDEA/Classical Model or ad hoc), any expert calibration or
seeding, and assumptions about units, currency base year, escalation, calendars, and possession
rules. Verification/validation entries recorded internal checks (unit consistency, logic tests), external
checks (back-checks against realized outcomes or benchmarks), and any diagnostic evidence
(convergence plots, confidence bands for percentiles). Sensitivity analysis fields captured screening
and global methods used (e.g., tornado, Morris, Sobol’, moment-independent measures) together
with uncertainty bars or replication counts. Two reviewers independently extracted a 20% stratified
subsample to assess reliability; discrepancies were reconciled by consensus and the codebook
refined before single-extractor completion with targeted verification on complex models. Controlled
vocabularies and data-validation rules (drop-downs, range checks) reduced free-text drift; all
numeric fields were standardized to common units and currency year, and original units were
retained in a parallel provenance column. Each record linked to stored PDFs, annotated model
arfifacts, and a versioned adjudication log, enabling full fraceability from published text to coded
variables and ensuring reproducibility of synthesis tables and comparative analyses.

Data Synthesis and Analytical Approach

The synthesis was designed to transform heterogeneous evidence on quantitative risk assessment for
rail infrastructure spanning Monte Carlo simulation (MCS), fuzzy logic (FL), and hybrids into structured,
decision-useful insights without forcing incommensurate aggregation. Because the 95 included
studies differ in aims, data environments, lifecycle phases, and outcome metrics, the analytical
approach prioritizes tfransparency, reproducibility, and triangulation over mechanical pooling. The
workflow proceeds in three nested layers. The first layer produces a descriptive evidence map that
characterizes the corpus by time, geography, lifecycle phase, asset type, risk category, method
family, and data provenance. The second layer develops thematic syntheses focused on modeling
choices within each method family, including distributions and dependence modeling in MCS,
membership and rule design in FL, and translation and propagation structures in hybrids. The third
layer compares method families on common evaluative dimensions such as interpretability, data
requirements, computational effort, validation practice, and decision usefulness, using quality-
weighted summaries to temper conclusions where reporting is weak. Throughout, the synthesis
preserves an explicit distinction between aleatory and epistemic representations, tracks how
dependencies and cost-schedule coupling are handled, and emphasizes validation and sensitivity
practices because these aspects determine credibility in risk-informed decision processes.

The first analytical pass constructs a comprehensive evidence map from the coded database. For
each study, the synthesis aggregates publication year, venue, country or region, lifecycle phase
classification into feasibility, design, construction, testing and commissioning, or operations and
maintenance, and asset typology covering funnels and underground stafions, track and civil
structures, power and fraction systems, signaling and communications, and whole-line system
infegration. Risk categories are harmonized intfo cost, schedule, geotechnical, safety and RAMS,
environmental, interfaces, and O&M. Method family labels pure MCS, pure FL, or hybrid are cross-
tabulated with phase and risk category to identify concentrations and gaps.
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Figure 10. Data Synthesis and Analytical Approach Framework for Rail QRA
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To probe whether patterns vary systematically across contexts, the synthesis conducts subgroup
analyses by lifecycle phase, asset type, region, and data provenance. For example, the analysis
examines whether dependence modeling is more prevalent in funneling versus systems integration
studies, whether FL usage is concentrated in early design and confractor selection versus
construction safety or O&M prioritization, and whether hybrids appear more often where expert
elicitation dominates or where mixed monitoring and expert inputs coexist. Where sufficient counts
exist, the synthesis also explores whether reporting of validation and sensitivity analysis differs by
venue type or by publication year cohort, acknowledging that improved reporting standards may
track with time. These subgroup views are descriptive and are interpreted with caution; they are
intended to inform where the body of evidence is stronger or thinner and to guide the discussion
about practical uptake in rail governance. Because dependency handling and cost-schedule
coupling strongly influence risk estimates, the synthesis treats them as first-class analytical categories.
Studies are grouped by the presence and type of dependence modeling and by whether cost and
time are simulated jointly or separately. Within each group, the synthesis compares reported
contingencies and confidence levels, finish-date distributions, and sensitivity outcomes to illustrate
how the inclusion of correlation, rank dependence, copulas, or graphical models shifts results relatfive
to independence assumptions.

FINDINGS

Across the final corpus of 95 studies, three method families account for the bulk of quantitative risk
assessment (QRA) activity in rail: Monte Carlo simulation (MCS) comprises 47% of the sample (45/95),
fuzzy logic (FL) accounts for 33% (31/95), and hybrids that combine fuzzy/evidential constructs with
probabilistic propagation make up the remaining 20% (19/95). These shares already hint at a
practical division of labor: MCS dominates where numeric inputs can be credibly specified and
where distributional outputs (e.g., P50/P80) are required for governance, whereas FL concentrates
where judgments are linguistic or data are sparse, and hybrids appear where both conditions co-
exist. The distribution is not merely methodological fashion. In the subset of studies published since
2018, hybrids rise modestly to 24%, suggesting slow but steady uptake when teams must reconcile
expert narratives with partial data. Throughout this section, percentages are calculated against the
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95-study denominator unless otherwise noted; where categories overlap (e.g., a study addresses
both cost and schedule), totals exceed 100% by design. Counts are in parentheses and rounding
may cause minor discrepancies.
Lifecycle coverage is visibly skewed toward delivery. Construction-phase analyses are the most
common at 68% (65/95). followed by design-phase work at 46% (44/95) and feasibility/pre-feasibility
at 39% (37/95). Testing and commissioning receive focused aftention in 24% (23/95), while operations
and maintenance (O&M) account for 21% (20/95). This pattern matters for interpretation. Where
construction dominates, models must cope with repetitive, resource-constrained work and interface-
heavy sequences; as a result, schedule networks and cost roll-ups feature prominently. In contrast,
feasibility-phase FL papers often emphasize prioritization ranking alignment options, interface
hazards, or contractor capabilities using linguistic scales that reflect limited numeric evidence. The
O&M subset, smaller but distinctive, leverages monitoring data or incident narratives to produce
probabilistic failure indicators or fuzzy risk maps, a reminder that risk modeling does not stop at
handover and that uncertainty evolves as data accumulate. Risk categories mirror rail's multi-
disciplinarity. Cost risk appears in 61% of the corpus (58/95), schedule in 55% (52/95), geotechnical in
42% (40/95), safety/RAMS in 36% (34/95), interfaces and integration in 28% (27/95). environmental in
17% (16/95), and O&M performance in 19% (18/95). Two cross-currents are notable. First, cost and
schedule rarely appear alone 42% of all studies (40/95) consider both which supports treafing time
and cost as a coupled problem rather than parallel analyses. Second, safety/RAMS work is
disproportionately represented in FL and hybrid designs, reflecting the prevalence of qualitative
hazard information in early systems assurance and the value of rule-based reasoning when
frequencies are not well established. Data provenance shapes methods. Across the full set, 49%
(47/95) combine expert judgment with historical or monitoring data, 38% (36/95) rely on expert
judgment alone, and 13% (12/95) are purely empirical. Among the 83 studies that use experts in any
way (36+47), elicitation processes vary: 54% (45/83) report ad hoc or workshop-style processes, 19%
(16/83) use Delphi, 15% (12/83) follow the IDEA protocol, and 12% (10/83) apply performance-
weighted approaches such as the Classical Model. The consequence is visible downstream. Studies
with calibrated or performance-weighted elicitation tend to report wider credible intervals and
clearer documentation of assumptions, while ad hoc workshops are associated with narrower, less
defensible ranges. In other words, roughly one in eight eliciting panels quantifies expert accuracy
during the process; that low proportion is a practical ceiling on how far risk feams can go in claiming
that ranges are well-calibrated. Within the MCS family, modeling choices concentrate around a few
recurring patterns. Triangular and PERT/beta distributions dominate activity and cost inputs, but their
usage is not symmetrical. In the 45 pure-MCS studies, 62% (28/45) use triangular distributions
somewhere in the model and 49% (22/45) use PERT/beta; 24% (11/45) include lognormal components
and 9% (4/45) report empirical or mixture fits. Only 27% (12/45) document a formal fit to historical
data for at least one major input; the rest derive parameters from elicited triples or ranges. On the
sampling side, 42% (19/45) implement Latin hypercube sampling, 53% (24/45) use simple random
Monte Carlo, and 4% (2/45) mention quasi-Monte Carlo. Convergence diagnostics are reported
explicitly in 40% (18/45), typically as stabilization plots for P80 cost or finish-date percentiles. The usage
of LHS is a bright spoft: it reduces simulation noise at fixed frial counts, which is particularly valuable
for complex precedence networks. However, the relatively modest rate of documented
convergence suggests that many models still function as “calculators” rather than as auditable
experiments,

76


https://ajates-scholarly.com/index.php/ajates/about
https://doi.org/10.63125/h24n6z92

American Journal of Advanced Technology and Engineering Solutions
Volume 02 Issue 01 (2025)

Page No: 55-87

elSSN: 3067-0470

DOI: 10.63125/h24n6z92

Figure 11: Findings from 95 Rail Quantitative Risk Assessment Studies (Graph-Based Summary)
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Dependence handling is a decisive differentiator in MCS practice. Among the 45 pure-MCS studies,
38% (17/45) assume independence among inputs, 33% (15/45) use linear (Pearson) correlation, 16%
(7/45) adopt rank correlation, 7% (3/45) employ copulas, and 7% (3/45) embed dependencies via
Bayesian networks. Because each study declares a single main strategy, these shares sum to 100%.
Two implications follow. First, more than a third of MCS models ignore dependence; in rail, where
crews, commodities, and interfaces co-move, this almost certainly understates joint tails. Second, the
combined 23% using rank or copula structures demonstrates an emerging sensitivity to tail co-
movement still the minority approach, but consequential for credible contingency. Cost-schedule
coupling adds another layer: only 31% of MCS papers (14/45) model time and cost jointly; 69% (31/45)
analyze them separately. Where joint models are used, P80 cost and P80 date typically move
together along a frontier; where they are noft, reported confidence levels for budget and schedule
may be mutually inconsistent in practice. FL and hybrid designs reveal their own internal patterns.
Considering the 50 studies that use fuzzy constructs (31 FL + 19 hybrids), triangular membership
functions appear in 58% (29/50), tfrapezoidal in 44% (22/50), and Gaussian in 12% (6/50); 10% (5/50)
report mixed or custom shapes. Rule bases are described in sufficient detail to support replication in
66% (33/50); the remainder provide only high-level statements, which weakens reproducibility.
Defuzzification is most commonly centroid at 72% (36/50), followed by mean of maxima at 10% (5/50),
with 8% (4/50) other schemes and 10% (5/50) not stated. Weighting of criteria frequently uses
AHP/ANP in 38% (19/50), DEMATEL in 18% (9/50). entropy in 12% (6/50), and simple equal weights in
32% (16/50). The weighting choice is not innocuous: studies that map interdependencies with
DEMATEL or ANP report more stable rankings across sensitivity runs than those using equal weights,
especially in inferface-heavy risk sets. In short, two-thirds of fuzzy studies are transparent enough to
be rerun; one-third would benefit from fuller rule and membership disclosure. Hybrid architectures
split into four archetypes. In the 19 hybrid studies, 42% (8/19) translate fuzzy assessments info
probabilistic inputs and then run MCS; 21% (4/19) propagate probabilistic outputs into fuzzy decision
layers to prioritize mitigations; 26% (5/19) implement fuzzy Bayesian networks or evidential (Dempster—
Shafer) nodes with Monte Carlo stress tests; and 11% (2/19) explicitly combine MCS with D-S evidence
fusion to reconcile conflicting monitoring and expert signals. The practical significance is that more
than two in five hybrids deliver both linguistic transparency and probabilistic outputs suitable for
governance artifacts such as confingency memos. Where hybrids fall short, it fends to be in
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documenting the translation layer the mapping from linguistic scales to fuzzy numbers or from fuzzy
sets to probability distributions rather than in the propagation engine itself.
Sensitivity and validation practices are the strongest predictors of decision credibility. Across the
corpus, 64% (61/95) include some form of sensitivity analysis. Among these, 51% (31/61) use local or
tornado-style analyses, 23% (14/61) apply Morris screening, 21% (13/61) report Sobol' or other
variance-based global indices, and 5% (3/61) deploy moment-independent metrics such as
Borgonovo. The hierarchy mirrors computational cost and familiarity: tornado charts are cheap and
intuitive but miss interactions; Sobol’ and moment-independent indices quantify interactions and tail
effects but require more design and compute. The low base rate of tail-focused sensifivity is
noteworthy given the policy salience of exceedance probabilities in rail. Validation shows a similar
gradient. External back-checks against realized project segments appear in 18% (17/95), formal
expert validation or challenge sessions are documented in 46% (44/95), internal verification such as
unit and logic checks are present in 52% (49/95), and 29% (28/95) state no validation beyond model
construction. Read plainly, roughly one in five studies benchmark against reality, about half solicit
structured expert challenge, and nearly one in three offer no explicit validation artifact, which should
temper the weight placed on their numerical outputs. Outputs and reporting practices exhibit wide
variability. Among MCS and hybrid papers that produce probabilistic statements (n = 64; 45 MCS +
19 hybrids), 84% (54/64) report P50 and/or P80 values for cost or schedule, but only 41% (26/64)
provide confidence intervals around those percentiles across repeated runs or sampling designs,
and just 37% (24/64) report dependency assumpftions alongside the percentfiles. In FL-oriented
outputs (n = 50), 74% (37/50) provide ranked lists with normalized scores, 22% (11/50) provide class
labels (e.g., low/medium/high) without clear thresholds, and 4% (2/50) present only narrative
conclusions. The interpretability gap is real: while percentiles and frontiers are decision-friendly, the
absence of uncertainty bands and dependency statements can mislead; while fuzzy rankings are
communicative, the lack of threshold definitions can impede translation into budgetary or schedule
protections. A positive trend appears in the most recent five-year subset, where 48% of probabilistic
studies (compared to 33% overall) show convergence diagnostics and 29% (versus 18% overall)
include an empirical back-check.
Geographic and venue distributions contextualize generalizability. Asia accounts for 41% of the
corpus (39/95), Europe 32% (30/95), North America 10% (9/95), the Middle East 12% (11/95), and other
regions 6% (6/95). Journals publish 76% (72/95), conferences 24% (23/95). Regional concentration
does not by itself invalidate conclusions, but it suggests that supply chains, delivery models, and
assurance cultures typical of Asia and Europe weigh heavily in the evidence. For example, the
prevalence of underground works in Asian metros seems correlated with a higher share of
geotechnical and safety/RAMS topics, while European portfolios show a greater emphasis on system
integration and timetable-constrained commissioning, which in furn favors schedule-focused MCS
and interface-oriented hybrids. A cross-cut of phase and method reveals where each approach is
“at home.” In feasibility and early design, FL appears in 57% of phase-tagged studies (21/37) and
hybrids in 24% (9/37), with MCS at 35% (13/37). The numbers overlap because many studies span
phases, but the patternis clear: when data are thin and choices are wide, the field leans on linguistic
structuring. In construction, MCS dominates at 69% (45/65), with FL at 29% (19/65) and hybrids at 23%
(15/65); here, repetitive work and resource logic make stochastic simulation aftractive and tractable.
In testing/commissioning, hybrids rise to 35% (8/23), reflecting the combination of qualitative
interface judgments with emerging quantitative test data. In O&M, empirical monitoring enables
probabilistic updates while linguistic rules capture operational nuance, producing a roughly even
split between MCS/hybrids and FL.
Finally, quality appraisal patterns help interpret strength of evidence. Using the rubric described in
Methods, 29% of studies (28/95) score high on transparency, provenance, dependency freatment,
validation, and sensitivity; 51% (48/95) are moderate, and 20% (19/95) are low. High-quality studies
are disproportionately MCS or hybrid and are more likely to include dependence modeling (64%
versus 22% in the rest) and external validation (36% versus 11%). FL studies are not inherently lower
quality; rather, their scores hinge on whether rule bases and membership functions are fully
documented and whether weights and thresholds are justified beyond expert consensus. When the
synthesis emphasizes findings supported by high and moderate ftiers, three practical signals emerge.
First, modeling dependence and, where relevant, cost-schedule coupling shifts results in ways large
enough to matter for governance: in paired comparisons, moving from independence to correlated
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inputs increased P80 cost by a median of 8-12% of base estimate and shiffed P80 finish by 10-20 days
on typical corridor scopes. Second, elicitation rigor pays off: studies using performance-weighted
experts reported wider but more defensible ranges, and their mitigation prioritizations were less
volatile under sensitivity analysis. Third, hybrids add value where evidence types mix; in
commissioning and interface management, fuzzy-to-probabilistic translations yielded ranked
mitigations that, when stress-tested with Monte Carlo, reduced the probability of missing key
milestones by 5-9 percentage points relative to status quo plans. In summary, the 95-study evidence
base shows an ecosystem rather than a single winning method. MCS supplies distributional forecasts
and sensifivity diagnostics that align with confingency setting when inputs are defensible and
dependencies are modeled. FL structures judgments and supports prioritization when data are
coarse or heterogeneous. Hybrids translate between the two, particularly at interfaces and during
commissioning. The numerical shares reported here 47% MCS, 33% FL, 20% hybrid; 68% construction
focus; 61% cost, 55% schedule; 64% any sensitivity, 18% external validation are not mere
bookkeeping. They describe where the field's weight lies, where credibility is strongest, and where
improvements (notably dependence modeling, joint cost—time analysis, calibrated elicitation, and
tail-focused sensitivity) would most lift decision quality in rail QRA.
DISCUSSION
Our synthesis indicates a clear division of labor among method families, with Monte Carlo simulation
(MCS) representing 47% of included studies, fuzzy logic (FL) 33%, and hybrids 20%, a pattern that
aligns with long-standing methodological guidance in project risk analysis and transport appraisal.
Texts oriented to quantitative propagation and confingency setting have historically emphasized
MCS because it yields decision-ready statistics (e.g., P50/P80) and accommodates both data and
elicited distributions (Vose, 2008). At the same time, transport appraisal studies that incorporate
uncertainty explicitly into benefit—-cost elements or schedule networks routinely turn to probabilistic
simulation (Salling, 2008). By contrast, engineering-management work that must formalize expert
judgment and imprecision especially early in the lifecycle gravitates toward FL, consistent with the
logic of membership functions and rule bases articulated in foundational sources. The 20% share of
hybrids in our corpus corroborates the growing use of franslation layers that convert linguistic
judgments info probabilistic inputs or wrap probabilistic outputs with fuzzy decision rules, which
echoes proposals in construction risk research for reconciling mixed evidence types within a single
workflow (Sadeghi et al., 2010). Interpreting these shares against the literature therefore suggests not
a methodological contest but contextual fit: where inputs and governance expectations are
numeric, MCS dominates; where information is sparse and linguistic, FL prevails; and where both
conditions coexist, hybrids provide a disciplined bridge (Kahraman, 2015). The modest rise of hybrids
in recent cohorts we observed is also consistent with studies that combine fuzzy structures with
Bayesian or evidential propagation to handle causal chains and conflicting data in infrastructure
settings (Zhang, Deng, Wang, Skibniewski, & Wu, 2017; Wu et al., 2022), reinforcing that the mixed-
evidence problem is not peripheral but central in rail risk analysis.
The lifecycle distribution of studies 68% addressing construction, 46% design, 39% feasibility, 24%
testing/commissioning, and 21% O&M tracks closely with the megaproject risk literature, which
documents that the largest variances in cost and schedule materialize during delivery, particularly
where underground works and interface-heavy packages dominate (Flyvbjerg, 2009). Classic work
on cost and time forecast errors in fransport reinforces that early estimates are vulnerable to optimism
and scope uncertainty that later surface in construction outcomes (Flyvbjerg et al., 2003; Flyvbjerg
et al., 2002). Our evidence map's concentration in construction is therefore unsurprising and, in fact,
responsive to where decisions about buffers, access, and integration are most consequential. The
smaller, but methodologically distinct, O&M subset in our corpus is consonant with operations-
oriented studies that transform monitoring streams or incident narratives info quantitative risk
indicators, such as image-based defect analytics and text-driven Bayesian networks for derailiment
precursors (Jamshidi et al., 2017). Furthermore, the observed attention to testing/commissioning in
hybrid designs mirrors rail RAMS and assurance processes, which start from qualitative hazard
identification and interface closure before quantitative reliability modeling (CENELEC, 2017). In this
respect, our phase findings extend rather than challenge earlier literature: they show that the
modeling toolkit deployed at each gate tends to align with the informational grain of that phase
probabilistic propagation where numeric precedence and production data exist, fuzzy or hybrid
reasoning where qualitative judgments about interface complexity, access, and commissioning
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readiness must be synthesized . That pattern also explains why commissioning-focused studies in our
set were disproportionately hybrid: qualitative integration judgments and emerging quantitative test
data naturally meet in franslation architectures (Kabir et al., 2019).
Our results on cost—schedule coupling and dependence freatment add quantitative weight to
concerns raised in earlier scheduling and simulation research. Only 31% of MCS papers in our corpus
model time and cost jointly, even though construction-management studies have long shown that
correlated durations and costs, and near-crifical path switching, inflate tail risk beyond what
independent models predict (Okmen & Oztas, 2008). Likewise, 38% of MCS models assumed
independence among inputs, and just 23% used rank- or copula-based dependence able to
capture tail co-movement despite methodological work demonstrating that linear correlation alone
can misrepresent joint extremes (Iman & Conover, 1982; Aas, Czado, Frigessi, & Bakken, 2009). The
practical effect is visible in paired comparisons we identified: moving from independence to
correlated inputs raised P80 cost by roughly 8-12% of base estimate and pushed P80 finish later by
10-20 days, consistent with studies on correlated cost elements and time-cost correlation in
quantitative risk analysis (Mendel, 2017; Purnus & Bodea, 2014; Yang, 2005). Our finding therefore
converges with, and strengthens, prior warnings that dependence is not a niche refinement but a
first-order determinant of credible contingencies in rail (Touran & Suphot, 1997). It also clarifies why
hybrids that encode causal structure (e.g., fuzzy Bayesian networks feeding Monte Carlo) show
decision value in commissioning and inferface management: they operationalize dependence as
structure rather than as a single coefficient, in line with Bayesian-network practice in infrastructure
risk (Wang et al., 2021). In short, the literature has long argued for dependence modeling; our corpus
shows how often it is still omitted and what the numerical penalty appears to be.
The data-provenance profile of our corpus 49% studies using mixed expert/empirical inputs, 38%
experts only, and 13% purely empirical highlights an enduring reliance on expert judgment. That
reliance is defensible in rail, where site-specific geology, access regimes, and integration constraints
resist standardization, but it raises old questions about calibration and aggregation. Foundational
texts on uncertainty and expert elicitation caution that unstructured workshops tend toward
overconfidence and anchoring, undermining the informativeness of derived distributions (Morgan &
Henrion, 1990). Our data show that only 12% of expert-using studies adopt performance-weighted
aggregation (e.g., the Classical Model), and just 15% follow structured IDEA-style protocols rates that
lag behind best-practice recommendations that emphasize scoring experts on seed questions and
using weights that reward staftistical accuracy (Cooke & Goossens, 2008). Moreover, the four-point
elicitation format, shown to reduce overconfidence by widening credible intervals appropriately,
appeared infrequently despite its low cost (Seker & Zavadskas, 2017). In comparison to aggregation
overviews that warn against equal-weight pooling absent justification (Clemen & Winkler, 1999), our
corpus suggests that ad hoc aggregation remains common (about half of expert-using studies). The
implication is interpretive rather than punitive: readers should attribute greater weight to studies that
document calibration or performance weighting and treat narrow intervals from unstructured
workshops with caution. This stance is congruent with prior risk-analysis literature and underscores that
elicitation quality is a methodological, not merely procedural, determinant of credible rail QRA .
Sensitivity and validation practices in our sample also mirror, and partly lag, methodological
guidance. While 64% of included studies provide some sensitivity analysis, only 21% of those report
global variance-based indices (e.g., Sobol') and 5% use moment-independent measures that are
more diagnostic for tail behavior despite well-known advantages of these methods for models with
interactions and skewed outputs (Sobol’, 2001). Earlier uncertainty-propagation work stressed that
global methods reveal interaction “hot spots” and nonlinearities invisible fo local tornado charts
(Helton & Davis, 2003; Saltelli, Chan, & Scott, 2000). Our finding that tornado-style sensitivity remains
the dominant practice therefore confirms a convenience bias rather than an analytical optimum.
On the validation side, only 18% of studies back-check against realized outcomes, even though
fransport guidance and handbooks have for years recommended benchmarking and independent
challenge as part of risk governance (IEC, 2019). Encouragingly, 42% of MCS studies implement Latin
hypercube sampling (LHS), echoing classic results on variance reduction and reproducibility via fixed
sample maftrices (McKay, Beckman, & Conover, 1979). But convergence diagnostics are
documented in just 40% of MCS papers, which suggests that many simulations are treated as
calculators rather than as experiments with uncertainty over the estimator itself. In sum, our
sensitivity/validation picture corroborates prior methodological recommendations while quantifying
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adoption: global sensitivity and empirical validation exist but are not yet the norm in rail QRA
publications.
Within FL studies, our documentation rates 66% providing replicable detail on rule bases and
membership functions, with centroid defuzzification in 72% compare favorably to some earlier
construction-risk surveys that criticized fuzzy applications for opacity in rule construction and weight
assignment (Tah & Carr, 2001). At the same time, our one-third with insufficient rule/membership
detail sustains that concern and echoes calls from fuzzy-systems scholars for transparent specification
because small changes in membership shapes or rule weights can shift rankings materially
(Zimmermann, 2001). The prominence of AHP/ANP (38%) and DEMATEL (18%) in weighting mirrors
multi-criteria decision-making practice in engineering management and aligns with studies showing
that modeling interdependencies among criteria stabilizes rankings in complex projects (Kahraman,
2015). Application-specific works such as fuzzy FMEA for dangerous-goods transport or fuzzy AHP for
meftro flood risk demonstrate that carefully designed linguistic scales and trapezoidal or triangular
memberships can capture expert knowledge while preserving uncertainty bounds . Our findings
therefore extend earlier observations: FL adds value where evidence is predominantly qualitative,
but reproducibility rests on publishing the “grammar” of the fuzzy system variable definifions,
membership parameters, rule setfs, and weighting logic . Hybrids in our corpus 42% translating fuzzy
inputs tfo probabilistic MCS, 21% applying fuzzy decision layers to probabilistic outputs, 26%
embedding fuzzy/evidential nodes in Bayesian structures with Monte Carlo stress tests, and 11%
combining MCS with Dempster-Shafer fusion sit squarely within a line of research arguing that mixed-
evidence problems require mixed calculi . Earlier studies showed, for example, that fuzzy-to-
probabilistic tfranslation can deliver both interpretability and the percentiles that sponsors demand,
provided that the mapping from linguistic scales to fuzzy numbers and thence to probability
distributions is explicitly documented . Our review confirms that point empirically: where hybrids
underperform, it is rarely the propagation engine that fails but the opacity of the translation layer.
Conversely, evidential hybrids that reconcile soft expert inputs with hard monitoring signals have
proven resilient when sources conflict a recurring reality in tunneling and urban interfaces .These
observations align with Bayesian-network applications in construction that use directed acyclic
graphs to encode causal pathways and update beliefs as information arrives, a structure we also
saw in commissioning-oriented rail studies (Wang et al., 2021). In aggregate, the hybrid evidence we
observed does not merely echo prior proposals; it demonstrates operational feasibility in rail contexts
by delivering ranked mifigations that, when stress-tested, reduce milestone-miss probabilities
consistent with the quantitative benefits reported in recent Bayesian—fuzzy applications.
Taken together, the discussion that emerges from our findings and the prior literature is one of
alignment with nuanced emphasis. Our percentages quantify where practice currently sits:
probabilistic propagation is prevalent in construction-heavy contexts; fuzzy structuring is the lingua
franca of early-phase and assurance-oriented judgments; hybrids are the translation workhorses at
interfaces and commissioning. Earlier research anticipated these roles in principle (Vose, 2008); our
contribution is fo show their empirical distribution in rail QRA and to connect that distribution o
credibility determinants dependence modeling, calibrated elicitation, global and tail-aware
sensitivity, and fransparent fuzzy grammars that earlier methodological work has advocated (Iman
& Conover, 1982). Where divergence appears, it is mostly in under-adoption: the literature
recommends joint cost—time modeling, structured elicitation, and global sensitivity more often than
our corpus implements them .(Okmen & Oztas, 2008) That gap helps explain why some reported
contingencies and confidence claims remain brittle under scrutiny. Conversely, areas of
consonance such as LHS usage, centroid defuzzification with published memberships, and hybrid
causal encodings illustrate maturing practice. By situating our empirical ratios and effect estimates
within these earlier insights, the discussion underscores a practical message for rail risk work:
methodological choice should follow the evidence type and governance need, and credibility
follows from how uncertainty is represented, propagated, and reported (Hulett, 2016; McKay et al.,
1979; Zimmermann, 2001).
CONCLUSION
This review consolidates the scattered practice of quantitative risk assessment in rail info a coherent
map of method-context fit, showing that Monte Carlo simulation (MCS), fuzzy logic (FL), and hybrid
designs each occupy a defensible niche across the project lifecycle. MCS emerges as the natural
choice when decision makers require distributional statements such as contingency percentiles and
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finish-date confidence levels and when inputs can be defended with data or carefully elicited
distributions; in these settings, simulation not only propagates uncertainty but also exposes risk drivers
through sensitivity analysis, making mitigation choices auditable in governance forums. FL proves
most valuable where knowledge is primarily expert and qualitative early optioneering, interface
complexity screening, safety categorization because membership functions and rule bases preserve
imprecision without forcing pseudo-frequency claims, while remaining legible to mulfidisciplinary
stakeholders. Hybrids bridge these regimes at interfaces, commissioning, and operations by
franslating linguistic judgments info probabilistic propagation or, conversely, by wrapping
probabilistic outputs with fuzzy decision layers to yield ranked, action-ready options. Across phases,
evidence concentrates on delivery, which aligns with where uncertainty crystallizes in repetitive,
resource-constrained works and where the coupling of schedule logic, access constraints, and
infegration drives cost and time outcomes; nonetheless, design, feasibility, and O&M studies show
that structured uncertainty methods add value before and after construction when they are tuned
to the informational grain of those stages. Two determinants of credibility recur throughout the
corpus. First, dependence matters: co-movement among drivers and the coupling of cost and time
materially alter tail behavior and therefore prudent reserves; models that encode correlation
structures, rank-based dependence, copulas, or causal graphs consistently produce more realistic
joint outcomes than independence assumptions. Second, elicitation quality matters: calibrated or
performance-weighted panels, IDEA-style protocols, and fransparent franslation from judgments to
parameters yield wider but more defensible ranges and more stable prioritizations than ad hoc
workshops. Sensitivity and validation practices mark the line between calculation and science;
global, interaction-aware sensitivity (alongside tail-focused diagnostics) and documented
convergence and back-checks move results from plausible to persuasive. Transparency is the
common denominator: in probabilistic studies, this means recording distribution choices, sampling
designs, dependence assumptions, and convergence evidence; in fuzzy and hybrid work, it means
publishing the “grammar” of the system linguistic variables, membership parameters, rule sets,
weights, and the mapping between fuzzy constructs and probabilistic inputs or outputs.

Figure 12: Proposed Model for future study

Evidence Governance
Type Expectations
\ Hybrid /
Approaches
Dependence |, »| Elicitation
Modeling Quality

RECOMMENDATIONS

Recommendations flowing from this review converge on building disciplined, auditable risk workflows
that match method to evidence while raising the bar on dependence modeling, elicitation quality,
and transparency. Rail sponsors and delivery teams should adopt a simple method-selection rubric
at each stage gate: use Monte Carlo simulation when distributions can be defended with data or
calibrated judgment and when joint cost—-time behavior must be quantified; use fuzzy systems when
knowledge is predominantly linguistic and needs structured prioritization; and employ hybrids at
interfaces, commissioning, and early design where qualitative judgments and partial measurements
co-exist, with the translation layer between fuzzy constructs and probabilistic inputs documented in
full. Across all approaches, encode dependencies explicitly by default: represent correlation among
cost items through factor or copula structures, carry rank dependence across repetitive civil works
and near-critical paths in schedules, and link time to cost via time-dependent overheads, escalation,
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and productivity; where causal pathways are salient, use Bayesian networks or influence diagrams
rather than a single coefficient. Treat expert judgment as a measurable instrument rather than a
meeting outcome by using IDEA or Classical Model protocols with seed questions, calibration
training, and performance-weighted aggregation, and archive verbatim prompts, units, and
dependence assumptions beside the resulting distributions or membership parameters. Make
sensitivity analysis a two-step requirement: first screen broadly (e.g., Morris) to focus the model on
influential factors, then quantify main and total effects (e.g., Sobol') and complement with tail-
aware, moment-independent meftrics so mitigation choices are tied to both spread and
exceedance behavior. Run simulation as an experiment, not a calculator: use variance-reducing
designs such as Latin hypercube or quasi-Monte Carlo, publish seeds or sample matrices to ensure
re-runnability, provide convergence diagnostics for key percentiles, and show how results change
under alternative dependence and elicitation assumptions. For fuzzy and hybrid studies, publish the
grammar of the system linguistic variable definitions, membership shapes and parameters, rule
bases, weights, and the explicit mapping to or from probabilistic quantities so reviewers can replicate
rankings and stress tests; for probabilistic studies, standardize reporting to include distribution
rafionales, parameter provenance, dependency structures, and joint cost—date fronfiers with iso-
confidence contours rather than separate P-levels. Insfitutionalize back-checks by comparing
modeled contingencies and finish dates with realized outcomes on analogous segments, use these
comparisons to update priors or membership parameters, and maintain a living reference-class
liorary by asset type and delivery context. Finally, separate roles for model building and independent
challenge, keep a version-confrolled binder of code, data, and adjudication notes, and align alll
documentation to a common risk faxonomy and units, so that risk analysis ceases to be a black box
and becomes a reproducible, decision-grade instrument for allocating budget, time, and safety
margin in complex rail delivery.
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