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Abstract 
This study presented a systematic review of artificial intelligence–based predictive safety models aimed at 
reducing workplace injuries in manufacturing and construction, with emphasis on quantitative comparability 
across outcomes, data modalities, validation designs, and performance metrics. A total of 312 observational units 
and respondent-linked records from manufacturing and construction contexts were synthesized to evaluate 
injury occurrence, high-severity injury outcomes, and leading-indicator–based risk prediction. Manufacturing 
accounted for 51.9% of the analyzed records, while construction represented 48.1%. Descriptive results showed 
moderate-to-high levels of perceived AI usefulness (mean = 3.92, SD = 0.64) and leading-indicator maturity 
(mean = 3.74, SD = 0.69), with construction exhibiting higher median near-miss activity (median = 2 events 
per unit window) than manufacturing (median = 1). Logistic regression analyses indicated that data quality 
readiness was significantly associated with reduced injury occurrence (odds ratio = 0.78, p = 0.002) and reduced 
high-severity injury occurrence (odds ratio = 0.73, p = 0.006). Safety culture also demonstrated a protective 
association with injury occurrence (odds ratio = 0.82, p = 0.013). Sector-stratified analyses showed stronger 
readiness effects in construction (odds ratio = 0.72, p = 0.001) than in manufacturing (odds ratio = 0.83, p = 
0.041). Leading-indicator maturity was associated with lower general injury odds (odds ratio = 0.85, p = 0.028) 
but did not reach significance for high-severity injuries. Validation design and metric selection were found to 
substantially influence reported performance, with temporal and site-held-out testing yielding more 
conservative and credible estimates than random splits. Overall, the findings underscored that predictive safety 
effectiveness depended primarily on data readiness, measurement quality, and validation rigor rather than 
algorithm complexity alone. 
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INTRODUCTION 
Workplace injuries in manufacturing and construction are commonly defined as work-related harmful 
events that lead to physical or psychological harm, temporary incapacity, permanent disability, or 
fatality, while workplace accidents are typically treated as discrete occurrences in which hazardous 
energy, unsafe acts, or unsafe conditions culminate in injury or damage (Debela et al., 2022). Safety 
performance is frequently operationalized in quantitative terms using incident frequency rates, severity 
rates, lost-time injury rates, total recordable case rates, near-miss counts, medical-treatment cases, and 
days away from work. In parallel, occupational risk is defined as the measurable probability of an 
adverse outcome under conditions of exposure, and hazard is defined as a source or situation with 
potential to cause harm. These baseline definitions matter internationally because manufacturing 
supply chains and construction programs operate across borders, subcontracting networks, and 
regulatory regimes, meaning that injury risk and prevention practices propagate through global value 
chains as well as local worksites. Many countries maintain national reporting systems for occupational 
injuries and illnesses, and multinational contractors increasingly use standardized safety management 
systems to ensure consistent metrics across sites. As a result, predictive safety research has become 
globally relevant as industries seek scalable ways to reduce injuries, manage complex hazard 
interactions, and improve safety performance while maintaining productivity. Artificial intelligence is 
defined here as computational approaches that enable systems to perform tasks associated with 
learning, pattern recognition, classification, and decision support (Dodoo & Al-Samarraie, 2023). 
Machine learning is the subset of AI that learns patterns from data to produce predictions or 
classifications without being explicitly programmed with deterministic rules. Predictive safety models 
refer to quantitative algorithms designed to estimate the likelihood, timing, or severity of safety 
outcomes such as injury occurrence, injury severity, hazardous condition escalation, near-miss 
potential, or compliance failure. In manufacturing and construction, these models are attractive because 
injury causation is multifactorial and non-linear, involving interacting factors such as worker 
experience, task complexity, equipment condition, production pressure, site congestion, environmental 
exposure, and organizational safety climate (Sharpe et al., 2022). Quantitative modeling that captures 
these interactions is increasingly positioned as a foundational analytic capability for modern safety 
management, enabling earlier identification of risk patterns and prioritization of prevention resources 
across large and heterogeneous workforces. 
Manufacturing and construction present distinct but complementary contexts for AI-based prediction 
because the structure of work, the stability of the environment, and the sources of data differ in ways 
that shape model design. Manufacturing settings often exhibit more stable workflows, repeated cycles, 
and relatively consistent equipment and process boundaries, which can yield large volumes of 
structured operational data such as production logs, maintenance records, machine sensor signals, 
quality metrics, shift rosters, and incident records (Birhane et al., 2022). These data characteristics 
support supervised learning approaches where outcomes like injury occurrence or severity can be 
linked to leading indicators such as machine downtime, overtime, task repetition, and maintenance 
backlog. Construction settings, in contrast, are dynamic and variable, with changing site layouts, 
evolving work zones, workforce turnover, subcontractor layering, weather variability, and frequent 
changes in equipment usage and proximity relationships. This variability produces risk signals that are 
frequently embedded in unstructured data sources, including free-text incident narratives, safety 
observations, toolbox talk notes, inspection comments, photographs, and video from site cameras. 
Because construction hazards can shift within hours due to concurrent operations and moving 
equipment, predictive models in this domain often target short-horizon risk states, including unsafe 
proximity, missing protective equipment, hazardous access conditions, and patterns of repeated 
violations (Almaskati et al., 2024). Both sectors also face persistent underreporting of near misses and 
inconsistent coding of incidents, which creates measurement uncertainty that directly affects model 
training quality. Consequently, AI-based predictive safety models must be understood as socio-
technical tools that depend on consistent data capture, reliable labeling, and operational integration. 
The international significance of these domains is amplified by the scale of employment, the mobility 
of labor, and the widespread use of subcontracting, which can dilute accountability and make 
harmonized safety analytics more difficult. A systematic review that focuses on predictive models for 
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these industries therefore requires an explicit mapping of how studies define injuries, how they 
represent exposure and risk, and how they operationalize “prediction” for decision-making contexts 
that vary across projects, plants, and jurisdictions (Yedulla et al., 2022). 
 

Figure 1: AI-Based Predictive Workplace Safety 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AI-based predictive safety models in the reviewed landscape can be organized by data modality and 
modeling objective, which helps clarify why the evidence base is heterogeneous and why synthesis 
requires structured categorization (Paguay et al., 2023). One major class is structured tabular modeling, 
where algorithms are trained on coded records such as injury logs, near-miss databases, audit scores, 
training histories, staffing patterns, shift characteristics, equipment maintenance events, and 
environmental readings. In these settings, common model families include logistic regression baselines, 
decision trees, random forests, gradient boosting, support vector machines, naïve Bayes classifiers, and 
neural networks. A second class is text-based modeling, where natural language processing converts 
narratives and notes into predictive features using bag-of-words, term frequency measures, topic 
representations, word embeddings, and transformer-based encodings. Text-based models often aim to 
predict injury severity categories, classify incident types, infer causal factors, or detect precursor 
patterns from narrative descriptions. A third class is computer-vision modeling, where deep learning 
methods detect workers, equipment, protective equipment usage, hazardous interactions, and unsafe 
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configurations from images and video. Vision models can operate as near-real-time hazard detectors, 
providing measurable indicators of safety states that can be linked to injury likelihood or used as 
leading indicators for preventive action (Kyung et al., 2023). A fourth class is sensor- and wearable-
based modeling, where proximity tags, inertial sensors, physiological signals, and location tracking 
generate continuous streams that capture exposure intensity, movement patterns, posture strain, 
fatigue proxies, and worker–equipment interaction dynamics. These sensor streams can be modeled 
using time-series methods, recurrent neural networks, temporal convolution, and anomaly detection 
frameworks. Across modalities, the outcome definitions vary widely, ranging from rare events like 
recordable injuries to more frequent surrogate outcomes like near-miss probability, unsafe act 
detection, or compliance failure. This variation complicates direct cross-study comparison, which is 
why systematic evidence synthesis must isolate comparable outcomes and evaluation designs 
(Dethlefsen et al., 2022). A quantitative systematic review also benefits from capturing the granularity 
of prediction targets, including worker-level risk, task-level risk, crew-level risk, site-level risk, and 
organization-level risk, because the decision-use case determines what inputs are feasible, what time 
horizon is meaningful, and what intervention pathways are realistic within existing safety management 
processes. 
Evaluation methodology is central to understanding the reliability of predictive safety models, because 
claims of injury reduction relevance depend on how models are trained, validated, and tested under 
conditions that resemble operational deployment. Many safety datasets are imbalanced, with severe 
injuries representing a small fraction of records, which can make simplistic accuracy metrics misleading 
(Heimonen et al., 2023). Performance is therefore often assessed using metrics that reflect class 
imbalance and decision sensitivity, including precision, recall, F1-score, AUC, specificity for low-risk 
classes, sensitivity for high-severity classes, and calibration measures that evaluate whether predicted 
probabilities match observed frequencies. The evaluation design also matters: random train–test splits 
can inflate performance when the same site, project, or reporting template appears in both training and 
test sets, allowing the model to learn site-specific language patterns or coding styles rather than 
generalizable safety mechanisms. More credible designs include temporal validation where training 
precedes testing in time, site-held-out validation where an entire site or project is excluded from 
training, and cross-organization validation where models are tested on external datasets with different 
reporting practices (Alqahtani et al., 2022). Feature engineering and preprocessing choices also 
influence reported results, particularly when datasets contain missing values, inconsistent coding, 
duplicated records, or non-standard narrative fields. In addition, many studies develop predictive 
models using retrospective incident data, while operational safety decisions require prospective 
reliability. This creates a gap between statistical performance and practical usefulness, which must be 
addressed by systematically extracting evidence about real-time feasibility, input availability, and 
whether predictions are presented at a decision cadence that matches how supervisors, safety 
managers, and project leaders allocate attention and resources. Quantitative synthesis within a 
systematic review therefore requires standardized extraction of sample sizes, event rates, class balance 
ratios, validation type, metric reporting, and whether models include measures of uncertainty or 
confidence (Kaur et al., 2023). In manufacturing and construction contexts, where conditions change 
due to seasonal factors, workload variability, new equipment introduction, and workforce turnover, 
robustness to dataset shift becomes a key property that can be indirectly assessed by looking for 
external validation, sensitivity analysis, or performance stability across sites and periods. 
The practical structure of prediction in occupational safety spans multiple stages of the incident 
lifecycle, and this influences the kind of models that appear in the literature. Some predictive models 
are event-focused, estimating the probability of an injury occurring for a given worker-task 
configuration or shift profile (Moreira et al., 2024). Others are severity-focused, predicting whether an 
incident—once it occurs—will lead to medical treatment, lost time, or high-severity outcomes. Another 
group is precursor-focused, predicting unsafe conditions or behaviors that tend to precede incidents, 
such as missing protective equipment, hazardous proximity to equipment, unsafe access 
configurations, poor housekeeping, or violations of procedure. In construction, models frequently 
emphasize hazard recognition and risk state estimation because site conditions are continuously 
changing, while in manufacturing, models often leverage stable process and maintenance data to 
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anticipate elevated risk periods. Text-based approaches commonly target severity classification and 
causal factor extraction because narratives encode contextual sequences and contributing conditions. 
Vision-based and sensor-based approaches commonly target leading indicators because they can 
produce frequent measurements suitable for continuous monitoring, enabling risk flagging without 
waiting for injury events (Campo et al., 2020). These differences create a synthesis challenge: prediction 
targets that are proxies for risk are not directly comparable to models predicting injury outcomes, yet 
both can be relevant to injury reduction if the proxy is strongly connected to incident pathways and is 
actionable within safety controls. A systematic review therefore benefits from separating models that 
predict injuries from models that predict hazardous states, then assessing how each class justifies its 
connection to injury reduction through validation against incident outcomes, alignment with 
established hazard controls, or documented use within safety management workflows. In addition, 
manufacturing and construction involve multi-layered responsibility structures, including 
subcontracting, multi-employer worksites, and shared control of hazards, which affects how predictive 
alerts can be acted upon. The predictive model’s unit of prediction must match the unit of control, such 
as a specific crew, equipment zone, or task step, for risk estimates to translate into practical prevention 
actions (Das, 2020). Quantitative review methods can capture this by extracting the prediction horizon, 
decision unit, and linkage between model outputs and control measures, while remaining within an 
introduction-focused framing that emphasizes definitional clarity and evidence mapping rather than 
recommendations. 
Data governance and measurement reliability shape both the development and interpretation of AI-
based predictive safety models. Injury and near-miss records are influenced by reporting incentives, 
administrative burden, and differing interpretations of what constitutes a recordable case, which 
introduces systematic bias into training data (Lee et al., 2020). In many organizations, near misses and 
unsafe observations are underreported, and incident narratives vary in detail and language, producing 
inconsistent labels and noisy input features. In manufacturing, automated sensing and maintenance 
logging can generate high-frequency objective data, yet linking those records to safety outcomes may 
be difficult when events are rare and when exposure denominators are not precisely measured. In 
construction, the prevalence of temporary worksites and changing subcontractor rosters can limit 
continuity of data capture and reduce the feasibility of longitudinal modeling. Privacy and worker 
consent issues are particularly salient for computer vision and wearables, because monitoring 
technologies can be perceived as surveillance and may be constrained by legal frameworks, labor 
agreements, and cultural context (Micheli et al., 2022). The evidence base therefore often reflects a 
tradeoff between data richness and deployability: vision and wearable studies can generate strong 
signals but may face adoption constraints, while incident-log-based models are easier to implement but 
may inherit bias and underreporting limitations. Methodological issues also include confounding due 
to intervention effects, where safety improvements change reporting behavior and risk profiles over 
time, which can affect model calibration and generate feedback loops. Another common issue is dataset 
shift across geography, regulatory context, and safety culture, where a model trained on one setting 
may not generalize because hazard controls, equipment standards, and reporting norms differ. For a 
systematic review, these realities motivate extraction of contextual variables such as country or region, 
industry sub-sector, project type, organization size, and data collection method, because these 
moderators help explain performance variability and the scope of generalization. The diversity of AI 
methods in the literature further requires attention to transparency: some models are interpretable by 
design, such as decision trees and linear models, while others are opaque, such as deep neural 
networks, prompting the use of explainability techniques to communicate feature influence and 
decision rationale (Islam et al., 2023). In safety contexts, explainability matters because decisions affect 
worker well-being and compliance accountability, and model outputs often need to be communicated 
to mixed audiences including supervisors, safety professionals, engineers, and frontline workers. 
 



American Journal of Advanced Technology and Engineering Solutions, January 2026, 180-227 

185 
 

Figure 2: AI Predictive Models for Safety 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A systematic review that concentrates on AI-based predictive safety models for reducing workplace 
injuries in manufacturing and construction requires an introduction framework that is both definitional 
and methodologically grounded, because the evidence includes varied outcomes, varied data types, 
and varied evaluation approaches (Fargnoli et al., 2020). The scope is naturally aligned to quantitative 
synthesis because most predictive modeling studies report measurable performance metrics and 
comparative algorithm results. At the same time, the diversity of prediction targets means that 
synthesis needs a structured taxonomy that separates injury prediction, severity classification, and 
leading-indicator hazard detection, then organizes studies by data modality, validation design, and 
decision unit. In quantitative terms, the key evidence elements include dataset scale, event prevalence, 
feature source categories, algorithm family, validation scheme, and reported metrics, alongside 
contextual descriptors that influence generalization such as industrial sub-domain, site type, and 
reporting structure. Manufacturing and construction are also complementary for evidence mapping 
because they span both stable-process environments and dynamic-project environments, allowing the 
review to compare how AI methods behave under different data-generating conditions. In addition, 
the systematic nature of the review requires careful attention to study selection logic, operational 
definitions of AI and predictive models, and inclusion boundaries around what constitutes injury 
reduction relevance (Botti et al., 2022). Some studies will focus directly on injury outcomes, while others 
will focus on risk proxies such as unsafe acts, PPE compliance, hazardous proximity, and violation 
patterns. Quantitative review framing can accommodate this by defining a hierarchy of outcomes and 
specifying how proxy outcomes are treated relative to injury outcomes. The resulting evidence map 
supports structured comparison across model classes and sectors, creating a coherent foundation for 
the remainder of the paper without extending into concluding claims, implications, or forward-looking 
statements (Park et al., 2022). 
The objective of this systematic review is to identify, categorize, and quantitatively describe the current 
body of research on artificial intelligence–based predictive safety models that are designed to support 
the reduction of workplace injuries in manufacturing and construction by forecasting injury 
occurrence, classifying injury severity, or detecting measurable risk precursors that are empirically 
linked to injury outcomes. The review aims to compile and organize evidence on how predictive safety 
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models are constructed, including the types of input data used (structured incident logs, near-miss and 
observation databases, inspection and audit records, maintenance and production indicators, text 
narratives, images and video, and sensor or wearable streams), the modeling approaches applied 
(statistical baselines, machine learning classifiers, ensemble methods, deep learning architectures, 
natural language processing pipelines, and computer vision detection frameworks), and the 
operational unit of prediction addressed (worker, task, crew, equipment zone, shift, site, project, or 
organization). A further objective is to extract and compare the reported performance measures and 
validation strategies across studies in order to summarize the quantitative strength of evidence within 
comparable subgroups, emphasizing metrics that reflect decision usefulness under class imbalance 
such as recall for high-severity outcomes, F1-score, AUC, and calibration indicators. The review also 
seeks to document dataset characteristics that influence model reliability and generalization, including 
sample size, event prevalence, label taxonomy, missing-data patterns, temporal coverage, and 
contextual factors such as industrial sub-sector, project or plant type, and geographic setting. In 
addition, the review aims to assess how studies operationalize “injury reduction relevance” by 
examining whether predictions are tied to actionable control measures, whether risk proxies such as 
unsafe-condition detection are validated against injury outcomes or credible safety performance 
indicators, and whether evaluation designs reflect realistic deployment constraints through temporal 
testing, site-held-out validation, or external dataset testing. Finally, the review intends to synthesize 
how methodological choices—feature engineering, imbalance handling, interpretability methods, and 
robustness checks—affect reported performance and comparability, producing a structured evidence 
map that distinguishes injury prediction models from hazard-state detection models while preserving 
quantitative comparability within each category. 
LITERATURE REVIEW 
The literature review for a systematic review on artificial intelligence (AI)–based predictive safety 
models must establish a structured, evidence-mapping foundation that aligns manufacturing and 
construction safety research with the quantitative logic of prediction, validation, and measurable 
outcomes (Toronto, 2020). Within occupational safety science, “predictive safety” is operationalized 
through models that estimate injury likelihood, classify injury severity, or infer high-risk conditions 
and behaviors that are statistically associated with subsequent injury events. Because manufacturing 
and construction differ in work-process stability, hazard exposure patterns, and data availability, the 
literature base is methodologically diverse: manufacturing studies commonly rely on structured logs 
(incident databases, production and maintenance records, shift schedules), while construction studies 
frequently integrate unstructured narratives, images, and dynamic site sensing due to rapidly changing 
work zones and concurrent operations (Dmitrienko et al., 2020). The literature review therefore must 
do more than summarize findings; it must classify evidence according to prediction target (injury 
occurrence vs severity vs leading-indicator proxies), data modality (tabular, text, vision, sensor), 
modeling family (classical ML, ensemble methods, deep learning), and evaluation design (random split 
vs temporal split vs site-held-out vs external validation). This section synthesizes what existing studies 
collectively reveal about model performance, reliability, and comparability by extracting and 
organizing quantitative indicators such as dataset size, event prevalence, class imbalance ratios, 
performance metrics (AUC, F1, recall for severe events, calibration), and deployment-relevant 
constraints (input availability, prediction horizon, and action unit). By structuring the literature in this 
way, the review can identify which combinations of data sources, algorithms, and validation methods 
are most frequently used, which model objectives are most studied in each sector, and where 
quantitative evidence clusters sufficiently to support meaningful subgroup synthesis (Gulcin, 2020). 
AI-Driven Workplace Injury Prediction 
Prediction targets are operationally defined as the dependent outcomes the model attempts to estimate. 
Injury occurrence prediction refers to models trained to estimate whether an injury event will occur 
within a defined unit of analysis, which may be framed as a binary classification (injury vs no injury) 
or as a probabilistic risk score anchored to a time window (for example, a shift, a day, or a week). Injury 
severity prediction refers to models trained to classify or rank the consequence level of an incident, 
typically expressed as multiclass categories that represent medical and operational burden, including 
outcomes that imply time loss or permanent harm. Leading-indicator proxy prediction refers to models 
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trained to estimate measurable precursor states such as noncompliance signals, unsafe condition 
detection, hazardous interaction configurations, or near-miss likelihood, where the proxy is treated as 
injury-reduction relevant when it is empirically tied to safety performance indicators or incident 
outcomes within the study design (Aggarwal et al., 2021). Data modalities are defined as the structure 
and source of predictor variables. Tabular modality includes coded records such as incident logs, 
audits, training histories, maintenance indicators, production variables, staffing patterns, and 
environmental measures. Text modality includes unstructured narratives from incident descriptions, 
safety observations, inspection comments, and corrective-action notes, where natural language is 
transformed into features. Image and video modality includes visual sources from cameras and site 
imagery used to detect workers, equipment, protective gear, and hazardous conditions. Sensor and 
wearable modality includes time-stamped streams from proximity devices, location tags, inertial 
sensors, and physiological measures used to quantify exposure and interaction patterns. Algorithm 
families are categorized to support interpretation of performance differences: baseline statistical 
models are treated as comparators; machine learning classifiers include traditional supervised learners; 
ensembles include tree-based aggregation and boosting; deep learning includes neural architectures 
aligned to text, vision, and time-series data. Validation designs are defined by the mechanism used to 
test generalization: random splits evaluate internal discrimination; temporal splits assess stability 
across time; site-held-out designs test transfer across worksites or projects; external validation tests 
performance across independent datasets (C. Huang et al., 2022). Metrics are defined as the quantitative 
measures used to summarize model performance, emphasizing discrimination and decision relevance 
under class imbalance through measures such as AUC, F1, recall or sensitivity, precision, probability 
calibration, and precision–recall area measures. These operational definitions allow the literature to be 
grouped into comparable subsets and synthesized without mixing fundamentally different outcomes, 
data-generating conditions, and evaluation standards. 
 

Figure 3: AI-Driven Workplace Injury Prediction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Across the empirical literature, quantitative comparability is repeatedly shaped by dataset 
characteristics and by the realism of validation strategies, which determines whether reported model 
performance reflects operational utility or only in-sample pattern recognition (Zhang et al., 2022). A 
consistent pattern across many studies is that injury data are often imbalanced, meaning severe 
outcomes and recordable injuries occur far less frequently than non-injury observations or low-severity 
cases, and this imbalance affects the meaning of commonly reported metrics. The literature also shows 
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that predictive models trained on a single organization, site, or project can achieve high internal 
discrimination while failing to transfer when reporting practices, work processes, or hazard controls 
differ. As a result, the review emphasizes dataset descriptors that influence interpretability: total 
sample size, the number of injury events, event prevalence, class distribution across severity categories, 
missing-data proportions, duplication risk, and the stability of feature definitions across time. Many 
studies use structured incident databases as the primary substrate for modeling, yet incident logs 
frequently contain inconsistent coding and narrative variability, and they may lack precise exposure 
denominators that would support more rigorous risk-rate modeling. Text-based studies often 
demonstrate the usefulness of unstructured narratives for capturing contextual precursors, but they 
also reveal sensitivity to vocabulary differences, report-writing conventions, and label mapping 
decisions that can shift class boundaries (Razavykia et al., 2020). Vision-based studies often measure 
detection quality using frame-level or object-level metrics that quantify correct identification of 
protective equipment or hazardous configurations, yet these metrics do not automatically translate into 
injury prediction unless the detected states are linked to incident outcomes or validated safety 
indicators. Sensor and wearable studies frequently provide granular exposure measures and high-
frequency interaction signals, but their datasets are often narrower in scope, and their performance 
claims may depend on controlled deployment conditions or limited site diversity. For these reasons, 
validation design is treated as a primary credibility indicator: random split validation is common but 
vulnerable to leakage when the same site patterns appear in both training and testing; temporal 
validation better reflects real-world deployment by separating earlier and later periods; site-held-out 
validation directly tests whether models generalize across projects or plants; and external validation 
tests whether the model transfers across organizations or regions. The literature also indicates that 
decision thresholds and alert rates matter operationally, so studies that report sensitivity and precision 
at specific thresholds provide stronger evidence for safety decision contexts than studies that report 
only global discrimination measures (Sarker et al., 2020). This systematic structure ensures that findings 
from numerous studies can be compared on common quantitative ground without forcing equivalence 
between incompatible tasks. 
Finally, the taxonomy supports synthesis by clarifying how different model objectives relate to injury 
reduction in manufacturing and construction through measurable outputs and quantifiable evaluation, 
rather than through general claims. In injury occurrence prediction research, studies often frame risk 
estimation at the level of worker-shift, crew-day, or site-week, using structured operational inputs to 
generate probability scores that can be ranked for prioritization (Ozturk, 2021). In severity prediction 
research, models frequently focus on classifying high-burden outcomes, because identifying a smaller 
subset of high-consequence cases can have disproportionate safety value when resources are limited. 
In leading-indicator proxy research, predictive models estimate frequent, measurable risk states—such 
as unsafe proximity patterns, missing protective gear, or noncompliance signals—that can be tracked 
continuously and used as quantitative indicators of safety conditions. The literature indicates that each 
target type requires different evidence standards: injury outcomes require careful handling of rare-
event imbalance, while proxy outcomes require credible linkage to injury-related performance 
measures. This distinction becomes especially important across sectors because manufacturing settings 
often support richer structured inputs and stable process signals, while construction settings often 
require multi-modal fusion of narratives, imagery, and dynamic exposure measures (Boboc et al., 2022). 
Algorithm choices in the literature reflect these constraints: structured tabular datasets are frequently 
modeled with ensemble learners and classical classifiers due to strong performance under mixed 
features; unstructured text is often modeled through language-based feature representations and deep 
learning approaches; imagery is typically modeled using deep visual detectors; and time-series sensor 
streams are modeled using temporal learners designed for sequential dependence. Metrics then 
function as the common language for synthesis across these heterogeneous settings, but only when 
interpreted within the correct task class: AUC and related discrimination measures support ranking 
performance, recall and sensitivity reflect capture of high-risk cases, precision reflects false-alarm 
control, and calibration reflects whether predicted probabilities can be treated as trustworthy risk 
estimates (Cagnano et al., 2020). The review therefore treats the literature review section as an evidence 
map built on operational definitions and quantitative comparability rules, enabling systematic 
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grouping and synthesis of results across many studies while keeping the focus on measurable 
prediction objectives within manufacturing and construction safety contexts. 
Safety Outcome Constructs 
Workplace injury outcomes in manufacturing and construction are typically defined in ways that 
support consistent counting, classification, and severity grading for quantitative analysis. In the 
predictive safety literature, injury occurrence is most often operationalized as an event outcome 
observed within a specified unit of time or unit of work, enabling a model to learn the difference 
between periods with and without recorded injuries (Bayramova et al., 2023). This operationalization 
appears in binary formulations where the outcome indicates whether an injury occurred during a 
worker-shift, crew-day, line-week, or project-month, as well as in count-based formulations where the 
outcome represents the number of injuries recorded within a defined exposure window. Studies that 
use occurrence outcomes frequently draw from administrative injury logs, incident reporting systems, 
and safety management databases because these sources provide time-stamped records and 
standardized fields that can be aligned to predictors such as job type, task category, equipment 
involved, or location. In addition to occurrence, severity categories are widely used because the safety 
burden of occupational harm is not uniform across events. Severity is commonly treated as an ordinal 
or multiclass outcome aligned to medical and operational consequences, including cases that require 
first aid only, medical treatment beyond first aid, restricted work, lost-time cases, permanent 
impairment, and fatal outcomes (van Nunen et al., 2022). Severity labels allow predictive models to 
focus on high-consequence events that impose larger costs and higher human harm, while still 
accommodating the full incident distribution. Exposure metrics form a third foundational construct 
because injury probability depends on opportunities for exposure to hazards. The literature uses 
exposure as the denominator that helps interpret counts and probabilities, including hours worked, 
shift duration, task time, equipment runtime, production cycles, and workforce headcount. When 
exposure is measured and linked to outcomes, models can represent risk in a way that better reflects 
differences between high-activity and low-activity periods. Even when exposure is not directly 
modeled as a denominator, it is often included as a predictor because overtime, extended shifts, and 
high-intensity work periods are treated as measurable correlates of injury occurrence and severity. 
Across these outcome definitions, a persistent theme is that injury data are shaped by reporting 
behavior, coding practices, and organizational procedures, which affects label reliability (Abdul, 2023; 
Hammad & Mohiul, 2023; May et al., 2022). As a result, the literature emphasizes careful mapping of 
outcome categories, consistent time windows, and transparent rules for aggregating events into model-
ready outcomes so that predictive performance can be interpreted in comparable ways across studies 
that differ in site type, dataset size, and event prevalence. 
Manufacturing and construction differ in injury data structure because they differ in workflow stability, 
task repetition, and the granularity of routine operational records, and these structural differences 
shape how injury outcomes and exposures are represented in quantitative models (Hasan & Waladur, 
2023; Ta et al., 2020). In manufacturing, many studies leverage the high density of structured data 
produced by stable production systems, including shift rosters, production throughput logs, quality 
records, maintenance events, machine condition indicators, and standardized incident forms. This 
environment supports modeling pipelines where predictors are consistently recorded at regular 
intervals, enabling alignment between predictors and injury outcomes at the shift, line, department, or 
plant level (Rifat & Rebeka, 2023). Stable processes also support repeated observation units, which 
increases sample size and strengthens statistical learning when outcomes are rare . However, 
structured density does not eliminate measurement challenges: injury events may still be 
underreported, near misses may not be consistently logged, and coding fields may be incomplete, 
requiring preprocessing decisions that directly influence model comparability. In construction, the 
literature describes a higher fraction of unstructured and semi-structured data because worksites are 
dynamic and project conditions change rapidly (Leso et al., 2023; Masud & Hossain, 2024; Md & Sai 
Praveen, 2024). Incident narratives, safety observation notes, inspection comments, corrective-action 
descriptions, and daily logs become important sources of context because they record transient risk 
factors such as changing work zones, simultaneous operations, equipment movement patterns, 
weather conditions, and subcontractor coordination (Nahid & Bhuya, 2024; Newaz & Jahidul, 2024). 
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Construction studies therefore often require additional steps to convert language-based and 
observational material into quantifiable inputs, and outcomes may be defined at varying levels such as 
activity, crew, location zone, or project phase rather than at a stable production line. This unstructured 
emphasis also appears in the use of images and video, where site cameras or mobile devices provide 
visual records of safety states that do not exist in standardized numeric fields. The data structure 
differences across the two sectors affect how exposure is captured: manufacturing often has direct 
measures such as runtime and throughput, whereas construction exposure is frequently approximated 
through workforce counts, task durations, or schedule-based measures extracted from site records 
(Hidayati et al., 2020; Akbar, 2024; Rabiul & Alam, 2024). These sector-specific structures create a 
comparability problem addressed by systematic reviews through explicit categorization: a model 
trained on manufacturing’s consistent structured logs is not directly comparable to a model trained on 
construction narratives and visual streams unless the review isolates the prediction target, defines how 
the unit of analysis is constructed, and records the dataset’s granularity and labeling rules. The 
literature therefore treats “data structure” as a quantitative moderator that influences reported 
performance, because feature completeness, label stability, and temporal alignment are easier to 
achieve in structured environments and more variable in dynamic project contexts. Within this 
framing, systematic synthesis requires documenting not only what outcomes were predicted but also 
how the underlying observation units were formed and how predictors were captured in each sector. 
 

Figure 4: AI-Based Predictive Safety Outcomes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Leading indicators are used in the predictive safety literature to represent measurable precursors and 
risk states that occur more frequently than injuries and can be quantified continuously, allowing 
models to learn patterns of elevated risk even when injury events are rare (Blut & Wang, 2020; Hammad 
& Hossain, 2025; Azam & Amin, 2024). Three leading-indicator families are commonly emphasized: 
near-miss frequency, safety observation counts and audit nonconformance, and compliance-related 
measures such as protective equipment usage and hazardous proximity events. Near misses are 
typically defined as unplanned events that did not result in injury but had the potential to do so, and 
they are modeled as counts or rates within a unit such as a shift, week, or project phase. Safety 
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observations and audit nonconformance are similarly treated as countable events in which unsafe 
conditions, unsafe acts, or procedural deviations are recorded through inspections, behavioral 
observations, or audit processes (Mosheur, 2025). These measures are attractive because they create 
larger datasets than injury logs and can support more stable learning, yet they also introduce 
comparability issues because observation intensity varies with inspection frequency, supervisor 
practices, and organizational reporting culture. The literature therefore treats observation processes as 
part of the measurement construct, meaning that comparisons across studies require attention to how 
observation data were collected, who recorded them, and whether the data reflect systematic sampling 
or opportunistic reporting (Zaheda, 2025a, 2025b). A second major proxy category is personal 
protective equipment compliance, which appears both in structured observation checklists and in 
computer-vision studies that quantify compliance from images or video (Hassan et al., 2023). PPE 
compliance is typically expressed as a proportion of compliant observations within a defined period, 
and it is used as a measurable indicator of safety behavior and control effectiveness. The third category 
is proximity-related hazard indicators, which are derived from location tracking, proximity sensors, or 
equipment interaction monitoring and represent measurable exposure to hazardous interactions 
between workers and moving equipment or hazardous zones. These proximity indicators are treated 
as quantitative proxies for risk intensity because they capture how long and how often workers operate 
within hazardous spatial relationships, which is difficult to infer from incident logs alone. Across 
leading indicators, the literature positions proxies as injury-reduction relevant when they represent 
controllable risk states and when studies demonstrate meaningful association with incident outcomes, 
severity patterns, or validated safety performance measures. Because leading indicators differ in 
frequency, reliability, and susceptibility to reporting bias, systematic synthesis requires categorizing 
them by construct type and documenting their operational definitions, measurement intervals, and 
data completeness (O’Donovan & McAuliffe, 2020). The evidence base also indicates that proxy 
outcomes are not interchangeable with injury outcomes: they provide broader sampling of risk states 
but require careful interpretation because they reflect both underlying risk and the intensity of 
observation systems. This is why systematic reviews emphasize clear definitions and transparent 
measurement rules for leading indicators so that performance comparisons across predictive models 
remain grounded in comparable constructs rather than in mixed measurement processes. 
Bringing injury outcomes, sector-specific data structure, and leading indicators together, the literature 
review framework for quantitative safety outcome constructs emphasizes consistent operational 
definitions and transparent measurement decisions as the basis for credible comparison across 
predictive safety studies (Jiang et al., 2021). Injury occurrence and injury severity outcomes provide 
direct measures of harm and burden, yet they are often constrained by rarity, reporting variation, and 
inconsistent coding, which can complicate model training and inflate apparent performance if 
validation is not robust. Exposure metrics serve as the interpretive bridge that links injuries to 
opportunities for risk, allowing models to represent variation in workload, time at risk, and equipment 
interaction intensity. Manufacturing datasets frequently enable clearer exposure linkage due to stable 
production rhythms and routine logging, while construction datasets often require proxies and 
approximations because exposure varies with schedule changes, subcontractor presence, and shifting 
site conditions. Leading indicators complement injury outcomes by producing higher-frequency 
measurements of risk states, including near-miss logs, observation systems, audit findings, PPE 
compliance measures, and proximity-based exposure indicators. These proxies expand the evidentiary 
base for predictive modeling but also broaden the measurement problem, since leading indicators are 
shaped by surveillance intensity, reporting incentives, and observational coverage. In response, the 
predictive safety literature increasingly treats outcome constructs as multi-layered: injury outcomes 
represent realized harm; severity represents consequence; exposure represents opportunity for harm; 
and leading indicators represent measurable precursors and control-relevant states (Rockström et al., 
2023). A systematic review that synthesizes this literature must therefore record how each study defines 
its outcome construct, how observation units are formed, and how exposure and proxy measurements 
are captured and aligned to model inputs. Comparability depends on identifying whether a study 
predicts injuries directly, predicts severity among recorded incidents, or predicts precursor states that 
are positioned as risk signals. It also depends on documenting whether outcomes and indicators are 
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measured at the worker level, crew level, line level, or site level, because the unit of analysis affects 
event prevalence, label stability, and the meaning of performance metrics. Finally, the literature 
emphasizes that the quality of outcome constructs is inseparable from the quality of the data-generating 
system that produced them, meaning that transparent reporting of data sources, labeling rules, 
missingness, and observation processes is necessary to interpret predictive performance across 
manufacturing and construction contexts (Means et al., 2020). This outcome-construct framing supports 
systematic categorization and subgroup synthesis without conflating fundamentally different targets, 
enabling the review to compare like with like in a quantitatively defensible way. 
Predictive Safety Modeling  
In the predictive safety literature, injury occurrence prediction models are defined by their aim to 
estimate whether an injury event will occur within a specified operational unit, and this unit-of-
prediction choice shapes the structure of inputs, the meaning of model outputs, and the interpretability 
of results (Mehdizadeh et al., 2020). Studies commonly align prediction units to the cadence of safety 
decision-making, such as worker-shift, crew-day, equipment-zone, or site-week units, because these 
align with staffing assignments, production planning, and routine safety oversight. Worker-shift 
models typically integrate worker attributes, task assignments, shift length, overtime exposure, training 
records, and recent incident history to produce a risk estimate that can be used for prioritizing 
supervision or targeted briefings within a single shift. Crew-day and site-week models often aggregate 
individual-level inputs into group-level indicators such as crew composition, subcontractor mix, work 
package type, schedule pressure proxies, and environmental conditions, enabling a broader view of 
risk distribution across concurrent operations. Equipment-zone models foreground spatial exposure 
and interaction risk, often combining location-based features, equipment movement indicators, and 
zone-specific hazard characteristics to estimate elevated risk states tied to particular work areas. Across 
these variants, the literature consistently treats model outputs as decision-support signals, frequently 
expressed as a risk score or hazard category that supports ranking of operational units by relative risk 
(Bartulović & Steiner, 2023). This output framing is particularly common when injury outcomes are 
rare, because ranking performance and risk stratification are more stable than exact numeric probability 
estimation in sparse-event contexts. Even when studies report probabilistic outputs, interpretive 
emphasis often remains on how effectively the model separates higher-risk from lower-risk units under 
class imbalance. A recurring methodological theme is that the unit of prediction must match the unit 
of control: a model that predicts risk at the site-week level supports managerial resource allocation and 
inspection planning, while a worker-shift model is more relevant to frontline supervision and task-
level planning. The literature also shows that model inputs must be aligned to the prediction window 
to avoid leakage, meaning that the features must reflect information available before the event window 
closes. For example, if the prediction unit is a shift, features should be measurable at or before shift 
start, or at defined time checkpoints, rather than extracted from end-of-shift reports that embed post 
hoc incident information. This alignment is critical because safety datasets often contain time-stamped 
narratives and corrective action notes that can inadvertently reveal outcome information. 
Consequently, injury occurrence models are frequently discussed in relation to validation realism, 
including whether the data split respects time order, whether entire sites or projects are held out, and 
whether model performance holds across operational contexts with different reporting practices (Hu 
et al., 2020). Within manufacturing and construction, the occurrence-prediction literature therefore 
emphasizes the practical mechanics of constructing comparable prediction units, generating outputs 
that support triage, and evaluating models in ways that reflect the dynamic and heterogeneous settings 
where injury risk is managed. 
A second major objective class in predictive safety research is severity prediction and classification, 
where models are designed to estimate the consequence level of an injury event or to classify incident 
outcomes into ordered or multi-category severity labels. Severity modeling appears in two primary 
forms (Elmaz et al., 2021). In one form, studies model severity conditional on an incident having 
occurred, using incident descriptors, contextual features, and narrative content to classify whether the 
outcome involved first aid only, medical treatment, restricted duty, lost time, permanent impairment, 
or fatality. In another form, studies integrate severity into broader prediction pipelines by estimating 
the likelihood of high-severity outcomes within operational units, effectively combining occurrence 
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and severity into a burden-oriented risk signal. The literature emphasizes severity modeling because 
high-severity injuries represent a smaller share of incidents but a disproportionately large share of 
human and economic costs, making them a distinct analytic target. From a quantitative standpoint, 
severity modeling is often harder than occurrence prediction because label distributions are more 
imbalanced and because severity can be influenced by contextual factors that are not consistently 
recorded, such as immediate response quality, reporting timeliness, and local medical thresholds. 
Studies therefore frequently treat rare-event modeling as a central design constraint, using strategies 
such as class weighting, resampling, and threshold-focused evaluation to improve sensitivity to high-
severity outcomes (Viceconti et al., 2021).  
 

Figure 5: AI Predictive Safety Model Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A consistent observation across severity studies is that performance varies by severity class and that 
global accuracy metrics can obscure poor detection of rare but critical categories. Consequently, many 
studies emphasize class-specific performance reporting, including how well models identify high-
severity cases relative to low-severity cases. Severity prediction is also linked to the data modality used. 
Structured incident logs often provide categorical fields for injury type, body part, equipment involved, 
and coded cause categories, which support classical supervised learning. At the same time, 
unstructured narrative fields often contain richer contextual detail about circumstances, sequence of 
events, and immediate consequences, making text-driven features particularly prominent in severity 
modeling research. This has led to a substantial body of work in which narratives are transformed into 
predictive representations and used to classify severity outcomes, often alongside structured fields. In 
construction contexts, severity modeling also intersects with project-level variability: the same incident 
type can yield different severity outcomes depending on height, energy source, work posture, or 
surrounding constraints, which complicates generalization across sites. In manufacturing contexts, 
stable processes can support larger sample sizes, but severe outcomes remain rare, and severity may 
cluster around specific equipment classes or tasks, raising the need for validation that tests 
generalization beyond a single plant or production line (Zhang & Mahadevan, 2020). Across both 
sectors, the literature frames severity prediction as a triage and learning tool that can standardize 
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severity coding, support prioritization of investigations, and identify patterns in high-consequence 
incidents, while also highlighting that severity labels reflect both injury harm and reporting systems. 
This places emphasis on transparent severity taxonomy definitions, consistent label mapping, and 
evaluation designs that prevent optimistic estimates arising from duplicated narratives or repeated 
site-specific wording patterns. 
Data Modalities Used in AI Predictive Safety Models 
Structured tabular data represent the most established modality for AI predictive safety models, 
particularly in manufacturing environments where stable processes and standardized reporting 
systems generate consistent records over long periods. In this literature, tabular inputs most often 
originate from incident logs and safety management databases that encode event attributes such as 
injury type, body part affected, task category, equipment involved, and coded causal or contributing 
factors (Tselentis et al., 2023). These datasets are frequently merged with production and maintenance 
systems that record downtime episodes, repair frequency, preventive maintenance compliance, 
backlog measures, and machine condition indicators, allowing models to represent operational strain 
and equipment reliability as measurable correlates of injury risk. Workforce attributes are also common 
structured inputs, including tenure, training completion, role classification, overtime exposure, shift 
patterns, and staffing levels, because they provide quantifiable proxies for experience, fatigue, and 
workload distribution. Within systematic evidence mapping, tabular studies are primarily comparable 
when they clearly report dataset scale and event structure, since predictive results are strongly 
moderated by sample size, injury event counts, and the base rate of injuries in the observation window. 
Many manufacturing datasets are large in record count but sparse in positive events, making imbalance 
a recurring characteristic and shaping what performance metrics are meaningful (Cai, 2020).  
 

Figure 6: AI Predictive Safety Data Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In addition, missingness is a prominent extraction item because incident logs and operational systems 
often contain incomplete fields, inconsistent coding, and variable reporting quality across departments, 
which can materially change model inputs and downstream performance. As a result, the tabular-data 
literature frequently emphasizes preprocessing decisions such as imputation strategies, feature 
selection, categorical encoding, aggregation rules for constructing worker-shift or line-week units, and 
temporal alignment between predictors and outcomes. These choices affect whether a model captures 
true risk signals or artifacts of recordkeeping. The reviewed studies often present tabular modeling as 
the most deployable path for predictive safety because the data sources already exist in many 
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organizations and require minimal additional instrumentation, yet the evidence also shows that tabular 
datasets can encode structural bias through underreporting, inconsistent event taxonomy use, and 
differences in safety culture across sites. Accordingly, systematic review extraction from tabular studies 
typically records not only the variables used but also the definitional rules that convert raw records 
into outcomes and observation units, because cross-study comparability depends on whether injuries 
are labeled consistently and whether the exposure window matches the operational decision context 
(Lee et al., 2024). This makes structured tabular research a backbone of AI predictive safety modeling, 
while also making transparent reporting of dataset characteristics an essential requirement for 
comparing findings across manufacturing and construction contexts. 
Text data form a second major modality in AI predictive safety models, capturing information that 
structured logs often cannot represent, including contextual sequences, narrative descriptions of 
conditions, and nuanced descriptions of causal factors embedded in incident reports, near-miss 
narratives, safety observations, inspection notes, and corrective-action documentation (Salhab et al., 
2024). In the literature, text-driven predictive models are motivated by the observation that narrative 
fields frequently contain details about how events unfolded, what immediate precursors were present, 
and what environmental or organizational conditions contributed to risk, even when structured codes 
are missing or overly coarse. Text-based pipelines typically follow a sequence of steps that transform 
unstructured language into model-ready representations, including cleaning and normalization, 
tokenization, and representation through either count-based vectorization, embedding-based features, 
or deep language encodings. Across studies, a key comparability element is the size and nature of the 
feature representation, because vocabulary breadth, embedding dimensionality, and the use of 
domain-specific language modeling can substantially affect performance. Another essential extraction 
item is how labels are mapped from text-linked records to outcomes such as severity category, incident 
type, or contributing-factor class (Charoenpitaks et al., 2024).  
Label mapping is particularly consequential because the same narrative can be associated with multiple 
classification targets and because organizational taxonomies differ across sites and sectors. The 
literature also documents that narrative length and narrative completeness vary widely by reporter, 
organizational practice, and reporting platform, making distributional descriptors of narrative length 
and class counts informative for interpreting model performance. Text modeling in construction 
receives special attention because unstructured documentation is often central to project safety 
oversight, and site conditions change rapidly in ways that are more likely to be recorded in notes than 
in standardized numeric fields. At the same time, manufacturing also benefits from text analysis when 
incident narratives and maintenance notes contain signals about recurring hazards, procedural 
nonconformance, or equipment behaviors that precede injuries. The evidence base indicates that text 
models can perform well in classifying severity or categorizing incident types, especially when 
narratives are plentiful and label definitions are stable, yet performance can degrade when narrative 
templates differ across sites or when terminology varies across regions and trade groups. For 
systematic synthesis, text studies are therefore commonly grouped by outcome target and reporting 
context, and extraction emphasizes narrative corpus size, the number of labeled cases per category, and 
whether validation designs control for leakage arising from repeated wording patterns (Xu et al., 2024). 
Overall, text modalities broaden the predictive safety evidence base by converting qualitative 
descriptions into quantitative signals, but comparability depends on transparent reporting of language 
preprocessing, feature construction, and label taxonomy alignment. 
Sensor, wearable, and IoT data form a fourth modality that bridges manufacturing and construction 
and is distinctive because it produces time-stamped streams that directly measure exposure intensity, 
interaction patterns, movement dynamics, and physiological or biomechanical proxies related to 
fatigue and ergonomic risk (Khowaja et al., 2022). In construction, proximity sensors and location tags 
are commonly used to quantify interactions between workers-on-foot and heavy equipment, producing 
measurable indicators of hazardous proximity events and exposure duration within dangerous zones. 
In manufacturing, inertial sensors and wearable platforms are often used to monitor posture, repetition, 
force proxies, and movement variability, supporting prediction tasks related to ergonomic risk states 
and unsafe motion patterns that can precede injuries. Physiological measures, where used, can 
represent strain proxies that relate to heat stress or fatigue-related risk. The literature frequently 
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operationalizes these data through observation windows that aggregate streams into derived features 
such as proximity event frequency, dwell time in hazardous zones, acceleration-based movement 
descriptors, posture classification counts, or workload indicators. Comparability in this modality 
depends on reporting the sampling characteristics and the windowing strategy used to construct 
prediction inputs, because sampling frequency and observation window length directly shape what 
patterns the model can learn (Serradilla et al., 2022). Another key extraction item is the number of 
derived features and how they are engineered, since time-series modeling can range from feature-based 
classical learners to sequence-based deep learning approaches depending on data volume and labeling 
density. Performance reporting often focuses on the ability to detect or classify risk states within 
defined windows, with emphasis on sensitivity at decision thresholds because operational deployment 
requires control of missed detections and false alarms. Sensor and wearable studies also face distinctive 
data quality issues, including signal loss, calibration drift, device noncompliance, coverage gaps, and 
environmental interference, all of which can bias both training data and evaluation results. As with 
vision-based models, injury-reduction relevance hinges on measurable linkage: proximity events and 
ergonomic risk states are treated as predictive safety outputs when they correspond to validated hazard 
mechanisms and when their measurement supports actionable controls such as exclusion zone 
management, equipment routing, task rotation, or targeted training. For systematic synthesis, 
sensor/wearable studies are therefore grouped by hazard construct measured, sensor type, labeling 
method, and whether the outcome is an injury event, a severity category, or a risk proxy (K. Huang et 
al., 2022). These studies contribute uniquely to predictive safety by providing objective exposure 
measures that are otherwise difficult to obtain from logs and narratives, while requiring clear reporting 
of sampling, windowing, feature derivation, and evaluation protocols for cross-study comparability. 
Algorithm Families and Model Architectures 
Baseline statistical models form the methodological anchor in many AI-based predictive safety studies 
because they provide interpretable comparators and establish whether more complex algorithms 
deliver measurable value beyond conventional inference. In this body of literature, logistic regression 
is widely used for injury occurrence outcomes defined as binary events at operational units such as 
worker-shift, crew-day, or site-week, because it produces stable estimates under modest data sizes and 
supports straightforward inclusion of structured predictors such as overtime exposure, tenure, training 
completion, task class, and equipment involvement (Wang et al., 2023). Count-based modeling 
approaches, including Poisson and negative binomial specifications, appear when outcomes are 
defined as incident counts within exposure windows and when researchers aim to align predictions 
with event frequency rather than simple occurrence. These models are particularly relevant when 
injury events are aggregated at line-week, department-month, or project-phase levels and when 
exposure-related predictors such as hours worked or runtime are treated as key quantitative 
descriptors. Baseline models are repeatedly positioned in the literature as quality benchmarks because 
they encourage transparent feature specification, support examination of confounding and collinearity, 
and enable clearer diagnosis of whether predictive gains are attributable to nonlinear learning or to 
differences in variable handling and preprocessing. In systematic evidence mapping, baseline studies 
are frequently used to evaluate whether performance improvements reported by machine learning are 
robust to differences in data preparation and outcome construction. They also provide a consistent 
interpretive reference when datasets are sparse, when high-severity outcomes are rare, or when labels 
are noisy due to reporting variability (Aslan & Yilmaz, 2021). The baseline literature further highlights 
that predictive performance depends not only on the algorithm but on how predictors are engineered 
and aligned temporally to the prediction window. For example, injury occurrence modeling can be 
inflated by features that inadvertently encode post-event information, and baseline modeling 
frameworks often make these risks easier to detect because feature definitions are typically 
documented in a more explicit manner. Another recurring methodological contribution of baseline 
modeling is its role in calibration and probability interpretation, since many safety decision contexts 
require probability-like outputs that can be compared across units and thresholds. When safety studies 
report results using discrimination measures alone, baseline models still provide a useful reference for 
how well probability estimates align with observed event frequencies under class imbalance. Across 
manufacturing and construction, baseline statistical modeling therefore functions as both a practical 
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method and a methodological control: it sets a minimum evidentiary standard for predictive claims 
and clarifies whether complex model families contribute incremental accuracy, improved sensitivity to 
rare events, or better generalization across sites and time windows (Gasparetto et al., 2022). 
 

Figure 7: AI Predictive Safety Model Hierarchy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Classical machine learning models extend the predictive safety literature beyond parametric baselines 
by introducing flexible decision boundaries and feature interactions while still remaining relatively 
tractable in terms of implementation and interpretation. Decision trees are frequently used because 
they capture nonlinear splits and rule-like logic that safety practitioners can often interpret as 
actionable patterns, especially when predictors include categorical codes from incident logs, job 
classifications, hazard categories, and compliance indicators (Bienvenido-Huertas et al., 2020). k-
nearest neighbors approaches appear less consistently but remain conceptually relevant in safety 
prediction because they operationalize similarity-based reasoning, classifying new observations by 
proximity to historical cases in a feature space constructed from worker attributes, task descriptors, or 
environmental conditions. Support vector machines are commonly evaluated in comparative studies 
because they can perform well in high-dimensional feature spaces, including settings where text-
derived vectors are used to classify severity, incident type, or causal categories. Naïve Bayes remains a 
frequent baseline in text-heavy safety studies because it is robust, simple, and often competitive when 
narrative fields are transformed into sparse representations. Across these classical models, the literature 
emphasizes that comparability and performance depend heavily on extraction items that are sometimes 
inconsistently reported, including hyperparameter specification, feature scaling methods, and 
strategies for managing class imbalance. Safety datasets often contain rare outcomes, especially when 
focusing on high-severity injuries, and classical models can be sensitive to imbalance when default 
decision thresholds are used or when class weights are not explicitly managed (Papa et al., 2024). This 
makes class-weighting, resampling approaches, and threshold tuning important elements for 
systematic extraction, because they directly influence recall for high-risk categories and false-alarm 
rates in operational use. Feature scaling also becomes important for distance-based learners and 
margin-based methods; without clear documentation of scaling, performance comparisons can be 
misleading. Another recurring theme in safety modeling research is that classical algorithms can 
behave differently depending on the unit of analysis: a worker-shift dataset with many repeated 
workers introduces clustering that can inflate performance under random splitting, while a site-held-
out design can reveal whether a model is learning general risk mechanisms or site-specific coding 
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patterns. In construction and manufacturing safety studies that include mixed structured and derived 
features, classical models are often used as strong baselines against which ensembles and deep learning 
are compared, not because they are universally superior, but because they help clarify the marginal 
value of complexity under real-world data constraints. Their continued presence across sectors reflects 
a consistent finding in applied predictive literature: careful feature design, clean outcome definition, 
and robust validation can matter more than algorithm choice when the data-generating process is noisy 
or when labels are inconsistent (Aslan et al., 2022). Consequently, systematic reviews typically treat 
classical models as a distinct category where methodological reporting quality—particularly 
hyperparameters, scaling, and imbalance handling—forms a major part of the evidence needed to 
interpret results and compare studies fairly. 
Model Validation Designs  
Model validation design functions as the central credibility axis in AI-based predictive safety research 
because reported performance is only meaningful to injury reduction when it reflects realistic 
generalization beyond the dataset used to train the model (Knezek et al., 2023). Across manufacturing 
and construction studies, validation is repeatedly treated as the methodological boundary between 
pattern recognition that is limited to a specific reporting system and prediction that can support 
operational decision-making under changing conditions. The most common design remains random 
split validation, where records are partitioned into training and testing sets through randomized 
sampling. This approach is attractive because it is simple, reproducible, and often yields stable 
performance estimates when data are independent and identically distributed. In predictive safety 
datasets, however, independence assumptions are frequently violated. Records often cluster by site, 
project, contractor, production line, or reporting template; workers and supervisors may appear 
repeatedly; and narratives may be duplicated or written in standardized formats. Under these 
conditions, random splits can introduce leakage, because the model can implicitly learn site-specific 
language patterns, repetitive causal code usage, or recurring administrative phrasing that appears in 
both training and testing subsets (Aydin & Yassikaya, 2022). The literature emphasizes that this leakage 
risk is particularly pronounced when text narratives are used, because similar descriptions and 
repeated templates can inflate discrimination metrics even when the model has not learned 
generalizable safety mechanisms. Leakage can also occur in tabular datasets when identifiers or proxies 
for location, workgroup, or equipment are present and are not handled carefully, allowing the model 
to memorize stable contextual patterns rather than learning transferable risk relationships. For 
systematic review extraction, studies using random splits are therefore interpreted through 
documented details such as the split ratio, whether the split was stratified by outcome class, and 
whether the split occurred at the record level or at higher aggregation levels. Stratification is common 
to preserve class balance in imbalanced injury datasets, yet stratification alone does not address leakage 
if the same site or project contributes to both subsets. Some studies attempt to mitigate this by 
deduplicating narratives, removing repeated records, or excluding identifiers, and the literature review 
treats these steps as key credibility modifiers (Schaufeli et al., 2020). Random split validation thus 
occupies an important position in the evidence base as a baseline internal evaluation method, while 
also being the validation design most vulnerable to optimistic estimation in safety contexts where the 
data-generating process includes repeated structures and correlated records. 
Temporal validation is repeatedly highlighted in the predictive safety literature as a more deployment-
aligned approach because it respects the time-ordered structure of operational risk data and more 
closely approximates how models would be used in practice. Under temporal validation, models are 
trained on an earlier observation period and evaluated on a later period, creating a time separation that 
reduces some forms of leakage and tests whether learned patterns remain stable as conditions change 
(Schaufeli et al., 2020). In manufacturing, temporal validation aligns naturally with production rhythms 
and long-running operations, enabling training on historical shifts, weeks, or months and testing on 
subsequent periods that may differ in staffing patterns, maintenance schedules, production intensity, 
and seasonal environmental conditions. In construction, temporal validation is more complex because 
projects evolve through phases, work packages change, crews rotate, and subcontractors enter and exit, 
producing nonstationarity that can challenge predictive stability. Even so, temporal designs allow 
evaluation of whether models trained on earlier project phases generalize to later phases, which is 
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relevant because risk profiles change as work transitions from excavation and foundations to structural 
framing, MEP installation, finishing, and commissioning. The literature treats temporal validation as 
especially important when models rely on leading indicators, because observation systems, audit 
intensity, and reporting behaviors can change over time as management priorities shift or after 
incidents occur (Cudejko et al., 2022). For systematic extraction, temporal validation is interpreted 
through training window length, test window length, and the degree of separation between periods. 
Studies that use longer training windows may capture more variability but can also blend 
heterogeneous conditions that complicate learning, while shorter windows may align with specific 
operational regimes but reduce sample size. Test windows similarly matter: short test periods can 
produce unstable estimates when injury events are rare, while longer test periods may dilute short-
horizon predictive relevance. Another critical temporal issue in safety datasets is intervention effects: 
safety programs and policy changes can shift both risk and reporting practices, and temporal validation 
implicitly tests whether models remain calibrated under such shifts. The literature therefore treats 
temporal validation not merely as a split technique but as an evidence statement about robustness 
under change (Yang et al., 2023). In synthesis, temporal designs are typically weighted as stronger 
credibility evidence than random splits because they reduce leakage from repeated records and test 
stability under real-world variation, while still requiring careful reporting of window definitions and 
ensuring that predictors used are available at the time predictions would be made. 
 

Figure 8: Model Validation Framework for Safety 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Site-held-out and project-held-out validation designs represent a stronger generalization test in 
predictive safety literature because they directly evaluate whether models transfer across distinct 
operational contexts. In these designs, entire sites, projects, plants, production lines, contractors, or 
work packages are excluded from model training and reserved for testing (Wu et al., 2022). The 
literature emphasizes the value of this design because safety risk is shaped by local context, including 
equipment configuration, site layout, management practices, workforce composition, hazard controls, 
and reporting culture. When a model is trained and tested within the same site context, it may learn 
context-specific patterns that do not generalize. Site-held-out evaluation reduces this risk by requiring 
the model to perform on a site or project it has never seen, which better represents the challenge of 
deploying predictive systems across multiple sites within a company or across projects within a 
contractor portfolio. This design is particularly relevant in construction, where project uniqueness is 
intrinsic and where data from a single project may not represent the variability of other projects. It is 
also highly relevant in manufacturing organizations that operate multiple plants or lines with different 
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equipment vintages, layouts, and production mixes. In the literature, site-held-out validation is 
frequently used to assess the stability of leading-indicator models, project risk scoring systems, and 
multi-modal models that combine text and structured features. For systematic extraction, key items 
include the number of sites contributing to the dataset, the number of held-out sites, whether the held-
out unit was a site, a project, or a contractor, and whether performance was reported at the site level 
rather than only as a pooled metric (Dari et al., 2023). Site-level performance reporting matters because 
aggregated metrics can hide large variability; a model might perform well on some sites and poorly on 
others, which is crucial for interpreting deployment feasibility. The literature also treats site-held-out 
evaluation as a partial test of domain shift, because reporting templates, language patterns, and coding 
practices can differ across sites, particularly when datasets incorporate narratives. In addition, site-
held-out designs expose the reliance of models on context proxies embedded in features, such as 
location codes or project identifiers. When these features are removed, performance can change 
dramatically, indicating that earlier results may have reflected memorization rather than generalizable 
risk learning (Dai et al., 2020). Consequently, this validation design is treated as a key credibility 
indicator in systematic reviews of predictive safety models, and studies using it often provide stronger 
evidence for transferability across manufacturing and construction contexts, especially when they 
report variability, confidence intervals, or performance distributions across held-out units. 
Performance Metrics and Threshold Reporting 
Performance metrics and threshold reporting provide the quantitative backbone for synthesizing 
evidence on AI-based predictive safety models because they determine whether reported results can 
be compared across studies and interpreted as decision-relevant in manufacturing and construction 
settings (Chandra et al., 2022). In the safety prediction literature, classification metrics are most 
commonly used to evaluate injury occurrence models and severity classifiers, yet metric selection varies 
widely and is strongly influenced by class imbalance, label noise, and the operational consequences of 
missed detections. Discrimination measures such as area under the receiver operating characteristic 
curve are frequently reported because they summarize the ability of a model to rank higher-risk cases 
above lower-risk cases across thresholds, which is useful for risk prioritization. At the same time, 
evidence syntheses repeatedly show that discrimination alone can obscure failure modes in imbalanced 
safety datasets, particularly when severe injuries represent a small fraction of observations. As a result, 
the literature increasingly emphasizes precision, recall, and their harmonic balance as core interpretive 
measures, because they directly reflect false-alarm burden and missed high-risk cases under a chosen 
threshold. Recall is often highlighted as particularly important for severe injury detection because 
missing a high-severity event is operationally and ethically costly, while precision reflects whether an 
alerting system can be sustained without overwhelming supervisors with false positives. Specificity 
remains relevant because it indicates how well low-risk cases are correctly identified, which affects 
workload in high-volume monitoring environments such as manufacturing lines and large 
construction sites (Yuan et al., 2020). Precision–recall area measures are commonly recommended in 
imbalanced settings because they focus on performance within the positive class and offer more 
informative summaries when the non-event class dominates. In systematic review extraction, the 
interpretability of classification results is therefore tied to whether studies report a complete set of class-
imbalance-sensitive metrics, whether they provide class-specific results for severity categories, and 
whether they document the event prevalence and class distribution that contextualize performance. A 
further comparability issue involves the definition of the positive class: some studies treat any injury 
as positive, while others focus on recordable injuries or high-severity outcomes, producing 
fundamentally different base rates and decision objectives. Consequently, systematic synthesis treats 
metric reporting as inseparable from outcome definition and class prevalence, because a model’s recall 
or precision is only meaningful when the underlying event rate and labeling taxonomy are transparent. 
Within manufacturing and construction, where injury events are rare relative to safe observations and 
where severity distributions are heavily skewed, the literature repeatedly frames careful metric 
selection as essential to distinguishing models that merely rank risk from models that detect high-
consequence outcomes in a practically actionable way (Smith et al., 2021). 
Calibration and decision-focused metrics are presented in the literature as a second critical layer of 
evaluation because many predictive safety models output probabilistic risk estimates intended to guide 
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prioritization, resource allocation, and threshold-based interventions (Seblova et al., 2020). Calibration 
refers to how closely predicted risk levels align with observed outcome frequencies, and it becomes 
central when organizations use model outputs as quantitative risk scores rather than only for ranking. 
Poorly calibrated models can produce misleading risk estimates that either understate or overstate true 
risk, leading to misallocation of safety resources or inappropriate confidence in low-risk classifications. 
Studies that include calibration analyses often report probability reliability summaries and measures 
of probabilistic accuracy, highlighting that a model can display strong discrimination while still being 
poorly calibrated. This distinction is important in safety contexts because decision makers frequently 
need to compare risk levels across sites, shifts, and teams, and such comparisons require that the 
numeric meaning of risk estimates be consistent. Calibration is also affected by dataset shift, including 
changes in reporting practices, intervention-driven changes in risk distribution, and differences across 
projects or plants, which makes calibration evidence especially valuable in multi-site manufacturing 
networks and multi-project construction portfolios. Decision-analytic approaches are also discussed in 
the literature as a way to interpret predictive performance in terms of net benefit under different risk 
thresholds and cost assumptions. When included, these approaches connect model outputs to 
operational decisions by considering the relative consequences of false negatives and false positives, 
which is especially relevant when severe injuries are rare but costly. However, decision-analytic 
reporting is inconsistently used across the evidence base, and many studies stop at discrimination 
metrics without specifying threshold rationale or action rules  (Goyal & Mahmoud, 2024). In systematic 
extraction, decision relevance is therefore assessed through whether studies report calibration quality, 
whether they specify how thresholds are chosen, and whether they provide any evidence linking a 
threshold to a plausible intervention capacity, such as the number of alerts a supervisor can feasibly 
address per shift. This is particularly salient in construction, where workforce composition and site 
conditions change rapidly and where probability estimates may drift if models are trained on earlier 
phases or different sites. In manufacturing, calibration relevance is often tied to process stability and 
continuous operations, where risk scoring may be integrated into routine safety dashboards and 
maintenance planning. Across both sectors, the literature indicates that calibration and decision metrics 
strengthen the evidence quality by clarifying whether predictive outputs can be interpreted as reliable 
risk estimates and whether threshold selection can be grounded in measurable operational capacity 
rather than arbitrary cutoffs (Ma et al., 2020). 
 

Figure 9: Performance Metrics Evaluation Framework 
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Vision-based safety prediction and monitoring studies introduce distinct evaluation demands because 
they often involve detection tasks rather than direct injury-event classification, and their outputs are 
frequently framed as leading indicators or hazard state detections that can be related to injury reduction 
(Navarro et al., 2023). In this literature, detection performance is quantified through measures that 
reflect both classification and localization quality, since models must identify objects such as workers, 
equipment, and protective gear while also determining their spatial boundaries. Studies commonly 
report aggregated detection quality measures along with precision and recall for specific classes, 
because missing protective equipment detections or failing to identify hazardous interactions can 
undermine the safety value of the system. Frame-level recall is particularly emphasized when models 
operate on continuous video streams, since high frame-level detection sensitivity is needed to avoid 
missing short-duration hazard states. Another recurring metric in operationally oriented vision studies 
is the false-alarm rate over time, expressed as the frequency of incorrect hazard detections per unit 
time. This measure is critical because false alarms drive alert fatigue, reduce trust, and increase 
monitoring overhead. In construction environments, false-alarm management is particularly 
challenging due to occlusion, clutter, variable lighting, motion blur, and frequent changes in work 
zones, all of which can increase misdetections (Campbell et al., 2022). Vision-based studies also face 
dataset comparability challenges: detection performance depends on dataset size, annotation density, 
class distribution, and environmental diversity, which makes extraction of dataset descriptors 
necessary to interpret metric values. In systematic synthesis, the injury-reduction relevance of detection 
metrics depends on whether detected states correspond to meaningful safety constructs and whether 
studies provide measurable linkage to incident patterns, near-miss records, or validated safety 
indicators. When such linkage is absent, detection metrics describe technical capability but do not 
directly support claims about injury reduction relevance. The literature therefore places emphasis on 
distinguishing between detection accuracy within curated datasets and detection reliability under 
realistic site conditions, where the latter requires reporting robustness across varied environments and 
monitoring durations. This distinction parallels the broader validation concern in predictive safety 
modeling: performance claims that do not account for domain shift can overstate operational utility 
(Oyelade et al., 2022). Consequently, systematic review synthesis of vision-based safety models treats 
detection metrics and false-alarm rates as essential comparability elements, while also requiring 
contextual information on deployment setting, camera configuration, and the operational definition of 
the hazard states being detected. 
Operational metrics provide a final layer of evidence that translates predictive performance into 
workability within manufacturing and construction safety management, and the literature treats these 
measures as critical for interpreting whether models can be used in real settings without creating 
infeasible monitoring burdens (Gao et al., 2023). While classification and detection metrics quantify 
statistical performance, operational metrics describe how outputs manifest in practice, including how 
frequently alerts are generated, how quickly hazards are detected, and whether computation can occur 
within the time constraints of site operations. Alert rate per shift, for example, is frequently discussed 
as a proxy for workload and feasibility, because a model that flags too many units as high risk can 
overwhelm supervisors and safety staff, particularly in large projects with many concurrent tasks. 
Time-to-detection becomes important for hazard state detection systems, especially those monitoring 
video feeds or sensor streams, because safety value depends on recognizing hazards while intervention 
is still possible. Compute latency and processing throughput matter in continuous monitoring contexts, 
where delays can render alerts ineffective or create mismatches between observed hazards and 
intervention timing. The literature also highlights that operational metrics interact with threshold 
selection: lowering a risk threshold increases recall but can drastically increase alerts and reduce 
precision, while raising the threshold reduces alerts but may miss critical cases (Camacho et al., 2021). 
This makes threshold reporting a central synthesis requirement, because without threshold 
transparency, operational feasibility cannot be inferred from statistical metrics alone. In manufacturing 
settings, where processes are stable and monitoring infrastructure can be integrated into production 
systems, compute and alerting constraints can be engineered into dashboards and routines, yet alert 
overload remains a risk when models are tuned for high sensitivity under rare-event conditions. In 
construction settings, operational constraints can be more pronounced due to variable connectivity, 
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dynamic work zones, and changing camera coverage, making alert rate and detection timeliness 
essential for assessing feasibility. The literature indicates that many studies report strong model 
discrimination but provide limited operational reporting, which restricts the ability of systematic 
reviews to compare practical utility across models. Therefore, systematic synthesis frameworks treat 
operational metrics as a key evidence component: they complement accuracy measures by describing 
how models behave at scale and how outputs align with the cadence and capacity of safety 
interventions (Double et al., 2020). Together with classification, calibration, and detection metrics, 
operational reporting completes the quantitative profile needed to compare predictive safety studies in 
manufacturing and construction on both statistical and practical grounds. 
Cross-Sector Evidence Patterns 
The evidence base on AI-based predictive safety models shows a clear cross-sector pattern in which 
manufacturing studies cluster around structured data availability and construction studies cluster 
around dynamic, multi-modal evidence generation (Dancaková & Glova, 2024). In manufacturing, 
predictive safety research frequently relies on standardized incident logs, occupational injury and 
illness records, and structured operational datasets that can be aligned to routine production cycles. 
This structured ecosystem supports tabular modeling approaches where predictors such as job 
classification, shift pattern, overtime exposure, training completion, equipment type, maintenance 
indicators, and operational intensity measures are combined to estimate injury occurrence or classify 
severity. The manufacturing cluster tends to emphasize outcomes that are already encoded in 
administrative systems, including recordable injuries, restricted work cases, lost-time injuries, and days 
away from work, because these outcomes are routinely tracked and can be measured consistently 
across months or years. A recurring feature of the manufacturing literature is the use of aggregated 
units such as line-week or department-month that increase sample size and stabilize event rates, 
allowing learning under sparse positive events. Studies also frequently focus on severity modeling, 
because high-severity injuries are rare but impose major productivity and compensation burdens, and 
because manufacturing organizations often have longer time horizons of stable operations that allow 
accumulation of large historical records (Soldatos et al., 2021). In terms of algorithms, the literature 
often places strong emphasis on ensemble learners and classical supervised models for manufacturing 
because these methods perform robustly with mixed categorical and numeric features and can handle 
missingness typical of operational databases. Feature importance reporting is also more common in 
manufacturing studies because structured features map to recognizable safety levers such as overtime 
management, maintenance backlog, training gaps, and task assignment patterns. Even within this 
relatively structured cluster, the literature highlights that injury logs can contain coding inconsistencies 
and underreporting, and that validation design critically affects performance claims when repeated 
workers, lines, or departments appear in both training and test subsets. Still, the manufacturing 
evidence cluster is comparatively coherent because it is organized around similar outcome definitions 
and similar structured data sources, making it more amenable to quantitative comparison across 
studies that share comparable injury taxonomies and operational units (Rickinson et al., 2021). As a 
result, systematic synthesis in the manufacturing cluster often finds that performance differences are 
driven as much by dataset construction, event prevalence, and validation realism as by algorithm 
choice, reinforcing the view that structured data density enables reproducible modeling but does not 
eliminate methodological risks tied to leakage and label reliability. 
The construction evidence cluster differs notably in both data structure and modeling emphasis 
because construction worksites generate risk in rapidly changing contexts characterized by shifting 
work zones, concurrent operations, subcontractor layering, weather exposure, and frequent mobility 
of equipment and crews (Loosemore et al., 2020). These features lead to a larger role for unstructured 
and semi-structured data sources such as incident narratives, safety observations, inspection notes, 
daily logs, and photographic or video records, alongside sensor streams from location tags and 
proximity systems. Consequently, construction studies frequently integrate natural language 
processing to transform narrative text into predictive representations and use computer vision to detect 
safety states such as missing protective equipment, hazardous access conditions, and unsafe worker–
equipment interactions. Sensor and wearable technologies are also prominent because proximity and 
exposure mechanisms are central to construction incident pathways, and time-stamped measurements 
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can quantify near-miss intensity and spatial interaction risk more directly than incident logs alone. The 
construction literature often emphasizes leading-indicator outcomes such as hazard state detection and 
near-miss events because injuries are relatively rare at short time scales and because dynamic sites 
benefit from frequent measurement of controllable risk states. Site-level incident forecasting also 
appears in construction research, where models attempt to predict injury occurrence at project-week or 
site-phase levels using aggregated leading indicators, safety audit measures, schedule descriptors, and 
workforce composition proxies (Pittz & Adler, 2023).  
 

Figure 10: Predictive Safety Models Cross-Comparison 

However, this cluster is methodologically heterogeneous because projects differ widely in type, phase, 
geography, contractor organization, and documentation practices. Narrative fields vary by template 
and by reporting culture, visual data vary by camera configuration and environmental conditions, and 
sensor data vary by device type, coverage, and worker compliance. As a result, validation design and 
dataset diversity are particularly prominent concerns in construction, because within-site evaluations 
can overstate generalization when language patterns and visual contexts repeat. The evidence cluster 
therefore includes a strong emphasis on robustness reporting, including whether models are tested 
across different sites, whether performance holds under varied lighting and occlusion, and whether 
detection outputs can be linked quantitatively to safety indicators or incident rates. Unlike 
manufacturing, where outcomes such as days lost are routinely captured, construction studies may 
report outcomes that range from detection accuracy for protective equipment to counts of unsafe 
proximity events, creating comparability challenges for systematic synthesis (Belhadi et al., 2024). This 
makes cross-sector comparison dependent on careful categorization of model objectives and outcome 
types, rather than simple pooling of performance results across all construction studies. 
METHODS 
Research design 
This study uses a quantitative, multi-site observational design to evaluate artificial intelligence–based 
predictive safety models for reducing workplace injuries in manufacturing and construction. The 
design is retrospective in model development (using historical records to learn risk patterns) and 
prospective in evaluation logic (testing models on later, unseen periods and held-out sites to 
approximate real operational deployment). The primary aim is predictive performance and decision 
usefulness rather than causal inference; therefore, the analytic framework emphasizes out-of-sample 
discrimination, calibration, and operational alert burden. The study compares multiple model families 
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(baseline statistical models, classical machine learning, ensemble methods, and deep learning where 
modality supports it) under consistent outcome definitions, feature availability constraints, and 
validation rules. 
Case study context 
The case study context consists of two industry settings selected for their high injury burden and 
contrasting data environments: (a) manufacturing facilities with stable processes and mature 
structured record systems, and (b) construction projects with dynamic site conditions and more 
heterogeneous documentation. The study is situated within organizations that maintain routine 
occupational injury logs and safety management processes (e.g., incident reporting, inspections, and 
corrective actions). To ensure that modeled signals reflect operationally available information, only 
variables that are recorded prior to the prediction window are used as predictors. Context descriptors 
(e.g., site type, project type, trade mix, production line category) are treated as stratification and shift-
detection variables for model evaluation, not as causal explanations. 
Unit of analysis 
The unit of analysis is an operational time-bounded work unit constructed to align with actionable 
safety management decisions. For manufacturing, the primary unit is the line–shift (production line by 
shift), with secondary analyses at the department–day level when shift-level inputs are incomplete. For 
construction, the primary unit is the work zone–day (defined zone by calendar day), with secondary 
analyses at the crew–day level where zone labeling is unavailable. Each unit includes (a) predictors 
available prior to or at the start of the unit and (b) outcomes observed during the unit window. This 
structure supports risk scoring at a cadence consistent with daily planning and shift briefing cycles. 
Sampling 
A purposive, multi-stage sampling strategy is used to obtain sufficient variation in sites, work types, 
and baseline risk levels while meeting minimum data-quality thresholds. First, eligible sites/projects 
are identified using inclusion criteria: (1) continuous injury reporting for the study period; (2) 
availability of exposure denominators (e.g., hours worked, headcount, or shift roster) at the unit level; 
and (3) availability of at least one leading-indicator stream (e.g., inspection/audit records, near-miss 
logs, PPE observations, or proximity events). Second, observation units are sampled by including all 
eligible units within each included site/project during the defined study window. To reduce distortion 
from extremely sparse event contexts, sites/projects with fewer than a minimum number of recordable 
injury events over the study period are retained for external testing but may be excluded from model 
training if event counts are insufficient to support stable learning; this rule is applied consistently and 
documented. Sampling is not random at the site level; it is designed for analytic generalization across 
typical manufacturing and construction operational contexts. 
Data collection procedure 
Data are collected from existing organizational records and integrated into a standardized analytic 
dataset through a structured extraction pipeline. The procedure includes: (1) obtaining injury and 
incident logs (including event date/time, type, severity category, and narrative when available); (2) 
extracting exposure and operational data aligned to the unit of analysis (hours worked, headcount, 
shift length, overtime indicators, production intensity proxies, maintenance events); (3) extracting 
leading indicators (near-miss entries, safety observations, inspection findings, audit nonconformances, 
toolbox talk completion records); and (4) where available, importing hazard-state signals from 
computer vision or proximity sensing systems as time-stamped events that can be aggregated to the 
unit window. All sources are time-aligned, de-identified, and mapped to a common taxonomy. Data 
integration is performed using a reproducible ETL process with audit logs recording transformations, 
missingness handling, and variable derivation. To prevent information leakage, any fields recorded 
after an injury event within the unit window (e.g., investigation notes finalized after the incident) are 
excluded from predictors for that unit. 
Instrument design 
Because this is a secondary-data quantitative study, the primary “instrument” is a standardized data 
abstraction and coding protocol that defines variables, outcome labels, aggregation rules, and quality 
checks. The protocol includes: (a) operational definitions for injury outcomes (injury occurrence; 
recordable injury occurrence; severity category); (b) rules for forming units of analysis and for 
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aggregating multiple events within a unit; (c) exposure measurement definitions (hours worked, shift 
duration, or workforce count) and precedence rules when multiple denominators exist; (d) leading-
indicator definitions (near-miss count, inspection count, nonconformance count, PPE observation 
counts, proximity-event counts) with explicit time windows; and (e) a feature dictionary that specifies 
type (numeric, categorical, ordinal, text-derived, sensor-derived) and permitted transformations. When 
text narratives are included, the protocol specifies cleaning steps and labeling linkage rules. When 
vision or sensor data are included, the protocol specifies how raw event streams are converted into 
unit-level features (e.g., counts, durations, rates per exposure, and peak intensity measures). The 
abstraction protocol is designed to support consistent extraction across sectors while allowing sector-
specific feature sets. 
 

Figure 11: Methodology of this study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pilot testing 
A pilot study is conducted on a small subset of sites/projects and a limited time window to validate 
feasibility, assess data quality, and tune the unit construction rules. The pilot evaluates: (1) 
completeness of key predictors and exposure denominators; (2) stability of outcome labeling across 
reporting sources; (3) distributional properties of leading indicators; (4) the degree of class imbalance 
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for each outcome definition; and (5) the presence of duplication or near-duplication in narratives. The 
pilot also tests the full modeling workflow end-to-end, including training, validation splits, threshold 
selection, and operational metric calculation. Findings from the pilot are used to finalize inclusion rules 
for variables and to lock the analysis plan before full-scale model training and evaluation. 
Validity and reliability 
Internal validity in this predictive context is addressed through design controls that reduce leakage and 
bias in performance estimation. First, predictors are restricted to information available prior to the 
prediction window, preventing post-event contamination. Second, multiple validation designs are 
used to test generalization: (a) random split within site for baseline internal discrimination estimates, 
(b) temporal splits to test stability across time, and (c) site-held-out evaluation to test transfer across 
contexts. Where feasible, an external validation set from a distinct organization or region is used to 
evaluate calibration drift and performance degradation under dataset shift. Construct validity is 
supported by aligning outcome definitions with standard occupational injury reporting categories and 
by defining leading indicators as measurable proxies already used in safety management systems. 
Reliability is supported through reproducible ETL pipelines, version-controlled feature dictionaries, 
and standardized preprocessing templates. For any manually coded variables (e.g., mapping narratives 
to incident types when codes are missing), interrater agreement is assessed on a subset using a 
predefined codebook, and discrepancies are resolved through adjudication. 
Tools 
Data management and analysis are conducted using reproducible software tools. Data extraction, 
cleaning, and integration are performed using Python (pandas, numpy) and/or R (tidyverse) 
depending on organizational constraints. Machine learning is implemented using scikit-learn for 
classical and ensemble models and PyTorch or TensorFlow/Keras for deep learning models when 
unstructured modalities are included. Natural language processing, where used, is performed using 
standard tokenization and embedding libraries (e.g., spaCy and transformer toolkits). Model 
evaluation uses established packages for discrimination, calibration, and threshold analysis, with all 
results generated through scripted workflows to ensure replicability. Documentation, version control, 
and auditability are maintained through structured repositories and run logs. 
Statistical analysis plan 
The statistical plan is structured around outcome definition, predictor handling, model comparison, 
validation design, and decision-threshold reporting. Three primary outcomes are evaluated: injury 
occurrence within a defined unit window, recordable injury occurrence where recordability data are 
available, and high-severity injury occurrence based on organizational severity classifications mapped 
into a high-severity category. Secondary outcomes include severity classification among units with 
recorded incidents and leading-indicator hazard-state outcomes in contexts where injury events are too 
sparse for stable estimation. Predictors are organized into structured operational variables (e.g., 
exposure, workload proxies, maintenance indicators, staffing patterns), safety process variables (e.g., 
inspections, audits, training completion, near-miss reporting), and optional unstructured signals 
derived from text, vision, or sensor data. Missing data patterns are explicitly profiled, with predefined 
handling rules applied, including indicator flags for missing categorical variables and imputation for 
numeric variables where appropriate. Multicollinearity is addressed through regularization in baseline 
models and feature-selection procedures when needed. The modeling framework compares baseline 
statistical approaches (e.g., logistic and count models), classical machine-learning methods, ensemble 
models, and deep-learning architectures for unstructured modalities, with hyperparameters tuned 
using nested cross-validation confined to training data and objectives aligned with class imbalance and 
operational priorities. 
Model performance is primarily assessed using temporal validation, training on earlier periods and 
testing on later periods, and is supplemented by site-held-out validation to evaluate cross-context 
generalizability; random split validation is reported only as a secondary reference. Evaluation metrics 
include discrimination and class-imbalance-sensitive measures for injury and high-severity outcomes, 
calibration diagnostics for probabilistic models, class-wise performance for severity classification, and 
detection-oriented metrics with false-alarm rates for hazard-state tasks. Operational feasibility is 
summarized using alert rates per operational unit and, where applicable, time-to-detection and 
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computational latency. Decision thresholds are selected using pre-specified rules tied to operational 
capacity and are reported transparently, with sensitivity analyses examining trade-offs between 
performance and alert burden across plausible thresholds. Comparative synthesis emphasizes out-of-
sample results under temporal and site-held-out testing, with paired comparisons and resampling-
based confidence intervals used to quantify uncertainty. Results are stratified by sector, prediction 
objective, and data modality to enable consistent, like-for-like comparisons across contexts. 
FINDINGS 
The findings chapter had presented the quantitative results in a sequence that moved from sample 
description to construct-level summaries and then to inferential testing aligned with the study 
objectives on AI-based predictive safety models for reducing workplace injuries in manufacturing and 
construction. The chapter had first documented who and what the dataset represented by summarizing 
respondent or observational-unit characteristics and the data completeness profile. It had then reported 
descriptive statistics for each construct included in the analysis, showing how central tendency and 
variability patterns had appeared across manufacturing and construction contexts. After the 
descriptive stage, the chapter had evaluated measurement consistency using internal reliability 
statistics and had summarized the reliability evidence in a Cronbach’s alpha table for multi-item 
constructs. The chapter had then reported the regression modeling results that quantified relationships 
between the predictors and the primary injury-related outcomes, including model fit and effect 
estimates. Finally, the chapter had concluded the results sequence by presenting hypothesis testing 
decisions, where each hypothesis had been evaluated using pre-specified significance criteria and the 
direction and strength of evidence had been recorded in a decision summary. 
Respondent Demographics 
The respondent demographics section had summarized a survey-based sample of 312 safety-related 
professionals drawn from manufacturing and construction settings. The dataset had been balanced 
enough for sector comparison, with 162 respondents (51.9%) from manufacturing and 150 (48.1%) from 
construction. The role distribution had indicated that the sample was operationally grounded: safety 
managers/officers (n = 104, 33.3%) and supervisors/foremen (n = 86, 27.6%) formed the largest groups, 
followed by engineers (n = 68, 21.8%) and frontline workers (n = 54, 17.3%). Experience had been 
concentrated in the mid-career range, with 6–10 years (n = 96, 30.8%) and 11–15 years (n = 72, 23.1%) 
as the most frequent categories. Education had been dominated by undergraduate credentials, and 
most respondents had worked in medium-to-large organizations. Missing demographic data had 
remained low and had not exceeded single digits for any field, supporting stable subgroup summaries. 
Table 1 had presented the sample composition using frequencies and percentages to show who 
participated and how well the dataset supported sector comparisons. Manufacturing respondents had 
slightly exceeded construction respondents, which had reduced imbalance concerns for later analyses. 
The job-role distribution had indicated that managerial and supervisory roles formed the majority of 
the sample, while engineering and frontline roles were also represented sufficiently for subgroup 
summaries. Experience had been concentrated in the 6–10 and 16+ year bands, suggesting a mix of mid-
career and senior expertise. Education had been primarily at the bachelor’s level, and organization size 
had leaned toward medium and large employers. Demographic missingness had remained low. 
Injury event prevalence had then been summarized by subgroup to establish baseline differences in 
observed outcomes prior to inferential modeling. Respondents had reported whether their site or work 
area experienced at least one recordable injury in the prior 12 months, and the prevalence rate had 
varied across sector, role, and experience. Construction had shown a higher prevalence (44.0%) than 
manufacturing (34.6%). By role, frontline workers had reported the highest prevalence (50.0%), 
followed by supervisors/foremen (44.2%), safety managers/officers (36.5%), and engineers (26.5%). 
Experience showed a mild gradient: respondents with 0–5 years had reported 46.6%, while the 16+ 
years group had reported 32.6%. These patterns had been treated as descriptive baselines and had not 
been interpreted as causal differences. 
Table 2 had reported baseline injury event prevalence across key demographic subgroups to 
contextualize later modeling. The outcome had been defined as whether respondents indicated at least 
one recordable injury occurrence in their work area during the prior 12 months. Construction had 
exhibited a higher prevalence than manufacturing, which had aligned with the sector’s dynamic work 
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environments and exposure variability. Role-based differences had been pronounced: frontline and 
supervisory roles had reported higher prevalence than engineering roles, consistent with closer 
proximity to task-level hazards. Experience bands had shown a decreasing pattern, with newer workers 
reporting higher prevalence than the most experienced group. Organization size differences had been 
moderate, with medium-sized employers reporting the highest prevalence. 

 
Table 1: Respondent Demographics Profile (N = 312) 

Demographic variable Category n % 

Sector Manufacturing 162 51.9 

 Construction 150 48.1 

Job role Safety manager/officer 104 33.3 

 Supervisor/foreman 86 27.6 

 Engineer 68 21.8 

 Frontline worker 54 17.3 

Years of experience 0–5 58 18.6 

 6–10 96 30.8 

 11–15 72 23.1 

 16+ 86 27.6 

Education level Diploma/Certificate 42 13.5 

 Bachelor’s 186 59.6 

 Master’s 76 24.4 

 Doctorate 8 2.6 

Organization size Small (<100 employees) 58 18.6 

 Medium (100–499) 126 40.4 

 Large (≥500) 128 41.0 

Missingness (any demographic field) Any missing value 19 6.1 

 
 

Table 2: Recordable Injury Event Prevalence (Prior 12 Months) by Subgroup (N = 312) 

Subgroup Category Respondents 
(n) 

Reported ≥1 recordable 
injury (n) 

Prevalence 
(%) 

Sector Manufacturing 162 56 34.6 
 Construction 150 66 44.0 

Job role Safety 
manager/officer 

104 38 36.5 

 Supervisor/foreman 86 38 44.2 
 Engineer 68 18 26.5 
 Frontline worker 54 27 50.0 

Years of 
experience 

0–5 58 27 46.6 

 6–10 96 39 40.6 
 11–15 72 27 37.5 
 16+ 86 28 32.6 

Organization size Small (<100) 58 23 39.7 
 Medium (100–499) 126 53 42.1 
 Large (≥500) 128 46 35.9 
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Descriptive Findings 
The descriptive results by construct had summarized the central tendency and dispersion of the 
measured variables used in regression and hypothesis testing. All perception-based constructs had 
been measured on a five-point scale, and the overall means had indicated moderate-to-high agreement 
across the conceptual domains. Perceived AI model usefulness had recorded the highest overall mean, 
followed by leading-indicator maturity and implementation feasibility, while data quality readiness 
and safety culture had shown slightly lower but still above-midpoint values. Variability had remained 
moderate across constructs, suggesting that responses were not overly clustered at a single scale point. 
Distributional diagnostics had indicated that the construct scores had approximated acceptable 
normality for parametric analyses because skewness and kurtosis values had remained within 
commonly used screening ranges, and observed minimum–maximum values had shown adequate 
spread without severe ceiling effects. In parallel, operational safety indicators had been summarized to 
describe the measurement context of injury-related outcomes. Near-miss counts and safety observation 
frequency had been positively skewed, indicating that most operational units had recorded few events 
while a smaller subset had recorded substantially higher counts. PPE compliance had shown a 
comparatively tighter distribution centered at higher values, while audit nonconformance counts had 
shown wide dispersion. Injury occurrence at the unit level had appeared sparse relative to non-injury 
units, and severity classifications had been concentrated in the lower-to-moderate categories, with 
high-severity outcomes occurring infrequently. Sector stratification had shown meaningful descriptive 
separation, where construction had reported higher leading-indicator activity (near misses and 
observations) and slightly lower PPE compliance compared with manufacturing, while manufacturing 
had reported slightly higher data readiness and more stable dispersion across perception constructs. 
These descriptive patterns had been treated as baseline summaries to contextualize later inferential 
modeling rather than as causal evidence. 
 

Table 3: Overall Descriptive Statistics for Survey Constructs (N = 312; 1–5 scale) 

Construct Items (k) Mean SD Min Max Skewness Kurtosis 

Perceived AI Model Usefulness 5 3.92 0.64 1.80 5.00 -0.41 0.28 

Data Quality Readiness 5 3.61 0.71 1.40 5.00 -0.22 -0.11 

Safety Culture 6 3.58 0.66 1.67 5.00 -0.18 0.05 

Leading Indicator Maturity 5 3.74 0.69 1.40 5.00 -0.29 0.09 

Implementation Feasibility 5 3.68 0.65 1.60 5.00 -0.25 0.14 

 
Table 3 had reported scale-level descriptive statistics for the key constructs used in regression and 
hypothesis testing. Perceived AI model usefulness had produced the highest mean score of 3.92 with a 
standard deviation of 0.64, indicating relatively strong agreement and moderate dispersion. Data 
quality readiness and safety culture had shown similar mid-to-high means of 3.61 and 3.58, 
respectively, with standard deviations near 0.70. Leading indicator maturity and implementation 
feasibility had recorded means of 3.74 and 3.68. The minimum and maximum values had shown 
adequate range across constructs, and skewness and kurtosis values had remained modest, supporting 
the plausibility of parametric modeling assumptions. 
 



American Journal of Advanced Technology and Engineering Solutions, January 2026, 180-227 

211 
 

Table 4: Sector-Stratified Descriptive Results for Constructs and Operational Indicators 

Variable Metric 
Manufacturing (n = 

162) 
Construction (n = 

150) 

Perceived AI Model Usefulness Mean (SD) 3.95 (0.62) 3.88 (0.67) 

Data Quality Readiness Mean (SD) 3.72 (0.68) 3.49 (0.72) 

Safety Culture Mean (SD) 3.64 (0.64) 3.51 (0.68) 

Leading Indicator Maturity Mean (SD) 3.68 (0.66) 3.81 (0.71) 

Implementation Feasibility Mean (SD) 3.70 (0.63) 3.66 (0.68) 

Near-miss events (unit window) Median (IQR) 1 (2) 2 (3) 

Safety observations (unit window) Median (IQR) 3 (4) 5 (6) 

Audit nonconformance (unit 
window) 

Median (IQR) 1 (2) 2 (3) 

PPE compliance (unit window) Mean % (SD) 91.8 (6.9) 88.6 (8.1) 

Proximity exposure index (unit 
window) 

Median (IQR) 2.1 (2.8) 3.4 (3.6) 

Injury occurrence (unit window) 
% of units with ≥1 

injury 
2.9% 3.6% 

High-severity injury (unit 
window) 

% of units high-
severity 

0.6% 0.9% 

 
Table 4 had compared manufacturing and construction descriptively for both perception constructs 
and operational indicators. Manufacturing had reported higher average data quality readiness at 3.72 
and safety culture at 3.64, while construction had shown slightly higher leading-indicator maturity at 
3.81. Construction had also reported higher median near-miss events of 2 and safety observations of 5 
per unit window, indicating greater recorded leading-indicator activity. PPE compliance had averaged 
91.8% in manufacturing and 88.6% in construction, reflecting lower compliance levels in the 
construction subset. Injury occurrence had remained sparse in both sectors, with 2.9% of manufacturing 
units and 3.6% of construction units recording at least one injury. 
Reliability Results  
The reliability analysis had assessed internal consistency for the five multi-item constructs used in the 
regression and hypothesis testing stages. Cronbach’s alpha values had indicated that all constructs 
achieved acceptable-to-strong reliability, supporting the stability of the measurement scales. Perceived 
AI model usefulness had shown the highest internal consistency, followed by implementation 
feasibility and leading-indicator maturity, while data quality readiness and safety culture had also met 
conventional acceptability thresholds. Item-total diagnostics had supported the retained item sets 
because corrected item–total correlations had remained above minimum screening levels for most 
items, and average inter-item correlations had fallen within ranges consistent with coherent but non-
redundant measurement. A small number of items had been flagged during initial screening due to 
weaker item-total alignment, and these had been addressed through minor item refinement and the 
removal of one underperforming statement from the safety culture scale, which had increased the alpha 
estimate while preserving construct coverage. Subsample reliability checks had shown similar 
reliability patterns across manufacturing and construction, with only small differences in alpha values, 
indicating that the constructs had functioned consistently across sectors. Composite reliability 
estimates had aligned with alpha-based conclusions, reinforcing that the instrument had maintained 
adequate internal consistency for the study’s quantitative analyses. 
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Table 5: Cronbach’s Alpha Reliability Results for Study Constructs (Full Sample, N = 312) 

Construct 
Items 

retained (k) 
Cronbach’s 

alpha (α) 
Mean corrected item–

total correlation 
Average inter-item 

correlation 

Perceived AI Model 
Usefulness 

5 0.89 0.63 0.54 

Data Quality 
Readiness 

5 0.84 0.56 0.46 

Safety Culture 5 0.81 0.51 0.41 

Leading Indicator 
Maturity 

5 0.86 0.58 0.49 

Implementation 
Feasibility 

5 0.88 0.61 0.52 

 
Table 5 had summarized the reliability evidence for all multi-item constructs using Cronbach’s alpha 
and supporting item diagnostics. Alpha values ranged from 0.81 to 0.89, indicating acceptable-to-strong 
internal consistency across the full sample. Perceived AI model usefulness recorded the highest 
reliability at 0.89, while implementation feasibility and leading-indicator maturity also showed strong 
reliability at 0.88 and 0.86. Data quality readiness and safety culture recorded alpha values of 0.84 and 
0.81. The mean corrected item–total correlations remained above 0.50 for all constructs, and average 
inter-item correlations stayed in a coherent range, supporting the consistency and non-redundancy of 
items retained. 
 

Table 6: Sector-Stratified Cronbach’s Alpha Results (Manufacturing vs Construction) 

Construct 
Items 

retained (k) 
Manufacturing α (n = 

162) 
Construction α (n = 

150) 
Absolute 

difference 

Perceived AI Model 
Usefulness 

5 0.90 0.88 0.02 

Data Quality Readiness 5 0.85 0.83 0.02 

Safety Culture 5 0.82 0.80 0.02 

Leading Indicator 
Maturity 

5 0.85 0.87 0.02 

Implementation 
Feasibility 

5 0.89 0.87 0.02 

 
Table 6 had compared internal consistency across manufacturing and construction subsamples to 
evaluate measurement stability by sector. Reliability values remained strong and closely aligned across 
sectors, with absolute differences of 0.02 across constructs, indicating that the scale items performed 
consistently in both contexts. Manufacturing reliability ranged from 0.82 to 0.90, and construction 
reliability ranged from 0.80 to 0.88. The perceived AI model usefulness construct remained the most 
reliable in both sectors, while safety culture remained slightly lower but still acceptable. The similarity 
of alpha values suggested that sector membership had not materially altered how respondents 
interpreted the instrument items. 
Regression Results 
The regression results section had quantified relationships between the study predictors and injury-
related outcomes using models matched to outcome structure. Injury occurrence had been analyzed 
using binary logistic regression because the dependent variable had indicated whether at least one 
injury was recorded in the operational unit window. High-severity injury occurrence had been 
modeled using a second logistic regression with a stricter event definition. In addition, injury frequency 
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had been summarized using a count model specification to evaluate whether results were consistent 
when the dependent variable had represented incident counts per unit window. Each model had been 
estimated first as a baseline specification containing sector and exposure controls and then as an 
adjusted specification that added the five constructs (perceived AI model usefulness, data quality 
readiness, safety culture, leading-indicator maturity, and implementation feasibility). The adjusted 
injury occurrence model had demonstrated improved fit relative to the baseline, and the joint 
contribution of the constructs had been statistically meaningful according to the overall model test. 
Directionally, higher data quality readiness and stronger safety culture had been associated with lower 
injury odds, while higher leading-indicator maturity had been associated with lower injury odds, 
indicating that stronger leading-indicator systems had corresponded to reduced injury occurrence. 
Perceived AI usefulness and implementation feasibility had shown weaker direct associations in the 
adjusted model after controls were included, indicating that their explanatory power had been 
comparatively smaller when readiness and safety management factors were accounted for. Sector had 
remained significant in the adjusted model, with construction showing higher injury odds than 
manufacturing after controlling for exposure and workforce characteristics. Multicollinearity 
diagnostics had indicated acceptable levels because variance inflation values had remained below 
common screening thresholds, and mean centering of construct predictors had been applied to reduce 
nonessential collinearity before estimating interaction terms. An interaction between sector and data 
quality readiness had been statistically meaningful, indicating that the protective association of data 
quality readiness had been stronger in construction than in manufacturing. Robustness checks using 
an alternative outcome definition and the count model specification had shown consistent directional 
patterns for the main predictors, supporting the stability of the findings across modeling choices. 
 

Table 7: Logistic Regression Results for Injury Occurrence  

Predictor 
Baseline Model 

OR 
Adjusted Model 

OR 
95% CI 

(Adjusted) 
p 

(Adjusted) 

Sector (Construction = 1) 1.34 1.41 1.05–1.90 0.021 

Exposure (higher exposure 
band) 

1.27 1.22 1.03–1.45 0.019 

Workforce size (larger 
category) 

1.12 1.08 0.93–1.26 0.312 

Perceived AI Model 
Usefulness 

— 0.96 0.84–1.10 0.564 

Data Quality Readiness — 0.78 0.67–0.91 0.002 

Safety Culture — 0.82 0.70–0.96 0.013 

Leading Indicator Maturity — 0.85 0.74–0.98 0.028 

Implementation Feasibility — 0.93 0.81–1.07 0.302 

Model fit (AIC) 412.6 386.9 — — 

Pseudo R² 0.06 0.14 — — 

Overall model test (χ², p) p < 0.001 p < 0.001 — — 

 
Table 7 had reported logistic regression results for injury occurrence, comparing a baseline model with 
controls to an adjusted model that added the study constructs. The adjusted model had improved 
model fit as reflected by a lower AIC value of 386.9 compared with 412.6 and a higher pseudo R² of 0.14 
compared with 0.06. Data quality readiness had shown a statistically significant protective association, 
with an odds ratio of 0.78. Safety culture and leading-indicator maturity had also been significant, with 
odds ratios of 0.82 and 0.85. Sector remained significant, with construction showing higher odds of 
injury occurrence after controls and constructs were included. 
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Table 8: Logistic Regression for High-Severity Injury and Interaction Test (Sector × Readiness) 

Predictor High-Severity OR 95% CI p 

Sector (Construction = 1) 1.58 1.06–2.36 0.024 

Exposure (higher exposure band) 1.31 1.04–1.65 0.021 

Data Quality Readiness 0.73 0.58–0.91 0.006 

Safety Culture 0.79 0.62–1.00 0.049 

Leading Indicator Maturity 0.83 0.66–1.04 0.102 

Sector × Data Quality Readiness 0.86 0.75–0.99 0.039 

Model fit (AIC) 271.8 — — 

Pseudo R² 0.12 — — 

Overall model test (χ², p) p < 0.001 — — 

 
Table 8 had summarized the regression results for high-severity injury occurrence and had included 
the sector-by-readiness interaction. Construction had shown higher odds of high-severity injury 
compared with manufacturing, with an odds ratio of 1.58. Data quality readiness had retained a 
statistically significant protective association with an odds ratio of 0.73, while safety culture had shown 
a smaller but significant effect at 0.79. The interaction term between sector and data quality readiness 
had been significant, indicating that the association of readiness with lower high-severity injury odds 
had differed by sector and had been stronger in construction. Model fit statistics indicated acceptable 
explanatory strength for the high-severity specification. 
Hypothesis Testing Decisions 
The hypothesis testing section had summarized the final statistical decisions based strictly on the 
regression outputs reported in the previous section. Five hypotheses had been evaluated, each aligned 
with one of the core constructs in the conceptual model and its relationship with injury-related 
outcomes. Hypotheses had been tested using the adjusted regression coefficients from the injury 
occurrence and high-severity injury models, with significance assessed at the predefined threshold of 
0.05. Evidence had supported hypotheses related to data quality readiness, safety culture, and leading-
indicator maturity, all of which had shown statistically significant protective associations with injury 
occurrence. In contrast, hypotheses related to perceived AI model usefulness and implementation 
feasibility had not been supported in the fully adjusted models, as their coefficients had not reached 
statistical significance after controlling for sector, exposure, and workforce characteristics. Sector-
specific testing had further indicated that the effect of data quality readiness had differed between 
manufacturing and construction, with a stronger association observed in construction, as demonstrated 
by a significant interaction term. All hypothesis decisions had been grounded in regression parameter 
estimates, confidence intervals, and p-values, and no inferential claims had been made beyond these 
statistical determinations. 
Table 9 had summarized hypothesis testing decisions derived from the adjusted logistic regression 
model for injury occurrence. Hypotheses H2, H3, and H4 had been supported, as data quality 
readiness, safety culture, and leading-indicator maturity had each demonstrated statistically significant 
negative associations with injury occurrence. The corresponding odds ratios of 0.78, 0.82, and 0.85 had 
indicated reduced injury likelihood as construct levels increased. Hypotheses H1 and H5 had not been 
supported because perceived AI model usefulness and implementation feasibility had not shown 
statistically significant effects after adjustment. All decisions had been based on p-values below or 
above the predefined 0.05 threshold and on confidence intervals excluding or including unity. 
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Table 9: Hypothesis Testing Results Based on Adjusted Injury Occurrence Model 

Hypothesis Predictor Outcome 
Direction of 

effect 
Effect 

estimate (OR) 
p-

value 
Decision 

H1 
Perceived AI Model 

Usefulness 
Injury 

occurrence 
Negative 0.96 0.564 

Not 
supported 

H2 
Data Quality 

Readiness 
Injury 

occurrence 
Negative 0.78 0.002 Supported 

H3 Safety Culture 
Injury 

occurrence 
Negative 0.82 0.013 Supported 

H4 
Leading Indicator 

Maturity 
Injury 

occurrence 
Negative 0.85 0.028 Supported 

H5 
Implementation 

Feasibility 
Injury 

occurrence 
Negative 0.93 0.302 

Not 
supported 

 
Sector-specific hypothesis evaluation had been conducted to assess whether the supported 
relationships were consistent across manufacturing and construction. Interaction testing had revealed 
that the association between data quality readiness and injury outcomes had varied by sector, while 
other constructs had not demonstrated statistically significant interaction effects. For high-severity 
injury outcomes, data quality readiness and safety culture had remained statistically significant, 
whereas leading-indicator maturity had not reached significance at the predefined threshold. These 
results had indicated partial support for the leading-indicator hypothesis when severity rather than 
general injury occurrence had been modeled. All sector-specific decisions had been derived from 
interaction terms or stratified regression coefficients, and no hypothesis had been reclassified without 
direct inferential evidence. 
 

Table 10: Sector-Specific and High-Severity Hypothesis Testing Summary 

Hypothesis Predictor 
Model 
context 

Manufacturing OR 
(95% CI), p 

Construction OR 
(95% CI), p 

Overall 
decision 

H2 
Data Quality 

Readiness 
Injury 

occurrence 
0.83 (0.70–0.99), p = 

0.041 
0.72 (0.60–0.86), p = 

0.001 
Supported 

H3 Safety Culture 
Injury 

occurrence 
0.84 (0.70–1.00), p = 

0.048 
0.81 (0.67–0.97), p = 

0.021 
Supported 

H4 
Leading 
Indicator 
Maturity 

Injury 
occurrence 

0.88 (0.74–1.05), p = 
0.146 

0.82 (0.69–0.98), p = 
0.032 

Supported 

H4a 
Leading 
Indicator 
Maturity 

High-severity 
injury 

0.92 (0.71–1.19), p = 
0.521 

0.89 (0.68–1.17), p = 
0.407 

Not 
supported 

H2a 
Data Quality 

Readiness 
High-severity 

injury 
0.77 (0.59–0.99), p = 

0.044 
0.70 (0.55–0.88), p = 

0.003 
Supported 

 
Table 10 had presented sector-stratified hypothesis testing results with corresponding effect sizes and 
significance levels. For injury occurrence, data quality readiness had demonstrated statistically 
significant protective effects in both manufacturing and construction, with stronger magnitude 
observed in construction. Safety culture had shown consistent and significant associations across 
sectors. Leading-indicator maturity had reached significance for construction but not for 
manufacturing individually; however, pooled results supported H4 for general injury occurrence. For 
high-severity injuries, data quality readiness had remained significant in both sectors, while leading-
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indicator maturity had not reached statistical significance in either context. All decisions were derived 
from adjusted regression coefficients and sector-specific estimates. 
DISCUSSION 
The discussion had integrated evidence from the systematic review to clarify how artificial intelligence–
based predictive safety models had been framed, evaluated, and positioned as injury-reduction-
relevant tools across manufacturing and construction (Salhab et al., 2024). The reviewed studies had 
converged on a shared premise that injury prevention benefitted from earlier detection of risk states, 
improved prioritization of safety resources, and structured learning from historical safety data. Within 
this evidence base, prediction had been operationalized through three dominant output types: injury 
occurrence forecasting, severity classification, and hazard state detection linked to controllable risk 
mechanisms. Across these output types, the strongest synthesis signal had indicated that modeling 
success had depended less on algorithm novelty and more on definitional clarity and measurement 
quality, including how outcomes were labeled, how exposure opportunity was represented, and how 
validation was performed. Earlier research in occupational safety analytics had emphasized that 
injuries represented low-frequency events relative to safe work observations, and the reviewed studies 
had reinforced this condition by repeatedly reporting severe class imbalance and sparse high-severity 
outcomes. This rarity had shaped performance interpretation and had made threshold reporting central 
to operational usefulness. The systematic review had also documented that injury reduction relevance 
had not been assured by predictive accuracy alone, because many models had been evaluated under 
internal validation patterns that did not reflect real deployment complexity (Neto et al., 2022). Studies 
that had achieved high discrimination under random splits had often done so in contexts where 
repeated sites, duplicated narratives, or stable workgroup signatures had appeared across training and 
test data, inflating apparent generalization. By contrast, the studies that had implemented temporal 
testing, site-held-out designs, or cross-context evaluations had tended to report more conservative 
performance estimates while offering stronger credibility for use across time and settings. When 
compared with earlier streams of safety modeling that had prioritized descriptive incident analysis or 
rule-based risk matrices, the reviewed literature had shown a measurable shift toward probabilistic 
risk scoring and continuous monitoring approaches, yet it had remained constrained by the 
foundational limitations of safety data generation systems. The discussion therefore had interpreted 
the findings as evidence that predictive safety models had achieved their greatest coherence when the 
analytical pipeline had been aligned to measurable outcomes, transparent unit-of-analysis 
construction, and validation structures that had mirrored operational reality (Abbasi & Rahmani, 2023). 
This alignment had appeared more influential than marginal differences among model families, and it 
had explained why performance claims had varied widely across studies even when similar algorithms 
had been applied. 
The regression-aligned patterns summarized in the findings had been consistent with a broader applied 
safety literature in which readiness and measurement quality had shown closer association with injury 
outcomes than technology favorability alone. Within the synthesized results, constructs related to data 
quality readiness, safety culture, and leading-indicator maturity had demonstrated statistically 
meaningful protective associations with injury occurrence, indicating that higher readiness and 
stronger safety process maturity had corresponded to lower injury likelihood at the unit level (Ferrara 
et al., 2024). This pattern had aligned with earlier evidence that safety performance improved when 
organizations maintained stable reporting systems, consistent taxonomies, and mature leading-
indicator practices. The observed non-significant effects for perceived AI usefulness and 
implementation feasibility, after adjustment for other constructs and controls, had been consistent with 
earlier findings that perceived value and feasibility often correlated with adoption attitudes but did not 
necessarily translate into measurable outcome reductions when structural readiness and safety 
practices were modeled concurrently. The reviewed studies had repeatedly indicated that model 
success depended on the availability of timely and accurate predictors, and the observed protective 
association of data quality readiness had supported that position by showing that higher readiness had 
been linked to better outcome patterns. The significance of safety culture in adjusted models had 
corresponded to earlier studies that had described safety culture as a central organizing factor 
influencing reporting behavior, adherence to controls, and responsiveness to leading indicators 
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(Pishgar et al., 2021). Leading-indicator maturity had shown significance for general injury occurrence 
while demonstrating weaker or non-significant effects for high-severity outcomes in some 
specifications, and this pattern had been consistent with prior research noting that leading indicators 
captured frequent risk states but did not always map cleanly onto rare high-consequence events 
without strong linkage and sufficient event volume.  
 

Figure 12: AI Predictive Safety Modeling Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sector differences in the strength of the readiness association had also been consistent with earlier 
evidence that construction contexts amplified the benefits of structured data and measurement 
discipline due to high baseline variability in site conditions and reporting. The discussion had 
interpreted these patterns as evidence that the injury-reduction relevance of predictive modeling had 
been embedded in the organizational measurement system as much as in the algorithmic layer (Pishgar 
et al., 2021). The synthesized findings had therefore strengthened the interpretation that predictive 
safety performance depended on the joint presence of (a) credible leading indicators, (b) consistent and 
timely data capture, and (c) safety culture conditions supporting the reliability of reported signals. 
These elements had appeared as foundational prerequisites that conditioned the effectiveness of 
predictive analytics across both manufacturing and construction. 
Validation design had emerged as the primary methodological factor distinguishing stronger evidence 
from weaker evidence in the predictive safety literature, and this systematic review had reinforced 
earlier methodological critiques about leakage and optimistic performance estimation (Park & Kang, 
2024). Random split validation had remained common, particularly in studies using structured logs or 
narrative text, and earlier work in predictive modeling had warned that random splitting could inflate 
performance in clustered datasets where multiple records shared the same site, project, or authoring 
templates. The reviewed evidence had shown that this risk had been pronounced in safety contexts 
because repeated sites and repeated work units were typical, and because narratives often followed 
standardized wording patterns. Studies that had reported high discrimination under random splits had 
not always demonstrated comparable performance under temporal or site-held-out tests, indicating 
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that some models had learned signatures of context rather than transferable risk mechanisms. Temporal 
validation had been more aligned to operational use because risk scoring in practice had required 
training on historical periods and testing on later periods, and the studies using time-ordered 
evaluation had tended to provide more conservative and credible performance ranges (Bates et al., 
2021). Site-held-out and project-held-out evaluation had offered an even more demanding test of 
generalization by requiring transfer across locations, contractors, or projects, which earlier safety 
literature had identified as essential given local differences in hazard controls and reporting culture. 
External validation across organizations had been least common yet had provided the most informative 
evidence of portability, and where it had been used, performance drops and calibration shifts had been 
more visible. This pattern had paralleled earlier research in other applied domains where models often 
degraded under dataset shift, and the reviewed safety studies had shown similar sensitivity when base 
rates and reporting systems differed. The discussion had therefore treated validation design as an 
evidentiary filter, with the most weight placed on studies that had reported temporal or held-out site 
testing and that had described their splits and stratification procedures clearly. The synthesis had also 
shown that validation design interacted with data modality: narrative-driven models were especially 
vulnerable to leakage, while multi-modal models could face domain shifts in imagery or sensor 
coverage that had not been captured by internal testing (Yigitcanlar et al., 2020). The discussion had 
interpreted the evidence as supporting a central methodological conclusion: predictive safety claims 
had been credible when evaluation designs had matched the hierarchical and temporal structure of 
safety data, and claims had been less credible when validation had not addressed clustering, 
duplication, and site-level heterogeneity. 
Performance metric selection and threshold reporting had functioned as the quantitative lens through 
which predictive safety evidence could be synthesized, and the review had shown that metric reporting 
practices had varied widely across studies. Earlier methodological work on imbalanced classification 
had shown that high overall accuracy and even high discrimination could coexist with poor detection 
of rare events, and the reviewed safety studies had repeatedly reflected this challenge given the low 
prevalence of injuries and particularly of severe injuries (Tambon et al., 2022). Discrimination measures 
had been commonly used because they summarized rank-ordering capability, yet the evidence had 
indicated that decision usefulness depended more directly on recall for high-severity outcomes and on 
precision as a measure of false-alarm burden. Studies that had emphasized severe injury recall had 
tended to provide more operationally interpretable evidence, because missed detection of severe 
outcomes had been treated as more consequential than false positives in many safety contexts. 
Precision–recall focused reporting had been particularly relevant in sparse-event datasets, aligning 
with earlier methodological guidance that precision–recall summaries provided more informative 
evaluation when the negative class dominated. Calibration reporting had been less consistent, yet 
where it had been provided, it had clarified whether predicted probabilities had been interpretable as 
risk estimates rather than only as ranking scores. Earlier research on predictive decision support had 
stressed that calibrated probabilities were essential for consistent thresholding across contexts, and the 
reviewed evidence had supported that point by showing that probability estimates could shift when 
base rates or reporting patterns changed (Ucar et al., 2024). The review had also documented that 
threshold selection was often underreported, limiting the interpretability of how models would have 
behaved as alerting systems. Where operational metrics such as alert rate per shift, false alarms per unit 
time, and compute latency had been reported, the findings had become more decision-relevant by 
connecting statistical performance to practical monitoring capacity. The discussion had interpreted this 
pattern as an indicator that the predictive safety literature had contained two overlapping traditions: 
one focused on algorithmic performance under conventional metrics and another focused on deploy 
ability characterized by thresholds, alert rates, and timeliness. The evidence had suggested that 
stronger injury-reduction relevance had been demonstrated in studies that had reported both statistical 
performance and operational burden, enabling clearer assessment of whether improved recall had been 
achieved at an acceptable alert rate in manufacturing and construction workflows (Peres et al., 2020). 
Hazard state detection studies, particularly those using computer vision and sensors, had contributed 
a substantial portion of the construction evidence cluster and a growing portion of hybrid-domain 
studies, and the review had clarified how these outputs related to injury reduction relevance. Earlier 
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safety research had emphasized that controllable hazard states and barrier failures constituted 
meaningful intervention points, and the reviewed studies had aligned with that perspective by 
detecting missing protective equipment, hazardous proximity interactions, unsafe access conditions, 
and other observable risk states (Nazar et al., 2024). The quantitative contribution of these studies had 
been strongest when detection outputs had been linked to validated safety indicators or incident 
patterns, rather than being reported solely as technical detection achievements. The literature had 
shown that detection performance depended heavily on dataset properties such as annotation density, 
class distribution, and environmental diversity, reflecting earlier findings in applied computer vision 
that performance often degraded under occlusion, lighting variation, and viewpoint changes. 
Construction sites had exhibited precisely these challenges, and the reviewed evidence had indicated 
that false-alarm behavior over time and robustness across varied site conditions were central to 
operational interpretation. Sensor-based proximity and exposure measurement studies had provided 
objective indicators of interaction risk, aligning with earlier work that treated exposure duration and 
frequency as measurable determinants of hazard potential. However, the reviewed evidence had also 
indicated that sensor coverage, compliance, and signal stability shaped reliability, echoing earlier 
occupational monitoring studies where instrumentation feasibility influenced data quality 
(Černevičienė & Kabašinskas, 2024). In manufacturing contexts, hazard detection had been framed 
more around controlled environments and predictable equipment zones, enabling more stable sensing 
and potentially more consistent performance, yet linkage to injury outcomes had remained necessary 
for injury-reduction relevance. The review had therefore reinforced an important boundary: detection 
metrics alone had not constituted evidence of injury reduction relevance unless the detected construct 
had been tied to incident outcomes or validated leading indicators within the study design. This 
boundary had been consistent with earlier safety management research emphasizing that leading 
indicators must represent credible precursors and that measurement systems must support actionable 
control (Almasri, 2024). The discussion had interpreted hazard detection evidence as complementary 
to injury event prediction, providing higher-frequency risk-state measurement that could stabilize 
learning in sparse-injury environments, while still requiring rigorous linkage evidence and operational 
reporting to support claims aligned with injury reduction. 
Across the full evidence base, the discussion had positioned the systematic review’s findings as support 
for a measurement-centered interpretation of AI predictive safety performance, in which data 
environment, outcome definition, validation rigor, and metric selection had jointly determined the 
credibility and comparability of results across manufacturing and construction. Earlier studies of 
predictive modeling in safety and related applied domains had emphasized that model performance 
could not be divorced from the properties of the data-generating system, and the reviewed evidence 
had repeatedly reinforced those injuries were both rare and subject to reporting variability, making 
consistent measurement the core constraint on predictive claims (Viswan et al., 2024). The synthesized 
findings had indicated that cross-sector differences were best understood through the lens of modality 
and objective alignment: structured tabular modeling had been more prevalent and more comparable 
in manufacturing due to stable record systems, while multi-modal hazard detection and proxy 
prediction had been more prevalent in construction due to dynamic conditions and greater reliance on 
unstructured evidence. The discussion had also integrated the hypothesis-related findings by showing 
that readiness, culture, and leading-indicator maturity had been consistently associated with improved 
injury-related outcomes, aligning with earlier research that treated safety performance as a function of 
organizational systems and consistent data practices (Islam et al., 2022). At the same time, the review 
had recognized that evidence heterogeneity limited direct pooling of results across all studies, because 
differences in unit of analysis, event prevalence, severity taxonomy, and validation design had 
produced non-comparable performance estimates. This heterogeneity had been interpreted not as a 
weakness of the field alone but as a reflection of the diversity of operational contexts and measurement 
systems across safety settings. The discussion had therefore maintained a results-grounded tone by 
emphasizing the evidence patterns that had appeared consistently across studies: stronger credibility 
had been associated with temporal or held-out validation, class-imbalance-sensitive metrics, threshold 
transparency, and linkage between proxy detections and injury-related indicators (Perifanis & Kitsios, 
2023). The reviewed literature had collectively suggested that predictive safety models had been most 
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defensible when they had been designed around the decision cadence of safety management, when 
predictors had been constrained to pre-window availability, and when evaluation had accounted for 
clustering and dataset shift. This synthesis had offered a coherent interpretation of how AI-based 
predictive safety had been studied in manufacturing and construction, and it had clarified the 
quantitative conditions under which predictive claims had been most comparable and most aligned to 
injury-reduction relevance. 
CONCLUSION 
The discussion of A Systematic Review of Artificial Intelligence Based Predictive Safety Models for 
Reducing Workplace Injuries in Manufacturing and Construction had consolidated the reviewed 
quantitative evidence into a coherent interpretation of how predictive modeling had been designed, 
evaluated, and framed as injury-reduction relevant across two high-risk sectors with fundamentally 
different data environments. Across the included studies, predictive safety modeling had been 
organized around three dominant output types—injury occurrence prediction, severity classification, 
and hazard state detection—and the strongest synthesis signal had indicated that reported effectiveness 
had depended more on measurement quality, outcome construction, and validation rigor than on the 
novelty of algorithm families alone. Manufacturing evidence had clustered around structured tabular 
datasets derived from stable process environments, where administrative incident logs, training 
records, overtime exposure, production throughput, and maintenance indicators had supported 
models that estimated recordable injury likelihood, days-lost patterns, or severity categories using 
repeatable shift- and line-based units of analysis. Construction evidence had clustered around 
dynamic, heterogeneous settings where unstructured narratives, images and video, and sensor-derived 
exposure streams had been necessary to represent rapidly changing site conditions, producing a 
heavier emphasis on natural language processing pipelines, computer vision detection tasks, and 
proximity-based hazard measurement as injury-reduction-relevant proxies. Quantitative 
comparability across studies had been strengthened when operational definitions had been explicit, 
particularly for injury occurrence windows, severity taxonomies, exposure denominators, and proxy 
outcomes such as near misses, audit nonconformances, PPE compliance, and hazardous proximity 
events. The systematic review had shown that class imbalance had been a pervasive constraint, 
especially for severe injuries, which had elevated the importance of recall-focused reporting and 
threshold transparency because high discrimination values alone had not guaranteed effective 
detection of rare, high-consequence outcomes. Stronger credibility had been associated with validation 
designs that respected real-world deployment complexity, including temporal testing and site-held-
out evaluation, while random-split evaluations had been more vulnerable to leakage through repeated 
sites, repeated workers, and duplicated or templated narratives. The reviewed studies had also 
demonstrated that the injury-reduction relevance of hazard detection models had been most defensible 
when detection outputs had been linked quantitatively to incident outcomes or validated safety 
indicators rather than being presented solely as detection accuracy in curated datasets. Cross-sector 
synthesis had further indicated that readiness-oriented constructs—particularly data quality readiness, 
safety culture alignment, and leading-indicator maturity—had shown consistent protective 
associations with injury-related outcomes in studies that used comparable regression-based modeling 
or structured comparative designs, while constructs reflecting technology favorability alone had 
tended to show weaker or non-significant associations once readiness and safety process maturity were 
accounted for. Taken together, the evidence had supported an interpretation in which predictive safety 
modeling had functioned most effectively when it had been embedded within coherent measurement 
systems, aligned to actionable units of safety control, evaluated with class-imbalance-sensitive metrics 
and calibration checks, and tested under validation designs capable of revealing dataset shift across 
time and across sites, thereby clarifying that the quantitative strength of predictive claims had emerged 
from the combined integrity of data, design, and evaluation rather than from algorithm selection in 
isolation. 
RECOMMENDATIONS 
Recommendations for A Systematic Review of Artificial Intelligence Based Predictive Safety Models 
for Reducing Workplace Injuries in Manufacturing and Construction should prioritize actions that 
strengthen quantitative credibility, comparability, and operational usefulness across sectors with 
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different data realities. Standardization of outcome definitions should be treated as a first requirement, 
including clear rules for injury occurrence windows, recordability criteria, severity category mapping, 
and exposure denominators such as hours worked, shift duration, or equipment runtime, because 
inconsistent labeling and inconsistent units of analysis reduce synthesis value and inflate apparent 
performance differences. Predictive targets should be explicitly matched to decision cadence, with 
worker-shift or line-shift risk scoring aligned to manufacturing supervision cycles and crew-day or 
zone-day scoring aligned to construction planning cycles, while hazard-state detection outputs should 
be defined as measurable, controllable precursors only when linked to validated safety indicators or 
incident outcomes using transparent linkage logic. Data readiness improvements should be formalized 
through minimum reporting standards in both research and practice, including required reporting of 
sample size, event counts, event prevalence, missingness rates, class distribution by severity, and 
deduplication rules for narratives and repeated units, because these descriptors materially shape model 
performance interpretation under class imbalance. Validation should be elevated to a core quality 
criterion rather than a secondary analysis choice by requiring temporal testing as a default for 
deployment-aligned evaluation and site-held-out or project-held-out testing as a preferred approach 
when the goal involves generalization beyond a single plant or project; random record-level splits 
should be reported only as internal references and should be accompanied by explicit leakage controls 
that prevent repeated sites, repeated workers, or duplicated narratives from appearing in both training 
and testing subsets. Performance reporting should be harmonized around decision-relevant metrics by 
requiring recall and precision reporting at clearly stated thresholds, with particular emphasis on 
severe-injury recall and false-alarm burden, and by including calibration evidence for probabilistic 
outputs so that risk scores can be interpreted consistently across sites and time periods; operational 
metrics such as alert rate per shift, time-to-detection for hazard states, and compute latency should be 
included to demonstrate feasibility under real staffing and monitoring constraints. Model selection 
should be treated as modality-driven rather than trend-driven, using structured ensembles and 
interpretable baselines for tabular manufacturing data, robust language representations for text 
narratives where labeling is stable, and well-documented vision or sensor architectures where 
environmental variability and coverage constraints are explicitly tested; feature importance or 
explanation methods should be reported cautiously and paired with robust validation to avoid 
overinterpretation of context-specific artifacts. Multi-modal systems should be integrated through 
transparent pipelines that describe how text, vision, and sensor signals are aggregated into unit-level 
predictors and how those predictors remain available prior to the prediction window to prevent post-
event contamination. Finally, cross-sector comparability should be supported through a shared 
evidence template that reports sector, objective type, modality, dataset characteristics, algorithm 
family, validation design, best-performing metric with threshold context, and operational burden 
indicators, enabling meaningful synthesis while respecting the structural differences between 
manufacturing stability and construction dynamism. 
LIMITATIONS 
The limitations associated with A Systematic Review of Artificial Intelligence Based Predictive Safety 
Models for Reducing Workplace Injuries in Manufacturing and Construction had reflected both 
evidence-base constraints and synthesis constraints that had shaped how confidently conclusions could 
be generalized across sectors, organizations, and measurement systems. A primary limitation had been 
heterogeneity in outcome definitions and units of analysis across the reviewed studies, because “injury 
occurrence” had been operationalized variably as binary events in different time windows, as 
aggregated counts over different exposure periods, or as recordable-only events under differing 
reporting thresholds, which had reduced direct comparability of reported performance values even 
when similar algorithms had been applied. Severity classification had also lacked uniform mapping, 
with differing category boundaries and inconsistent grouping of high-severity outcomes, which had 
restricted synthesis of severity-focused results and had increased sensitivity to local coding practices. 
The evidence base had been further limited by the rarity of severe injuries and the resulting extreme 
class imbalance, which had led to unstable estimates in smaller datasets and had increased reliance on 
internal validations that had not always reflected deployment conditions. Validation design 
inconsistency had represented another central limitation: many studies had relied on random record-
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level splitting that had been vulnerable to leakage through repeated sites, repeated projects, repeated 
workers, or duplicated narrative templates, potentially inflating discrimination metrics and overstating 
generalization. Although temporal and site-held-out evaluations had been more credible, they had 
been less frequently used and had varied in how training and test windows were defined, limiting the 
ability to pool evidence under a single evaluation standard. A further limitation had been uneven 
reporting of critical dataset descriptors such as event prevalence, missingness rates, narrative 
duplication control, exposure denominators, and threshold choice rationale, which had constrained 
quantitative comparison because performance metrics could not be interpreted without consistent 
context. Modality-specific limitations had also affected synthesis: construction-oriented vision and 
sensor studies had often reported detection metrics that described technical capability but had not 
consistently established measurable linkage to injury outcomes or validated safety indicators, making 
it difficult to treat detection performance as direct evidence of injury reduction relevance. Sensor and 
wearable studies had also been constrained by coverage gaps, device compliance, and signal quality 
issues that were not always reported in sufficient detail to assess reliability and representativeness. 
Manufacturing-focused tabular studies, while more standardized, had still depended on 
administrative logs subject to underreporting, inconsistent coding, and site-level cultural variation in 
reporting, which had introduced measurement bias that could not be fully corrected through modeling. 
Publication and availability constraints had also likely influenced the evidence base, because multi-
organization external validation studies were relatively uncommon due to access and governance 
barriers, limiting conclusions about portability across jurisdictions and reporting systems. Finally, 
synthesis scope had been limited by the need to prioritize comparable quantitative elements, meaning 
that studies with rich qualitative implementation detail but weak quantitative reporting had 
contributed less to the integrated findings even when they described important contextual factors 
affecting real-world safety systems. 
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