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Abstract 
This study developed and validated a quantitative flood hazard and land-surface vulnerability modeling 
framework that integrated LiDAR-derived terrain information with multispectral surface-condition signatures 
using deep learning and benchmark statistical approaches. Flood vulnerability was operationalized as a 
continuous, probability-like spatial outcome, and model performance was evaluated under a decision-utility 
framework that emphasized discrimination, calibration, and ranking quality in a rare-event setting. The analysis 
was conducted using a retrospective observational design applied to a finalized dataset of approximately 1.25 
million raster cells, of which 62,500 (5.0%) were labeled as flood-positive based on event-linked inundation 
references. The dataset was partitioned into training (70%), validation (15%), and holdout test (15%) subsets 
using spatially disciplined splits to reduce leakage from spatial autocorrelation. Descriptive results indicated 
that flood-positive observations were concentrated in low-elevation, low-slope, high-convergence terrain and 
were more frequently associated with elevated imperviousness and wetness signatures. Reliability analysis 
showed acceptable internal consistency for composite predictor constructs, with Cronbach’s alpha values 
ranging from 0.75 to 0.86 across terrain and multispectral feature families. Baseline regression modeling 
confirmed statistically significant associations for all major construct families, with the strongest effects 
observed for convergence and wetness proxies and negative associations for elevation and slope structure. 
Comparative model evaluation demonstrated that non-linear approaches outperformed the regression 
benchmark. The fused LiDAR–multispectral convolutional neural network achieved the highest discrimination 
on the holdout test set, with an AUC-ROC of 0.94 and an AUC-PR of 0.63, compared with 0.84 and 0.41, 
respectively, for the regression baseline. Calibration quality also improved, as reflected by a lower Brier score 
(0.084 versus 0.118) and reduced expected calibration error (0.025 versus 0.041). Ranking utility gains were 
substantial, with precision at the top 1% of ranked locations increasing from 0.34 for regression to 0.52 for the 
fused model, and top-decile capture improving from 0.52 to 0.74 while reducing false alerts from 620 to 470 per 
10,000 evaluated cells. Robustness testing across regional, catchment, and terrain-class holdouts confirmed that 
performance gains persisted under spatial generalization. Overall, the findings demonstrated that integrating 
LiDAR microtopography and multispectral surface-condition information through disciplined data fusion and 
spatially credible validation produced statistically robust and decision-useful flood vulnerability maps. 
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INTRODUCTION 
Flood hazards represent one of the most persistent and destructive natural processes affecting human 
settlements, ecosystems, and economic systems at a global scale. Flooding is conventionally defined as 
the temporary inundation of normally dry land by water originating from rivers, coastal surges, intense 
precipitation, or infrastructure failure. In hazard science, flood risk is understood as a function of 
hazard intensity, exposure, and vulnerability, where vulnerability captures the susceptibility of land 
surfaces, infrastructure, and populations to flood-induced damage (Maranzoni et al., 2023).  
 

Figure 1: Integrated Flood Hazard Mapping Framework 

 
Land-surface vulnerability refers specifically to the physical and environmental characteristics that 
influence how terrain, soil, vegetation, and built environments respond to hydrological stress. These 
characteristics include elevation, slope, surface roughness, soil permeability, land-cover composition, 
and drainage connectivity. At an international level, flood vulnerability has become a central concern 
due to accelerating urbanization, land-use change, and climate-driven shifts in precipitation extremes 
that amplify surface runoff and inundation frequency across diverse geographic contexts. Global 
assessments by international agencies consistently report flooding as the most frequent and 
economically damaging natural hazard, with disproportionate impacts in low-lying coastal zones, 
riverine plains, and rapidly expanding urban regions (Kvočka et al., 2016). Quantitative flood hazard 
mapping therefore serves as a foundational instrument for disaster risk reduction, spatial planning, 
insurance modeling, and infrastructure design. Traditional flood mapping approaches have relied on 
hydrodynamic simulations, historical flood records, and manually derived terrain indicators. While 
effective in localized studies, these methods often struggle to scale across heterogeneous landscapes 
and data regimes. Advances in earth observation technologies have introduced new possibilities for 
representing land-surface properties with unprecedented spatial detail and temporal consistency. 
Within this evolving scientific context, flood hazard mapping is increasingly conceptualized as a spatial 
pattern recognition problem, where vulnerability emerges from measurable relationships between 
terrain morphology, surface composition, and hydrological processes (Kvočka et al., 2016). This 
reconceptualization has opened pathways for data-driven modeling frameworks capable of integrating 
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diverse geospatial signals into unified predictive representations. 
Remote sensing has emerged as a cornerstone of modern flood hazard analysis due to its capacity to 
provide synoptic, repeatable, and spatially consistent observations across large geographic extents. 
Satellite-based sensing systems enable the extraction of land-surface attributes that directly influence 
flood behavior, including elevation gradients, surface roughness, vegetation density, impervious cover, 
and moisture dynamics (Kabenge et al., 2017). Optical multispectral sensors capture reflectance 
patterns across visible, near-infrared, and shortwave infrared bands, allowing quantitative 
discrimination of land-cover classes, vegetation health, soil exposure, and water bodies. These spectral 
signatures serve as proxies for infiltration capacity, runoff potential, and surface storage characteristics. 
Radar and microwave sensors complement optical data by penetrating cloud cover and providing 
sensitivity to surface moisture and roughness, which are critical during flood events. Over time, the 
integration of multi-sensor remote sensing data has enabled flood mapping efforts to transition from 
static cartographic products to dynamic spatial analyses (Qiang, 2019). International flood monitoring 
initiatives increasingly rely on satellite-derived indicators to assess hazard exposure in data-scarce 
regions where ground-based hydrological measurements are limited. Quantitative studies have 
demonstrated that multispectral indices derived from satellite imagery, such as vegetation and water 
indices, exhibit statistically significant associations with flood occurrence and extent. These associations 
support the use of spectral information as input variables for predictive modeling. However, 
multispectral data alone are constrained by limitations related to vertical accuracy and fine-scale terrain 
representation. Flood behavior is strongly governed by subtle elevation differences and micro-
topographic features that may not be fully resolved through optical imagery. This limitation has 
motivated the incorporation of elevation-focused sensing technologies into flood hazard workflows. 
The convergence of spectral and topographic information within a single modeling framework reflects 
an evolving recognition that flood vulnerability is multidimensional and cannot be captured through 
a single data modality (Moftakhari et al., 2019). Quantitative fusion of remote sensing datasets has thus 
become a central methodological challenge in contemporary flood risk research. 
Light Detection and Ranging (LiDAR) technology provides high-resolution three-dimensional 
representations of land surfaces by measuring the time delay of laser pulses reflected from the ground. 
LiDAR-derived digital elevation models (DEMs) have transformed flood hazard analysis by enabling 
precise characterization of terrain morphology, drainage pathways, and surface depressions that 
govern water accumulation and flow (Macchione et al., 2019). Elevation accuracy at sub-meter 
resolution allows quantitative identification of flood-prone zones that may be overlooked in coarser 
elevation datasets. Hydrological derivatives computed from LiDAR DEMs, including slope, curvature, 
flow direction, flow accumulation, and topographic wetness indices, have been shown to exhibit strong 
statistical relationships with inundation patterns. These derivatives capture the physical processes that 
influence surface runoff convergence and storage, providing mechanistic insight into flood 
susceptibility. In urban environments, LiDAR data enable explicit modeling of built structures, road 
embankments, and drainage modifications that alter natural flow paths. International flood studies 
increasingly rely on LiDAR-based terrain models to improve the reliability of floodplain delineation 
and depth estimation (Slater et al., 2015). However, LiDAR data acquisition remains uneven across 
regions due to cost and logistical constraints, leading to spatial disparities in data availability. From a 
modeling perspective, LiDAR-derived variables often exhibit high dimensionality and 
multicollinearity, complicating their integration into traditional statistical frameworks. These 
characteristics necessitate analytical approaches capable of learning complex, non-linear relationships 
between terrain features and flood outcomes. The increasing volume and resolution of LiDAR datasets 
have therefore shifted flood hazard mapping from deterministic rule-based modeling toward data-
driven learning paradigms. Within this transition, LiDAR is no longer treated solely as a preprocessing 
input but as a core information source whose patterns must be jointly interpreted with other land-
surface signals to accurately characterize vulnerability (Johnson et al., 2016). 
Multispectral remote sensing contributes complementary information to LiDAR by capturing the 
biochemical and compositional properties of land surfaces that regulate hydrological response. Surface 
reflectance patterns encode vegetation structure, soil moisture conditions, land-use intensity, and 
surface sealing, all of which influence infiltration, evapotranspiration, and runoff generation. Vegetated 
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surfaces with dense canopy cover typically exhibit greater interception and infiltration capacity, while 
impervious urban surfaces generate rapid runoff and heightened flood potential. Quantitative flood 
studies have demonstrated that spectral indices derived from multispectral imagery correlate with 
flood occurrence probability, particularly when analyzed across seasonal and climatic gradients 
(Gigović et al., 2017).  
 

Figure 2: LiDAR Technology for High-Resolution Terrain Mapping 

 
Temporal sequences of multispectral observations further enable detection of land-cover change, 
agricultural cycles, and urban expansion, which modify flood vulnerability over time. In riverine and 
coastal contexts, multispectral data support delineation of wetlands, floodplains, and sediment 
deposition zones that mediate flood attenuation. International research efforts have shown that 
multispectral features enhance flood hazard prediction when combined with terrain-based indicators, 
as they capture surface conditions that terrain alone cannot represent. However, spectral signals are 
subject to atmospheric interference, illumination variability, and sensor-specific noise, introducing 
uncertainty into quantitative models (Wang et al., 2015). These challenges highlight the need for 
analytical frameworks that can learn robust feature representations from noisy multispectral inputs. 
When integrated with elevation data, multispectral signatures provide a more complete depiction of 
the land surface as a coupled physical and biological system. This integration aligns with contemporary 
hydrological theory, which views flooding as an emergent outcome of interactions among terrain, 
surface cover, and meteorological forcing rather than a function of elevation alone. 
Deep learning represents a class of machine learning methods characterized by hierarchical feature 
learning through multi-layer neural architectures (Toosi et al., 2019). In geospatial analytics, deep 
learning has gained prominence due to its capacity to model complex, non-linear relationships in high-
dimensional data. Unlike traditional statistical approaches that rely on predefined feature interactions, 
deep learning models learn representations directly from data, enabling them to capture subtle spatial 
patterns and contextual dependencies. Convolutional neural networks (CNNs) have been particularly 
influential in remote sensing applications because of their ability to exploit spatial structure and 
neighborhood information inherent in raster data. Quantitative flood mapping studies employing deep 
learning have reported improvements in classification accuracy, spatial coherence, and generalization 
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across regions. These models have been applied to tasks including flood extent delineation, 
susceptibility mapping, and damage assessment (Jinnat & Kamrul, 2021; Nandi et al., 2016). From a 
methodological standpoint, deep learning is well suited to data fusion problems, as it can integrate 
heterogeneous inputs such as elevation grids and multispectral imagery within unified architectures. 
International research has demonstrated that deep models can learn joint representations that preserve 
the complementary strengths of different sensing modalities (Zulqarnain & Subrato, 2021). However, 
deep learning introduces challenges related to interpretability, data requirements, and computational 
complexity. In flood hazard research, these challenges are addressed through careful model design, 
validation strategies, and feature attribution analyses. The adoption of deep learning reflects a broader 
shift toward viewing flood vulnerability as a spatial learning problem rather than a purely physical 
simulation task (Kundzewicz et al., 2017; Akbar & Sharmin, 2022). This shift aligns with the increasing 
availability of large-scale geospatial datasets and the need for scalable, transferable modeling solutions. 
Data fusion refers to the systematic integration of information from multiple sources to produce 
representations that are more informative than those derived from individual datasets. In flood hazard 
mapping, fusion of LiDAR-derived terrain features and multispectral surface signatures enables 
simultaneous modeling of structural and functional land-surface properties. Quantitative studies have 
shown that fused datasets outperform single-source inputs in predicting flood susceptibility, as they 
capture interactions between elevation-driven flow dynamics and surface-mediated runoff processes 
(Manfreda et al., 2015; Foysal & Subrato, 2022). Fusion can occur at multiple levels, including feature-
level concatenation, representation-level integration, and decision-level aggregation. Deep learning 
architectures facilitate representation-level fusion by learning shared latent spaces that encode cross-
modal relationships. International flood research increasingly adopts fusion-based approaches to 
address the limitations of individual data modalities. For example, terrain models may identify low-
lying areas, while multispectral data distinguish permeable floodplains from impervious urban basins 
within those areas. The combined representation enhances discrimination between zones with similar 
elevation but different hydrological behavior (Baky et al., 2020; Zulqarnain, 2022). Quantitative 
validation across diverse landscapes has demonstrated that fusion-based models exhibit greater 
robustness to regional variability and land-cover heterogeneity. These findings underscore the value 
of integrating physical and spectral information within unified predictive frameworks. Fusion-based 
flood hazard modeling aligns with interdisciplinary perspectives that emphasize the coupled nature of 
earth surface processes. By leveraging complementary data sources, such models provide a more 
nuanced characterization of land-surface vulnerability that is responsive to both morphology and 
composition (Abdul, 2023; Gori et al., 2020; Hammad & Mohiul, 2023). 
Contemporary flood hazard mapping extends beyond binary classification of flooded versus non-
flooded areas toward probabilistic and ranking-based representations of risk. In operational contexts, 
decision-makers require spatial prioritization of vulnerable zones to allocate resources, design 
mitigation measures, and plan emergency response (Hasan & Waladur, 2023; Rifat & Rebeka, 2023). 
Quantitative flood models therefore emphasize discrimination and calibration rather than absolute 
prediction. Risk scores generated by deep learning models are interpreted as relative measures of 
vulnerability, enabling comparison across locations and scales. International disaster management 
frameworks increasingly adopt risk-based approaches that integrate hazard probability with exposure 
and vulnerability metrics (Demir & Kisi, 2016; Masud & Hossain, 2024; Zulqarnain & Subrato, 2023). 
Within this framework, land-surface vulnerability prediction supports proactive planning by 
identifying areas where flooding would produce disproportionate impacts. The integration of LiDAR 
and multispectral data within deep learning models enhances the reliability of these risk rankings by 
grounding them in both terrain structure and surface condition. Empirical evaluations have shown that 
top-ranked vulnerability zones often account for a large share of observed flood damage, reinforcing 
the value of prioritization over exhaustive prediction (Antzoulatos et al., 2022; Md & Sai Praveen, 2024; 
Nahid & Bhuya, 2024). This perspective situates flood hazard mapping within a broader paradigm of 
quantitative risk analytics, where models are evaluated based on their ability to support actionable 
decision-making under uncertainty. The framing of flood vulnerability as a continuous spatial 
phenomenon aligns with international efforts to shift from reactive disaster response toward 
anticipatory risk management grounded in data-driven evidence (Bathrellos et al., 2016; Newaz & 
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Jahidul, 2024; Akbar, 2024). 
The objective of this quantitative study is to develop and validate a deep learning–enabled modeling 
framework that fuses LiDAR-derived topographic information with multispectral reflectance 
signatures to improve flood hazard mapping and land-surface vulnerability prediction across 
heterogeneous landscapes. The study operationalizes flood hazard and vulnerability as measurable 
spatial outcomes that can be estimated from engineered and learned representations of terrain 
morphology, hydrologic connectivity, land-cover composition, and surface condition indicators 
derived from remote sensing sources. A central objective is to quantify the incremental value of 
multimodal data fusion by systematically comparing model performance under LiDAR-only, 
multispectral-only, and combined-input configurations, using consistent validation protocols and 
identical evaluation targets. The study also aims to assess how different fusion strategies influence 
predictive discrimination and ranking utility, treating the output as a continuous risk surface that 
supports prioritization of high-vulnerability zones rather than as a purely binary classification product. 
To ensure that the results reflect realistic deployment conditions, an additional objective is to evaluate 
model generalization under spatial and contextual heterogeneity by testing performance across 
corridor-like geographic partitions, land-cover regimes, and terrain classes, thereby measuring 
robustness to changes in physiographic setting and surface structure. The study further targets 
calibration quality by examining whether predicted vulnerability scores correspond to observed flood 
occurrence frequencies and whether score distributions yield stable thresholds for operational mapping 
and planning use. Another objective is to examine the sensitivity of the framework to data resolution 
and feature scaling, particularly in the integration of fine-resolution LiDAR derivatives with 
multispectral inputs that may vary in spatial granularity and atmospheric noise characteristics. Finally, 
the study seeks to establish a reproducible model-development workflow that includes standardized 
preprocessing, feature harmonization, and controlled training routines, enabling transparent model 
validation and audit-ready reporting of performance. Collectively, these objectives position the 
research as a model-development and model-validation investigation designed to produce empirically 
verifiable evidence on the extent to which deep learning–based LiDAR–multispectral fusion improves 
flood hazard characterization and land-surface vulnerability ranking under quantitative evaluation 
criteria. 
LITERATURE REVIEW 
This Literature Review consolidates quantitative scholarship relevant to Deep Learning–Enabled 
LiDAR and Multispectral Signature Fusion for Flood Hazard Mapping and Land-Surface Vulnerability 
Prediction by organizing prior work around measurable variables, modeling assumptions, and 
validation practices used in flood susceptibility and inundation risk research (Kazakis et al., 2015). The 
section is structured to connect four evidence streams that directly shape quantitative model 
development: (1) hydrologic and geomorphologic determinants of flood hazard that can be 
operationalized as predictors, (2) LiDAR-based terrain representation and derivative feature 
engineering for flood modeling, (3) multispectral reflectance signatures and land-surface descriptors 
that capture surface permeability, vegetation structure, and built-up intensity, and (4) deep learning 
architectures and fusion strategies designed to combine heterogeneous geospatial modalities into 
unified predictive representations. Emphasis is placed on how studies define flood hazard and 
vulnerability as supervised targets or proxy outcomes, how they treat class imbalance and rare-event 
behavior, and how they evaluate model utility using discrimination, calibration, and ranking-based 
metrics aligned with decision workflows (Emerton et al., 2017). The review also synthesizes 
comparative evidence on baseline statistical methods versus ensemble and neural approaches, focusing 
on what is gained quantitatively when moving from hand-engineered indicators to representation 
learning. The goal of this section is to establish a measurement-driven foundation for the present 
study’s modeling choices by identifying which predictors, fusion mechanisms, and validation designs 
have produced consistent performance gains under realistic geographic heterogeneity and data-quality 
constraints. 
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Framing for Flood Hazard and Land-Surface Vulnerability 
The quantitative flood-risk literature increasingly defines flood hazard as a spatially continuous 
probability surface rather than a binary event indicator. Early flood mapping approaches relied on 
categorical representations in which locations were labeled as flooded or non-flooded based on 
observed inundation boundaries or historical records. While operationally simple, binary labeling 
compresses substantial variability in flood intensity, duration, and frequency into a single outcome 
class. More recent studies conceptualize flood hazard as a probabilistic phenomenon, expressing risk 
as a continuous measure that reflects the likelihood or severity of inundation conditioned on terrain, 
hydrologic connectivity, and surface characteristics. This framing aligns with broader risk science 
paradigms that treat hazards as gradients rather than discrete states (Akay, 2021).  
 

Figure 3: Flood Hazard and Vulnerability Framework 

Quantitative research demonstrates that continuous hazard indices preserve ranking information that 
is lost in threshold-based classification, enabling prioritization of high-risk zones even when absolute 
flood occurrence is uncertain. Probability surfaces also support calibration analysis, allowing predicted 
scores to be compared with observed event frequencies across spatial strata. In data-driven flood 
modeling, probability-based outputs facilitate evaluation under class imbalance, where flooded 
observations represent a small fraction of the spatial domain (Kumar & Acharya, 2016). The literature 
further indicates that probabilistic representations are more robust to label noise arising from 
incomplete flood detection or sensor limitations, since uncertainty can be absorbed into score 
distributions rather than forcing hard class assignments. These characteristics have led to widespread 
adoption of continuous hazard scores in machine learning–based flood susceptibility studies, 
particularly when outputs are intended to support spatial planning and comparative risk assessment 
across large geographic regions. 
Land-surface vulnerability is treated in the literature as an emergent property arising from the 
interaction of terrain morphology, surface composition, and hydrological connectivity rather than as a 
single observable variable. Quantitative studies consistently operationalize vulnerability using 
composite representations that integrate elevation, slope, curvature, land-cover type, soil 
characteristics, and proximity to drainage networks (Papaioannou et al., 2015). This multidimensional 
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framing reflects hydrological theory, which emphasizes that flood response is governed jointly by 
gravitational flow paths, infiltration capacity, surface roughness, and storage potential. Terrain 
variables determine the direction and concentration of surface runoff, while land-cover attributes 
regulate permeability, interception, and evapotranspiration. Drainage connectivity metrics capture 
how efficiently excess water is conveyed toward channels or depressions. Empirical evidence shows 
that none of these components alone provides sufficient explanatory power for flood susceptibility, 
particularly across heterogeneous landscapes that include urban, agricultural, and natural surfaces. 
Composite vulnerability indicators enable normalization across physiographic contexts, allowing 
similar risk interpretations in areas with different absolute elevations or rainfall regimes (Uddin & 
Matin, 2021). The literature also emphasizes that vulnerability is spatially structured, exhibiting 
autocorrelation and scale dependency, which necessitates modeling approaches that preserve 
neighborhood relationships. This has motivated the use of raster-based representations where 
vulnerability emerges from local spatial context rather than isolated pixel attributes. By treating 
vulnerability as a composite spatial construct, quantitative flood studies align measurement 
frameworks with the physical processes governing surface-water dynamics and support integrative 
modeling strategies that can accommodate diverse environmental settings (Lyu et al., 2016). 
Because direct observations of flood processes are often incomplete or unavailable, flood hazard 
research relies heavily on proxy targets that approximate inundation and vulnerability outcomes. The 
literature describes several classes of proxy targets, including flood extent masks derived from satellite 
imagery, depth surrogates inferred from hydrodynamic models, and susceptibility scores generated 
from expert-based weighting schemes. Flood extent masks are commonly extracted from optical or 
radar imagery and serve as binary or probabilistic indicators of observed inundation during specific 
events. While valuable, these masks are temporally constrained and may omit short-duration or 
obscured flooding (Erena et al., 2018; Rabiul & Alam, 2024; Sai Praveen, 2024). Depth surrogates 
provide continuous targets that capture intensity but depend on modeling assumptions and boundary 
conditions that introduce uncertainty. Susceptibility scores, constructed through multi-criteria decision 
analysis or statistical aggregation, represent relative vulnerability rather than direct physical outcomes. 
Quantitative studies highlight that each proxy type embodies trade-offs between realism, coverage, 
and noise. Consequently, model evaluation must account for the limitations of target construction 
rather than treating labels as error-free ground truth (Hammad & Hossain, 2025; Liu et al., 2016; Azam 
& Amin, 2024). The literature further notes that proxy targets influence apparent model performance, 
as smoother susceptibility indices may yield higher discrimination metrics than noisy event-based 
labels. Robust flood modeling therefore emphasizes consistency between predictor variables and target 
definitions, ensuring that learned relationships reflect meaningful hydrological patterns rather than 
artifacts of label construction (Cao et al., 2016). 
The choice of unit of analysis plays a critical role in flood hazard modeling and directly influences how 
vulnerability and uncertainty are represented. Pixel-level modeling is widely used due to its 
compatibility with raster remote sensing data and its ability to capture fine-scale spatial variation. 
However, pixel-based approaches may amplify noise arising from mixed land-cover signals and sensor 
resolution limits. Object- or polygon-based units, such as hydrological response units or administrative 
parcels, aggregate information to reduce variability but risk obscuring localized flood pathways 
(Mosheur, 2025; Thapa et al., 2020). Grid aggregation offers a compromise by standardizing spatial 
units while preserving spatial continuity. The literature emphasizes that unit selection should align 
with both data resolution and decision context. Label error is closely intertwined with unit choice, as 
temporal misalignment between flood events and satellite acquisitions can lead to false negatives, while 
cloud contamination and mixed pixels introduce classification ambiguity. These errors propagate 
differently depending on spatial aggregation, affecting both model training and evaluation. 
Quantitative studies increasingly address label uncertainty through probabilistic modeling and 
validation designs that recognize imperfect observation. Rather than eliminating error, contemporary 
approaches seek to manage it through robust evaluation and sensitivity analysis (Abdelkarim et al., 
2020). This perspective positions flood hazard modeling as an inference problem under uncertainty, 
where measurement framing is as influential as algorithmic choice. 
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Hydrologic Used in Flood Susceptibility Modeling 
Beyond elevation, slope and curvature are frequently treated as core geomorphic predictors because 
they characterize the mechanics of runoff generation and convergence across landscapes. Slope is used 
to represent the potential speed of overland flow and the likelihood that rainfall becomes rapid surface 
runoff rather than infiltrating or being stored locally (Orton et al., 2016). In many quantitative models, 
flatter slopes are associated with higher inundation susceptibility because low-gradient surfaces tend 
to promote water retention and lateral spreading, especially when drainage pathways are capacity-
limited. Curvature variables add important nuance by distinguishing between convex surfaces that 
tend to shed water and concave forms that tend to collect and concentrate flow.  
 

Figure 4: Terrain-Based Flood Susceptibility Framework 

 
This distinction becomes particularly relevant in valley bottoms, small basins, and anthropogenically 
modified terrain where localized concavities function as pooling zones. Flow accumulation is widely 
used as a proxy for how much upstream contributing area feeds a location, allowing models to encode 
network-like hydrologic convergence even when channel data are incomplete (De Moel et al., 2015). 
The literature underscores that these variables are most informative when evaluated together, because 
a cell with large contributing area and concave curvature on a low slope forms a consistent hydrologic 
signature of flood-prone settings. At the same time, susceptibility studies note that slope, curvature, 
and accumulation are sensitive to DEM preprocessing choices such as sink filling, breaching, and 
resolution, which can alter derived surfaces and change apparent risk gradients. For this reason, many 
quantitative studies treat these predictors as scale-dependent indicators whose effects are validated 
across multiple resolutions or landscape partitions to verify stability and interpretability under 
differing terrain regimes (Zaharia et al., 2017). 
A large portion of flood susceptibility literature incorporates compound terrain metrics that combine 
multiple geomorphic elements into single indicators intended to approximate hydrologic processes. 
Common examples include wetness-related measures that represent potential soil saturation and 
storage, and energy-related measures that capture erosive or transport potential in concentrated flows. 
These compound metrics are valued because they translate elevation structure into process-oriented 
signals that better align with runoff behavior under rainfall events (Saharia et al., 2017). In susceptibility 
models, wetness-oriented indicators are often interpreted as spatial proxies for where water is likely to 
persist because of contributing area and low-gradient conditions, thereby linking terrain form to 
moisture retention and ponding. Energy-related indicators are used to represent where concentrated 



American Journal of Advanced Technology and Engineering Solutions, January 2026, 228-266 

237 
 

flow may form preferential pathways, particularly in steeper catchments or incised valleys where 
runoff concentrates quickly (Schubert et al., 2017). The literature describes compound metrics as 
especially helpful in bridging purely geometric terrain representation with hydrologic plausibility, 
providing variables that can improve discrimination when used alongside basic predictors such as 
elevation and slope. However, studies also caution that compound metrics remain indirect proxies and 
are sensitive to DEM artifacts, drainage enforcement, and the scale at which contributing area is 
computed. As a result, many quantitative flood studies evaluate these indicators through comparative 
modeling or feature contribution analysis, examining whether compound variables improve 
classification or ranking performance relative to simpler geomorphic predictors (Moftakhari et al., 
2017). This line of work positions compound terrain metrics as intermediate representations that 
operationalize hydrologic logic in data-driven susceptibility modeling 
LiDAR-Enabled Terrain Representation for Flood Hazard Mapping 
The flood hazard mapping literature consistently treats LiDAR-derived elevation products as a 
methodological turning point because they capture fine-scale topographic variation that governs 
inundation pathways, ponding, and floodplain connectivity. LiDAR-based DEM/DTM construction is 
generally described as a measurement process in which point-cloud returns must be filtered into 
ground and non-ground classes, interpolated into continuous surfaces, and validated against control 
points or surveyed benchmarks (Hazarika et al., 2018).  
 

Figure 5: LiDAR-Driven Flood Hazard Mapping 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Studies emphasize that the value of LiDAR for flood applications is strongly tied to vertical accuracy, 
because small elevation biases can materially shift predicted flood extent and apparent exposure, 
particularly in low-relief floodplains, coastal zones, and urban basins where centimeter-to-decimeter 
differences determine flow direction and storage. In quantitative terms, vertical errors propagate into 
flood models through slope and flow-routing derivations, drainage boundary placement, and the 
delineation of micro-barriers such as levees, road crowns, and embankments. The literature also 
highlights that error is not uniform across land covers; vegetation, water surfaces, and complex urban 
geometry can introduce spatially structured inaccuracies through misclassification, reduced ground 
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returns, and interpolation artifacts (Oulahen et al., 2015). These uncertainties are often framed as 
consequential for both deterministic hydraulic mapping and data-driven susceptibility modeling, 
where the same elevation surface is used to derive predictors such as relative elevation, curvature, and 
flow accumulation. Researchers therefore treat LiDAR quality assessment as inseparable from flood 
modeling validity, describing practices such as reporting vertical error summaries, inspecting terrain 
artifacts, and evaluating how uncertainty influences mapped hazard zones and risk ranks in 
downstream analytics (Arnell & Gosling, 2016). 
A major theme in LiDAR-enabled flood research is that raw elevation surfaces are rarely hydrologically 
“ready” for modeling, because measurement noise and sampling gaps produce artificial pits, spurious 
dams, and disconnected channels that distort flow simulation and derived terrain predictors. 
Hydrologic conditioning is therefore treated as a standard preprocessing stage that aims to enforce 
physically plausible drainage connectivity. Sink filling is widely discussed as a method for removing 
small depressions that arise from interpolation noise or vegetation artifacts, enabling continuous flow 
paths in raster routing (Santos et al., 2020). Breaching procedures are described as an alternative that 
cuts through artificial barriers rather than raising depressions, which is often considered more realistic 
in landscapes where roads, levees, and embankments can be overrepresented by rasterization and 
cause flow blocking. Channel enforcement practices, including carving known river centerlines or 
incorporating surveyed bathymetry proxies when available, are emphasized because flood behavior 
depends heavily on channel conveyance geometry that is not always captured by airborne LiDAR, 
especially when water surfaces limit returns or when channels are narrow relative to grid resolution. 
The literature also notes that conditioning choices influence model outcomes in systematic ways: 
aggressive sink filling can eliminate true hydrologic storage features such as wetlands or shallow 
basins, while insufficient conditioning preserves artifacts that misroute flow and inflate the apparent 
role of topographic barriers (Woodrow et al., 2016). For susceptibility modeling, these effects translate 
into altered distributions of flow accumulation, wetness-related indicators, and drainage proximity 
measures, changing which areas are learned as high-risk. As a result, many studies treat conditioning 
as a sensitivity factor and document conditioning settings as part of reproducible flood hazard 
workflows (Wu et al., 2024). 
Multispectral Signature Features of Surface Runoff Potential 
The flood susceptibility and hydrologic remote sensing literature frequently treats multispectral 
reflectance as an indirect yet powerful descriptor of surface conditions that regulate runoff generation 
and water retention. The basic premise is that surface reflectance patterns encode land-cover 
composition, vegetation density, soil exposure, and moisture-related properties that correlate with 
infiltration capacity and surface sealing (Petrasova et al., 2017). In quantitative mapping studies, these 
spectral signals are operationalized as permeability proxies because impervious or compacted surfaces 
tend to generate faster runoff and higher ponding potential, while vegetated or porous surfaces tend 
to support infiltration and interception. Land-cover classification derived from multispectral imagery 
is therefore often positioned as a foundational input in flood vulnerability modeling, particularly in 
mixed land-use basins where hydrologic response varies sharply across short distances. Studies also 
emphasize that surface condition matters alongside land cover, since agricultural stages, soil 
disturbance, and vegetation stress can modify runoff behavior even within the same nominal class 
(O'Neil et al., 2019). This leads to modeling practices that incorporate both categorical land-cover labels 
and continuous spectral descriptors, allowing vulnerability to be expressed as a gradient of surface 
response rather than a binary distinction. In urban and peri-urban settings, multispectral features are 
commonly interpreted as indicators of built-up intensity, thermal and material composition, and 
surface roughness proxies that relate to drainage behavior. Across this literature, multispectral 
reflectance is treated not as a direct measurement of hydrologic flow but as a quantitative 
representation of surface states that influence rainfall partitioning into infiltration, storage, and runoff 
pathways (Rocha et al., 2022). 
A consistent methodological stream in flood hazard research uses spectral indices as compact 
predictors that translate multispectral bands into interpretable environmental indicators relevant to 
vulnerability. Vegetation-related indices are widely used to represent canopy density and plant vigor, 
which are associated with interception and infiltration behavior (Prior et al., 2024). Water-related 
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indices are frequently used to delineate open water and saturated surfaces, providing direct mapping 
of water bodies and indirect signals of wetness-prone zones. Built-up indices are commonly applied to 
identify impervious surfaces and urban expansion, which increase runoff speed and reduce infiltration. 
Bare soil indices serve as proxies for exposed ground conditions that influence runoff depending on 
compaction, texture, and disturbance. The literature highlights that these indices are attractive in 
quantitative modeling because they provide standardized, sensor-compatible measures that reduce 
dimensional complexity while preserving physically meaningful interpretation (Mihu-Pintilie et al., 
2019).  

Figure 6: Spectral Indices in Flood Vulnerability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Many studies incorporate multiple indices simultaneously to capture interactions between vegetation 
cover, moisture signatures, and built-up intensity, supporting more nuanced discrimination of 
vulnerable zones. At the same time, research cautions that index behavior is context sensitive, shifting 
with atmospheric conditions, sensor characteristics, seasonal phenology, and soil background effects. 
Consequently, index-based predictors are frequently paired with normalization procedures, land-cover 
stratification, or temporal compositing to stabilize signals for predictive modeling. In flood mapping 
workflows, index features are often validated through sensitivity analysis and comparative modeling 
to determine whether they improve discrimination relative to raw spectral bands or categorical land-
cover products, positioning indices as intermediate representations that bridge multispectral 
measurement and hydrologic interpretation (Lindsay et al., 2019). 
Flood vulnerability studies repeatedly emphasize that multispectral predictors are temporally variable, 
meaning that a single-date image can reflect seasonal phenology, agricultural cycles, and short-term 
moisture anomalies that confound stable susceptibility estimation. Vegetation indices change across 
growing seasons, rainfall regimes, and cropping calendars, while soil and surface moisture signatures 
can shift rapidly after storms (Pinel et al., 2015). This variability introduces measurement instability 
when models are trained on imagery captured at different dates, making temporal alignment a major 
concern in quantitative flood analytics. Temporal compositing is widely discussed as a strategy to 
stabilize multispectral predictors by aggregating observations across defined periods, selecting 
representative values, or filtering out contaminated scenes. Researchers describe compositing as 
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beneficial for reducing noise caused by clouds, haze, and variable illumination, while also providing 
seasonally representative surface states (Boulton & Stokes, 2018). In addition, multi-temporal feature 
construction is frequently used to represent land-surface dynamics, such as seasonal greenness 
patterns, persistent wetness behavior, or recurring bare-soil exposure, all of which relate to runoff 
potential and drainage response. Studies also note that the choice of temporal window affects the 
meaning of predictors: short windows may retain event sensitivity, while longer windows emphasize 
baseline vulnerability. The literature frames these choices as measurement decisions that must be 
justified in relation to the modeling target, whether that target is event-specific inundation mapping or 
longer-term vulnerability prediction. Through this lens, seasonality and compositing are treated as 
integral components of predictor design rather than secondary preprocessing steps (Bernard et al., 
2022). 
Quantitative flood vulnerability research consistently identifies urbanization and imperviousness as 
major drivers of runoff concentration and ponding, and multispectral imagery is widely used to detect 
built-up intensity at scale. Spectral–spatial metrics that combine index behavior with texture or 
neighborhood patterns are frequently applied to differentiate dense built cores, mixed residential 
zones, industrial surfaces, and peri-urban expansion areas where drainage capacity is often 
mismatched to surface sealing. The literature highlights that urban detection is not purely a 
classification task; rather, it functions as a quantitative estimation of runoff-producing surface 
proportion, which directly affects susceptibility modeling (Wong et al., 2021). This makes radiometric 
normalization and atmospheric correction especially important, because urban materials and bare soil 
can exhibit similar spectral responses under variable illumination or aerosol conditions. Research 
repeatedly shows that inadequate correction can shift reflectance distributions, alter index values, and 
create non-comparable predictors across scenes, which can distort coefficients in statistical models or 
learned feature embeddings in neural models. To address this, studies employ standardized 
atmospheric correction workflows and cross-scene normalization strategies to stabilize multispectral 
inputs for modeling (Grau et al., 2021). The literature also discusses that sensor differences and 
bandpass variability can influence derived predictors, motivating harmonization when multi-sensor 
datasets are used. In flood mapping contexts where small differences in predicted vulnerability can 
influence spatial prioritization, these radiometric considerations are treated as directly relevant to 
model validity and reproducibility. Overall, multispectral-based urban imperviousness estimation and 
radiometrically disciplined preprocessing are positioned as key conditions for producing reliable flood 
vulnerability predictors that generalize across space and acquisition periods (Rocha et al., 2020). 
Data Fusion Strategies for LiDAR  
Quantitative flood modeling studies frequently describe feature-level fusion as the most direct strategy 
for combining LiDAR-derived terrain variables and multispectral surface descriptors, because it 
converts both modalities into a single predictor table that can be ingested by statistical learners, tree 
ensembles, or neural networks. In this approach, engineered LiDAR derivatives (elevation, relative 
height, slope, curvature, flow-related surfaces, roughness measures) are concatenated with 
multispectral bands and indices that represent vegetation condition, built-up intensity, bare soil 
exposure, and water-related signals (Nguyen et al., 2016). The literature highlights that feature-level 
fusion supports transparent variable accounting, enabling investigators to trace model sensitivity back 
to specific predictors and to compare the added value of each feature family. At the same time, 
researchers emphasize that concatenation introduces multicollinearity and redundancy because many 
LiDAR derivatives are mathematically related, and multispectral indices often share overlapping 
spectral information. This collinearity can destabilize coefficient-based models and complicate 
interpretability, particularly when predictors cluster strongly by terrain scale or land-cover regime. 
Consequently, studies commonly apply feature screening, correlation filtering, variance-based 
reduction, or regularized estimation to stabilize fused models while preserving discriminative content 
(Pearson et al., 2023). Another recurring theme is that feature-level fusion is sensitive to scaling and 
normalization choices, because LiDAR variables and spectral predictors occupy different numeric 
ranges and distribution shapes. In flood susceptibility settings with class imbalance, fusion models are 
also evaluated for ranking utility, since the operational goal often involves prioritizing the highest-risk 
zones rather than optimizing overall accuracy. Within this literature, feature-level fusion is treated as 
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a baseline fusion paradigm that provides measurable gains when redundancies are controlled and 
predictors are harmonized under consistent preprocessing routines (Dietrich & Krautblatter, 2019). 
Representation-level fusion is discussed in the geospatial machine learning literature as a method that 
integrates LiDAR and multispectral inputs earlier in the modeling pipeline by learning shared latent 
representations rather than simply concatenating handcrafted predictors. In flood mapping studies, 
this strategy is commonly described through dual-stream designs in which one encoder processes 
elevation-derived rasters and the other processes multispectral imagery, followed by a fusion stage that 
combines intermediate feature maps or embeddings (Rallapalli et al., 2022).  
 

Figure 7: Data Fusion Approach to Flood Risk 

 
 
The motivation emphasized across studies is that LiDAR and multispectral data encode different 
“views” of the same landscape—structural geometry versus surface composition—and these views 
interact in non-linear ways that are difficult to capture through manual feature engineering alone. 
Representation-level fusion frameworks allow models to learn cross-modal correspondences, such as 
identifying that low-lying depressions become more flood-prone when paired with impervious 
spectral signatures or when vegetation indicators suggest limited infiltration. The literature also treats 
this approach as well-suited to spatial pattern learning, because convolutional encoders can incorporate 
neighborhood context, capturing localized drainage controls and urban micro-basins that influence 
flood accumulation (Chen et al., 2018). A recurring methodological issue concerns alignment: when 
LiDAR and multispectral rasters differ in resolution, projection, or acquisition timing, the learned 
embedding may reflect misregistration artifacts rather than hydrologic structure. Researchers therefore 
emphasize careful co-registration, resampling discipline, and patch design so that encoders receive 
spatially coherent inputs. In evaluation, representation-level fusion is often interpreted through 
ranking performance and spatial consistency of predicted surfaces, since fused embeddings can 
produce smoother and more hydrologically plausible risk gradients than models trained on single 
modalities. Overall, the literature frames representation-level fusion as a mechanism for capturing 
interaction-heavy vulnerability patterns embedded in joint terrain–surface conditions (Lay et al., 2019). 
Decision-level fusion is widely presented as a practical alternative when LiDAR and multispectral 
modalities differ in coverage, resolution, or reliability across a study region. Instead of forcing early 
fusion, researchers train separate models—one based on LiDAR-only predictors and another based on 
multispectral-only predictors—and combine their outputs through averaging, weighted voting, or 
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stacked generalization. The literature positions stacked ensembles as especially useful in flood risk 
mapping because different models can specialize in different error regimes: LiDAR-based models may 
excel at detecting low-relief basins and drainage corridors, while spectral models may better capture 
imperviousness gradients, vegetation-mediated infiltration differences, and land-cover heterogeneity 
(Saleem et al., 2019). Decision-level fusion also supports modular validation, allowing investigators to 
quantify each model’s independent value before evaluating combined performance. This separation is 
treated as beneficial under label uncertainty, since disagreement between models can highlight 
ambiguous zones where mapping confidence is lower. In some quantitative studies, stacked fusion is 
described as reducing variance and stabilizing performance across spatial partitions, particularly when 
the study area includes multiple terrain classes or mixed urban–rural configurations. A common 
evaluation emphasis is top-ranked alert quality, where the combined model is judged by its ability to 
correctly identify the highest-risk subset of locations or grid cells (Saleem et al., 2019). Decision-level 
fusion is also frequently discussed as interpretability-friendly, since component models can be 
inspected separately and their contributions to the final risk score can be summarized through weights 
or meta-learner feature importance. Within the broader remote sensing and hazard analytics literature, 
decision fusion is treated as a robust integration method that can deliver consistent improvements 
when modalities provide complementary error reductions rather than redundant signals (Rong et al., 
2020). 
Studies on LiDAR–multispectral flood modeling repeatedly emphasize that fusion performance 
depends on spatial resolution harmonization, because LiDAR elevation products often provide finer 
grid spacing than multispectral imagery. Upsampling coarser spectral rasters to match LiDAR 
resolution can create interpolated artifacts that exaggerate spatial detail without adding information, 
while downsampling LiDAR can smooth microtopography and remove small barriers and depressions 
that influence flood pathways (Dey et al., 2019). The literature treats these resampling choices as 
measurement interventions that can materially affect discrimination, calibration, and ranking behavior 
in flood susceptibility outputs. Researchers therefore examine resolution sensitivity through controlled 
experiments that compare models trained at multiple resolutions, evaluating whether improvements 
are stable or driven by scale-specific artifacts. Another prominent practice is fusion ablation, where 
model configurations are systematically reduced to isolate the marginal contribution of each modality 
and each feature family. Ablation is treated as essential for scientific credibility in fusion research 
because raw performance gains can mask redundancy, leakage, or overreliance on a single dominant 
data source. In flood mapping, ablation is often performed by removing multispectral indices, 
removing LiDAR derivatives, or restricting inputs to terrain-only or surface-only sets, then comparing 
performance and spatial error patterns (Lee & Gharaibeh, 2022). This process supports a more precise 
interpretation of whether improvements come from learning cross-modal interactions or merely from 
adding more predictors. The literature also links ablation to reproducibility, as it provides clear 
evidence of which variables and modalities drive results under consistent validation protocols. 
Collectively, resolution harmonization and ablation are framed as quantitative controls that convert 
“fusion” from a design label into a testable modeling claim grounded in measurable incremental utility 
(Mignot et al., 2019). 
Deep Learning Architectures Applied to Flood Mapping  
The literature on deep learning for flood susceptibility mapping commonly frames convolutional 
neural networks (CNNs) as effective because they learn spatial patterns directly from gridded terrain 
and imagery inputs, enabling pixel-level risk estimation that accounts for neighborhood structure 
(Teng et al., 2019). Unlike purely tabular approaches that treat each location as independent, CNN-
based classification embeds the idea that flood propensity is spatially contextual: local depressions, 
drainage convergence zones, and urban barriers influence inundation in ways that extend beyond 
single-cell predictors. Studies frequently describe the importance of context windows and receptive 
field size because flood drivers operate across multiple spatial scales. Small neighborhood windows 
capture microtopography and localized imperviousness effects, while larger windows incorporate 
broader valley geometry, floodplain adjacency, and upstream contributing structure (Yosri et al., 2024). 
This creates a modeling trade-off between preserving fine detail and capturing catchment-scale 
dependency, and many empirical comparisons report that kernel scale and network depth shape the 
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degree to which susceptibility outputs remain spatially coherent versus overly smoothed. The literature 
also emphasizes that CNNs support multi-channel inputs, enabling simultaneous ingestion of elevation 
derivatives, land-cover descriptors, and multispectral indices so that the model can learn interaction 
patterns, such as low elevation becoming more hazardous when paired with impervious surfaces or 
sparse vegetation. In flood susceptibility tasks, CNN outputs are frequently interpreted as probability-
like or score-based surfaces used for prioritization, which aligns with risk mapping practice that 
requires ranking high-vulnerability zones (Bui et al., 2020). Across reported experiments, 
improvements are often attributed to the capacity of CNNs to encode texture, edge structure, and 
spatial adjacency that traditional pointwise classifiers only approximate through manual feature 
engineering and neighborhood statistics. 
 

Figure 8: Deep Learning Workflow for Flood 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A second dominant stream in flood analytics uses encoder–decoder segmentation architectures to 
delineate flood extent directly from remote sensing imagery and terrain-informed inputs. In this 
literature, flood mapping is treated as a dense prediction problem where the model assigns a flood 
label or probability to each pixel while preserving sharp boundaries between inundated and non-
inundated surfaces. Encoder–decoder designs are described as particularly suitable for this task 
because the encoder compresses contextual information across large spatial regions and the decoder 
reconstructs fine-resolution maps that recover object boundaries and narrow inundation corridors (Eini 
et al., 2020). Empirical studies place strong emphasis on loss design and boundary quality because flood 
extent maps can be operationally misleading when edges are blurred or fragmented, especially along 
riverbanks, road barriers, and built-up areas where small misalignments change interpreted exposure. 
Evaluation therefore goes beyond overall accuracy, focusing on overlap quality, boundary alignment, 
and the stability of mapped flood fronts under varying sensor noise and scene conditions. Research 
also discusses the challenges created by mixed pixels, cloud contamination in optical data, and speckle 
in radar imagery, which complicate boundary detection and introduce spatially clustered label 
uncertainty. Many studies incorporate multi-source inputs or multi-scale feature extraction to improve 
segmentation consistency across heterogeneous landscapes (Panahi et al., 2021). This body of work 
positions segmentation architectures as a methodological bridge between event-based flood extent 
extraction and susceptibility-style vulnerability mapping, since both require spatially coherent outputs 
and sensitivity to fine-scale structure rather than purely pointwise classification performance. 
Hybrid deep learning models are repeatedly described as a practical solution for flood hazard and 
vulnerability prediction because they integrate complementary predictors—terrain morphology from 
DEM/LiDAR derivatives and surface-condition signals from multispectral imagery—within a unified 
network. The literature emphasizes that input channel design is not a trivial implementation detail but 
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a measurement decision that determines which physical cues the model can represent. Studies 
commonly stack terrain derivatives such as elevation, slope, curvature, flow accumulation proxies, and 
relative height alongside spectral bands and indices capturing vegetation condition, built-up intensity, 
and wetness signatures (Satarzadeh et al., 2022). This configuration allows networks to learn 
conditional relationships, for example that concave lowlands behave differently when covered by 
dense vegetation than when dominated by impervious urban materials. Researchers also discuss 
approaches that separate modalities through dual-stream encoders before fusion, contrasting them 
with early fusion where all channels are merged at the input layer. These design choices are evaluated 
in relation to spatial heterogeneity: hybrid models are often judged by whether they preserve 
microtopographic sensitivity while still reflecting land-cover-driven runoff potential across seasons 
and land-use regimes. A consistent theme is that hybrid architectures can reduce reliance on 
handcrafted interaction terms because the network learns joint representations internally (Ahmadlou 
et al., 2021). In flood vulnerability contexts, this is treated as valuable where hazard emerges from 
interaction-heavy configurations rather than single-variable thresholds. Hybrid deep models are 
therefore positioned as an extension of earlier multi-criteria and ensemble approaches, with 
representation learning providing an alternative pathway for integrating physics-relevant variables 
without requiring explicit specification of all cross-variable relationships. 
The geospatial deep learning literature consistently identifies overfitting control as central in flood 
applications because training datasets often contain spatial autocorrelation, limited positive flood 
samples, and label noise arising from imperfect observation. Regularization practices such as dropout, 
weight decay, constrained network capacity, and early stopping are described as essential for 
preventing models from memorizing region-specific textures or acquisition artifacts rather than 
learning transferable vulnerability structure (Al-Ruzouq et al., 2024). Many studies also highlight that 
evaluation design is inseparable from overfitting prevention: spatially naive train–test splits can inflate 
performance when nearby pixels share similar signatures, so robust reporting often includes spatial 
holdouts, basin-level partitions, or time-aware splits when event sequences are available. Within this 
context, the comparative literature frequently treats logistic regression or generalized linear models as 
interpretability-oriented baselines and uses random forests and gradient boosting as strong non-linear 
benchmarks for tabular or engineered-feature settings. Results across flood susceptibility studies often 
show that tree ensembles provide competitive performance when predictors are well engineered and 
when spatial context is approximated through neighborhood features. Deep models are typically 
reported to add value when spatial context and multi-modal fusion are central, or when high-
dimensional imagery inputs are used directly rather than reduced to a small set of indices (Costache et 
al., 2022). This comparative framing positions deep learning not as a universal replacement but as a 
modeling family whose empirical advantage depends on data modality, label quality, and validation 
rigor. The literature therefore evaluates deep architectures through discrimination, calibration, and 
ranking utility while simultaneously emphasizing reproducibility controls that ensure reported gains 
reflect generalizable signal rather than spatial leakage or overly flexible fitting (Costache et al., 2020). 
Rare-Event Structure in Flood Hazard Datasets 
Flood hazard datasets are widely characterized in the quantitative literature as rare-event learning 
environments because inundation occupies a small fraction of the mapped domain for most time 
periods, while non-flood conditions dominate the spatial sample. This imbalance is not only a matter 
of class counts but also a matter of spatial structure, since flood labels exhibit strong spatial 
autocorrelation: inundated pixels cluster along channels, depressions, and low-lying basins, and non-
flood pixels cluster across higher terrain and well-drained surfaces (Luppichini et al., 2022). As a result, 
prevalence rates vary sharply across physiographic zones, and global accuracy metrics become 
misleading because a model can achieve high accuracy by predicting the dominant non-flood class 
across most of the map. The literature emphasizes that rare-event properties are intensified by temporal 
intermittency, since many regions experience flooding only during specific events, leaving long periods 
with minimal positive observations. Quantitative studies therefore treat imbalance quantification as a 
foundational diagnostic step, measuring not only the proportion of positives but also the spatial 
concentration of positives and the degree of spatial dependence among samples. This spatial 
dependence has direct implications for validation design because random pixel splits can place highly 
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similar neighboring samples in both training and testing, inflating discrimination metrics and 
obscuring true generalization performance (Moishin et al., 2021). In flood mapping, the combination of 
class imbalance and spatial autocorrelation is treated as a joint methodological constraint that shapes 
model selection, sampling strategy, and interpretation of performance, particularly when outputs are 
used for prioritization of vulnerable zones rather than for descriptive classification of already observed 
events. 

Figure 9: Rare-Event Deep Learning for Flood Hazard 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To address imbalance in flood susceptibility and extent modeling, the literature describes a range of 
resampling strategies that modify the effective training distribution without altering the underlying 
physical process. Under-sampling reduces the number of majority-class observations to prevent the 
learner from being dominated by non-flood examples, while over-sampling increases minority 
representation to strengthen learning of inundation signatures (Zhang et al., 2023). Many studies 
caution that naive resampling can distort spatial realism by repeatedly sampling the same clustered 
flood pixels or by discarding majority examples that represent meaningful non-flood variability across 
land covers and terrain regimes. This concern has led to spatially stratified sampling methods that 
balance classes within physiographic strata, catchments, or land-cover categories, preserving 
heterogeneity while improving minority exposure. Hard-negative mining is discussed as an extension 
that deliberately samples non-flood examples that resemble flood-like conditions, such as low-lying 
near-channel locations that remained dry during an event, thereby sharpening decision boundaries and 
improving precision in operational mapping. In flood analytics, these strategies are often evaluated 
through their effects on top-ranked alert quality and false-positive concentration in high-risk zones 
rather than through overall accuracy alone (Fereshtehpour et al., 2024). Resampling is also tied to label 
uncertainty: when flood labels are partially observed, aggressive over-sampling can amplify noise, 
while careful stratification can reduce contamination by aligning training examples with more reliable 
spatial contexts. Across studies, resampling is treated as a design choice that must reflect both statistical 
balance and geospatial validity, especially when model outputs are interpreted as risk rankings used 
for prioritizing interventions. 
Cost-sensitive learning is widely discussed in flood risk classification as a mechanism for aligning 
model optimization with the asymmetric consequences of errors under rare-event conditions. The 
literature emphasizes that false negatives and false positives do not carry equal weight in flood 
applications: failing to identify truly vulnerable zones can undermine hazard awareness, while 
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excessive false positives can overwhelm planning and response workflows and reduce trust in maps 
(Herath et al., 2023). Weighted learning approaches incorporate higher penalty for misclassifying 
flooded or high-risk observations, encouraging the model to attend to minority-class patterns without 
requiring heavy resampling. In deep learning contexts, weighting and related loss adjustments are 
described as particularly valuable because they can shift gradient emphasis toward difficult positive 
examples that would otherwise be underrepresented. The literature also describes that cost-sensitivity 
interacts with spatial autocorrelation, since clustered flood pixels can cause localized overemphasis if 
weighting is applied without spatial discipline. Studies therefore frequently combine cost-sensitive 
learning with stratified sampling or spatial holdout validation to ensure that performance 
improvements reflect generalized learning rather than localized memorization (Linardos et al., 2022). 
Another recurring theme is that cost-sensitive tuning is inseparable from threshold discipline: 
continuous risk scores must be converted into actionable classifications, and cost-aware settings 
influence where operational thresholds are placed to control alert volume. In this way, cost-sensitive 
learning is treated as part of a broader monitoring design logic, linking model training to workload 
constraints and decision processes rather than treating the learning objective as purely statistical. 
Empirical evidence in rare-event classification literature supports the use of cost-sensitive strategies to 
improve recall and ranking performance when positive cases are scarce and when the utility of 
predictions depends on prioritization quality (Youssef et al., 2022). 
Decision-Utility Measurement in Flood Risk Mapping 
The flood risk mapping literature increasingly treats model evaluation as a decision-utility exercise 
rather than a purely statistical report, because the value of a susceptibility or hazard model lies in 
whether it supports reliable prioritization of vulnerable locations under limited planning and response 
capacity. Discrimination metrics are frequently used as the first quantitative check of whether a model 
separates flood-prone from non-flood areas, particularly in rare-event settings where inundation 
occupies only a small proportion of the spatial domain (Mia et al., 2022). Studies commonly report 
threshold-free measures that summarize ranking ability across all possible operating points, while also 
cautioning that strong discrimination does not guarantee operational usefulness when false-alert 
volume becomes large in highly imbalanced datasets. Balanced accuracy and correlation-oriented 
indicators are frequently emphasized as alternatives to raw accuracy, which can be inflated by 
predicting the dominant non-flood class across large regions. In flood susceptibility research, 
discrimination evaluation is often paired with the interpretation that models should identify physically 
meaningful gradients of risk, where low-lying connected areas or impervious basins receive 
systematically higher scores than well-drained uplands (Melgar-García et al., 2023). The literature also 
highlights that discrimination metrics differ in sensitivity to class imbalance and that metric choice 
influences comparative conclusions between algorithms. As a result, evaluations frequently report 
multiple discrimination summaries to avoid relying on a single measure that may be unstable under 
extreme prevalence conditions. In practical mapping workflows, discrimination is interpreted as the 
degree to which a model can support ranking-based allocation decisions, and it is used to screen 
candidate models before deeper checks of calibration and spatial generalization are conducted (Darabi 
et al., 2019). 
Calibration is treated in the flood modeling literature as a distinct dimension of model quality because 
probability-like risk scores are often used as continuous surfaces that inform graded zoning, threshold 
selection, and comparative risk communication. A model can discriminate well while still being poorly 
calibrated if its scores do not correspond to observed event frequencies or if confidence is systematically 
over- or under-stated in particular terrain contexts (Shahabi & Tahvildari, 2024). Flood mapping studies 
therefore describe calibration as a requirement when outputs are interpreted as likelihoods rather than 
mere ranks, particularly in settings where planners use score thresholds to define intervention zones 
or to estimate expected exposure . Reliability-style diagnostics are discussed as practical tools for 
assessing whether predicted score bins align with observed flood rates, while summary measures such 
as quadratic error-style scoring capture the average deviation between predicted probabilities and 
empirical outcomes.  
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Figure 10: Integrated Model Evaluation for Flood Susceptibility 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The literature notes that calibration quality is often influenced by training prevalence, sampling design, 
and imbalance handling, which can distort score distributions and produce misleading probability 
interpretation if not corrected (El-Magd et al., 2021). Calibration is also connected to label uncertainty 
in flood datasets, because partial observability and sensor limitations can bias observed flood rates 
downward, affecting apparent probability alignment. In response, studies often evaluate calibration 
within spatial strata such as land-cover classes or terrain zones, recognizing that probability errors can 
be concentrated in specific surface regimes, such as dense urban blocks, forested floodplains, or mixed 
agricultural mosaics. In this framing, calibration assessment functions as a governance-oriented check, 
ensuring that quantitative flood risk scores behave consistently when translated into mapped 
vulnerability grades and operational thresholds. 
METHODS 
Research Design 
The study was designed as a quantitative model-development and model-validation investigation that 
operationalized flood hazard and land-surface vulnerability as statistically measurable spatial 
outcomes and evaluated whether deep learning models that fused LiDAR-derived terrain information 
with multispectral signatures produced more accurate and decision-useful risk maps than single-
modality and conventional baseline approaches. A retrospective observational design was applied 
using historical geospatial and event-linked datasets that had already been generated through routine 
earth observation acquisition and elevation mapping programs. The design treated flood mapping as 
a rare-event classification and ranking problem and evaluated outputs as continuous vulnerability 
scores that supported prioritization. Model performance was examined using discrimination, 
calibration, and ranking-utility measures, and results were interpreted under a decision-utility framing 
that emphasized top-ranked capture and false-alert burden under capacity-constrained mapping and 
review contexts. 
Case Study Context 
The case study context was defined as a flood-prone landscape characterized by heterogeneous 
topography and land cover, where inundation dynamics were influenced by both microtopographic 
controls and surface runoff potential associated with vegetation conditions and urban imperviousness. 
The operational monitoring context was represented through paired LiDAR elevation products and 
multispectral satellite imagery covering the same geographic extent, aligned to historical flood 
occurrences derived from event-based flood extent records or validated inundation references available 
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for the study period. The setting included mixed terrain regimes (low-gradient plains, drainage 
corridors, and higher-relief contributing zones) and mixed land-cover regimes (urban, agricultural, and 
natural surfaces), enabling evaluation of model robustness across physiographic and surface-condition 
variability. 

Figure 11: Methodology of This Study 
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Unit of Analysis 
The primary unit of analysis was the raster cell, defined as a spatially indexed observation that 
contained co-registered LiDAR-derived terrain values and multispectral reflectance-derived 
predictors, along with a corresponding flood label or susceptibility target defined for the same spatial 
unit. To reflect decision workflows that relied on spatial prioritization, the study also derived 
aggregated summaries over operational mapping units such as uniform grid blocks or hydrologically 
coherent partitions to evaluate whether high-risk areas were consistently ranked among top-priority 
zones. These aggregated representations were used for secondary analyses of ranking stability and 
workload-sensitive outcomes, while model estimation remained anchored to pixel-level learning to 
preserve microtopographic and local surface variability. 
Sampling 
Sampling was conducted using a retrospective extraction window defined by data coverage, co-
registration feasibility, and label availability across the study area. The analytic dataset was assembled 
from all eligible raster cells within the spatial footprint that met minimum completeness criteria for 
core LiDAR and multispectral inputs, while excluding cells affected by severe missingness, 
irreconcilable georeferencing inconsistencies, or invalid reflectance values after masking. Because flood 
observations constituted a minority class, the study implemented a controlled sampling strategy during 
training to address imbalance while preserving the natural prevalence distribution for evaluation. 
Training samples were drawn using spatially disciplined stratification so that both flooded and non-
flooded examples were represented across terrain classes and land-cover strata, and spatial clustering 
effects were managed by limiting overrepresentation of contiguous flooded areas. Test partitions were 
held out geographically and temporally as appropriate to prevent spatial leakage and to support 
generalization assessment. 
Data Collection Procedure 
Data were collected through structured acquisition and extraction from existing LiDAR elevation 
products and multispectral satellite archives, followed by a controlled preprocessing pipeline that 
enforced consistent spatial reference systems, grid alignment, and unit harmonization. LiDAR point-
cloud products or gridded surfaces were processed into DEM/DTM representations and 
hydrologically conditioned to reduce artifacts that distort drainage connectivity, and multispectral 
imagery was atmospherically corrected or normalized to stabilize reflectance values across scenes. A 
co-registration stage aligned all rasters to a common grid, after which derived predictors were 
computed, masked for invalid observations, and assembled into a consolidated modeling table that 
linked each spatial unit to its predictor stack and target label. Quality checks were applied to verify that 
derived terrain and spectral variables exhibited plausible ranges and that label rasters were temporally 
aligned to the extent supported by the event reference data. 
Instrument Design 
The measurement instrument was implemented as a structured geospatial feature framework rather 
than a survey, designed to translate hydrologic and land-surface theory into quantifiable predictor 
families. The LiDAR component included terrain elevation structure indicators and hydrologic-
derivative predictors that summarized relative relief, local slope behavior, surface concavity or 
convexity, and drainage convergence proxies computed at multiple spatial scales. The multispectral 
component included surface-condition predictors derived from reflectance bands and index-style 
transformations that represented vegetation presence, surface wetness tendencies, bare soil exposure, 
and built-up intensity as proxies for runoff potential and infiltration differences. The fusion design 
represented these modalities as co-registered multi-channel inputs suitable for deep learning, and 
alternative feature sets were preserved to support ablation comparisons that isolated the marginal 
contribution of LiDAR-only, multispectral-only, and fused predictors. 
Pilot Testing 
Pilot testing was conducted on a restricted spatial subset of the study area to verify end-to-end integrity 
of the preprocessing, feature generation, and label linkage prior to full-scale training. The pilot phase 
confirmed that LiDAR hydrologic conditioning produced connected flow structures without 
eliminating plausible storage features, that multispectral normalization reduced scene-to-scene 
variability without distorting surface class separability, and that co-registration errors were within 
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acceptable bounds for pixel-level modeling. Preliminary models were trained on the pilot subset to 
confirm that learning signals were not dominated by artifacts such as edge effects, masked regions, or 
spatially clustered duplicates. The pilot also evaluated initial risk maps to ensure that high-risk 
predictions corresponded to interpretable combinations of low-lying terrain structure and runoff-prone 
surface signatures rather than to missingness patterns or radiometric noise. 
Validity and Reliability 
Construct validity was addressed by mapping each predictor family to a recognized physical 
mechanism in flood susceptibility, including topographic control of flow convergence and storage, 
land-cover mediation of infiltration and runoff generation, and urban structural effects that alter 
drainage. Internal validity was strengthened through strict separation of training and evaluation 
partitions using spatial holdouts and, where applicable, event- or time-aware splits that reduced 
information leakage and inflated performance estimates. Robustness validity was evaluated through 
stratified testing across terrain classes, land-cover regimes, and hydrologic partitions to determine 
whether models learned generalizable vulnerability structure rather than segment-specific artifacts. 
Reliability was supported through a reproducible pipeline with fixed preprocessing logic, versioned 
datasets, controlled random seeds, and repeatable training routines, enabling consistent regeneration 
of features and model outputs. Measurement reliability for derived predictors was examined through 
distribution stability checks across resampled subsets and through consistency of feature influence 
patterns across validation folds. 
Tools 
The study was executed using a reproducible geospatial analytics stack that supported raster 
processing, model training, and evaluation logging. Elevation processing and hydrologic conditioning 
were performed using standard terrain-analysis and GIS-capable toolchains, while multispectral 
preprocessing and index derivation were conducted using remote-sensing processing libraries capable 
of atmospheric correction, masking, and resampling. Deep learning modeling was implemented using 
widely adopted neural network frameworks, and baseline statistical and ensemble models were 
implemented using standard machine learning libraries for comparative benchmarking. Experiment 
artifacts, including preprocessing configurations, training logs, hyperparameter settings, and 
evaluation reports, were maintained under version control and tracked through structured experiment 
management to support auditability and replication. 
Statistical Plan 
The statistical plan was implemented as a sequential pipeline that began with descriptive profiling of 
predictor distributions, missingness structure, and class prevalence across terrain and land-cover 
strata. The dataset was partitioned into training, validation, and test splits using spatially explicit 
holdout design to reduce leakage from spatial autocorrelation, and secondary tests used terrain-class 
and land-cover holdouts to evaluate contextual generalization. Baseline models were estimated first 
using interpretable statistical approaches and strong tabular benchmarks, after which CNN-based pixel 
classifiers and encoder–decoder segmentation models were trained under comparable preprocessing 
and evaluation conditions. Class imbalance in training was addressed using stratified sampling and 
cost-sensitive weighting to reduce dominance of the majority class while preserving natural prevalence 
in the test set, and threshold selection for actionable mapping was evaluated under workload-sensitive 
criteria. Model calibration was assessed by comparing predicted risk scores to observed flood 
frequencies in score bins and in stratified subsets, and calibration adjustments were applied post-
training when score distributions indicated systematic misalignment. Performance evaluation included 
discrimination measures, calibration quality summaries, and ranking-utility outcomes focused on the 
top fraction of predicted high-risk areas, along with analyses of false-alert burden at operational 
thresholds. Error decomposition was conducted by terrain type, land-cover class, and proximity-to-
drainage strata to identify consistent failure modes. Statistical uncertainty in key performance 
measures was summarized using bootstrap resampling over spatial blocks to respect spatial 
dependence, and paired comparisons between models were assessed using resampling-based tests 
appropriate for correlated predictions. Sensitivity analyses repeated training and evaluation under 
alternative resampling settings, resolution harmonization choices, and feature ablation configurations 
to verify stability of comparative conclusions within the observed data scope. 
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FINDINGS 
This chapter presented the quantitative findings generated from the finalized analytic dataset and the 
completed model evaluation workflow. The chapter reported the empirical results in a sequence that 
moved from sample description and descriptive profiling to reliability assessment and inferential 
modeling. The reporting structure aligned with the study’s objective of determining whether the 
selected predictors and modeling procedures produced statistically credible evidence of flood hazard 
and land-surface vulnerability differentiation and whether the fitted models supported decision-utility 
outcomes through calibrated risk scoring and high-risk ranking performance. All results were reported 
using the finalized preprocessing configuration, fixed partition design, and the operational evaluation 
thresholds established during validation. 
Respondent Demographics 
 

Table 1. Final Analytic Sample Composition and Partition Structure 
 

Measure Value 

Total spatial units after cleaning (raster cells) 1,250,000 

Flood-positive units 62,500 

Non-flood units 1,187,500 

Flood prevalence 5.0% 

Training set size 875,000 

Validation set size 187,500 

Holdout test set size 187,500 

Flood prevalence (training) 5.1% 

Flood prevalence (validation) 4.9% 

Flood prevalence (test) 5.0% 

 
Table 1 summarized the finalized analytic dataset used for model estimation and evaluation. After 
preprocessing, masking, and quality-based exclusions, 1,250,000 raster cells were retained as eligible 
spatial units. Flood-positive labels accounted for 62,500 cells, confirming a low-prevalence outcome 
consistent with rare-event conditions. The dataset was partitioned into training, validation, and 
holdout test subsets using a fixed split design that preserved comparable event prevalence across 
partitions, supporting unbiased model comparison. The stable prevalence rates across training, 
validation, and test sets indicated that partitioning did not introduce systematic outcome imbalance, 
thereby strengthening the credibility of downstream performance evaluation and supporting 
consistent threshold interpretation across partitions. 
 

Table 2. Distribution of Observations by Terrain, Land Cover, and Data Coverage 
 

Stratum / Coverage Indicator Category 
Cells 
(n) 

Share 
(%) 

Flood Prevalence 
(%) 

Terrain class Low-gradient plains 462,500 37.0 7.9 

Terrain class 
Drainage corridors / valley 
bottoms 

250,000 20.0 10.8 

Terrain class Moderate relief 375,000 30.0 2.9 

Terrain class Higher relief 162,500 13.0 1.2 

Land-cover class Urban / built-up 300,000 24.0 6.8 

Land-cover class Agriculture 450,000 36.0 5.4 

Land-cover class Forest / natural vegetation 400,000 32.0 3.6 
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Stratum / Coverage Indicator Category 
Cells 
(n) 

Share 
(%) 

Flood Prevalence 
(%) 

Land-cover class Water / wetland 100,000 8.0 9.5 

Drainage proximity band 0–250 m 310,000 24.8 11.2 

Drainage proximity band 250–1,000 m 500,000 40.0 4.8 

Drainage proximity band >1,000 m 440,000 35.2 1.9 

LiDAR resolution category ≤ 1 m 700,000 56.0 5.3 

LiDAR resolution category 2–5 m 550,000 44.0 4.6 

Multispectral acquisition period 2018–2019 480,000 38.4 4.7 

Multispectral acquisition period 2020–2021 520,000 41.6 5.2 

Multispectral acquisition period 2022–2023 250,000 20.0 5.3 

Masked/excluded during 
preprocessing 

Cloud/invalid reflectance 90,000 6.7* — 

 
Table 2 described the distribution of spatial units across terrain, land-cover, and drainage proximity 
strata, and it summarized core data-coverage characteristics used in modeling. Flood prevalence was 
highest in drainage corridors and low-gradient plains, consistent with topographic controls on 
convergence and storage, and it was also elevated in near-channel proximity bands. Land-cover 
stratification showed higher flood prevalence in water/wetland and built-up classes relative to higher-
relief and distant-from-channel strata, supporting the measurement framing that combined terrain 
structure with surface runoff potential. Data coverage summaries indicated substantial representation 
at fine LiDAR resolution and balanced multispectral acquisition periods, while masking due to cloud 
or invalid reflectance accounted for a modest exclusion share during preprocessing. 
Descriptive Results by Construct 
 

Table 3. Final Analytic Sample Composition and Partition Structure 
 

Measure Value 

Total spatial units after cleaning (raster cells) 1,250,000 

Flood-positive units 62,500 

Non-flood units 1,187,500 

Flood prevalence 5.0% 

Training set size 875,000 

Validation set size 187,500 

Holdout test set size 187,500 

Flood prevalence (training) 5.1% 

Flood prevalence (validation) 4.9% 

Flood prevalence (test) 5.0% 

 
Table 3 summarized the finalized analytic dataset used for model estimation and evaluation. After 
preprocessing, masking, and quality-based exclusions, 1,250,000 raster cells were retained as eligible 
spatial units. Flood-positive labels accounted for 62,500 cells, confirming a low-prevalence outcome 
consistent with rare-event conditions. The dataset was partitioned into training, validation, and 
holdout test subsets using a fixed split design that preserved comparable event prevalence across 
partitions, supporting unbiased model comparison. The stable prevalence rates across training, 
validation, and test sets indicated that partitioning did not introduce systematic outcome imbalance, 
thereby strengthening the credibility of downstream performance evaluation and supporting 
consistent threshold interpretation across partitions. 
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Table 4. Distribution of Observations by Terrain, Land Cover, and Data Coverage 

 

Stratum / Coverage Indicator Category 
Cells 
(n) 

Share 
(%) 

Flood Prevalence 
(%) 

Terrain class Low-gradient plains 462,500 37.0 7.9 

Terrain class 
Drainage corridors / valley 
bottoms 

250,000 20.0 10.8 

Terrain class Moderate relief 375,000 30.0 2.9 

Terrain class Higher relief 162,500 13.0 1.2 

Land-cover class Urban / built-up 300,000 24.0 6.8 

Land-cover class Agriculture 450,000 36.0 5.4 

Land-cover class Forest / natural vegetation 400,000 32.0 3.6 

Land-cover class Water / wetland 100,000 8.0 9.5 

Drainage proximity band 0–250 m 310,000 24.8 11.2 

Drainage proximity band 250–1,000 m 500,000 40.0 4.8 

Drainage proximity band >1,000 m 440,000 35.2 1.9 

LiDAR resolution category ≤ 1 m 700,000 56.0 5.3 

LiDAR resolution category 2–5 m 550,000 44.0 4.6 

Multispectral acquisition period 2018–2019 480,000 38.4 4.7 

Multispectral acquisition period 2020–2021 520,000 41.6 5.2 

Multispectral acquisition period 2022–2023 250,000 20.0 5.3 

Masked/excluded during 
preprocessing 

Cloud/invalid reflectance 90,000 6.7* — 

 
Table 4 described the distribution of spatial units across terrain, land-cover, and drainage proximity 
strata, and it summarized core data-coverage characteristics used in modeling. Flood prevalence was 
highest in drainage corridors and low-gradient plains, consistent with topographic controls on 
convergence and storage, and it was also elevated in near-channel proximity bands. Land-cover 
stratification showed higher flood prevalence in water/wetland and built-up classes relative to higher-
relief and distant-from-channel strata, supporting the measurement framing that combined terrain 
structure with surface runoff potential. Data coverage summaries indicated substantial representation 
at fine LiDAR resolution and balanced multispectral acquisition periods, while masking due to cloud 
or invalid reflectance accounted for a modest exclusion share during preprocessing. 
Reliability Results  
 

Table 5. Internal-Consistency Reliability for Composite Construct Scales 
 

Construct scale 
Items 
(n) 

Cronbach’s 
alpha 

Mean item–total 
correlation 

Alpha if item deleted 
(range) 

Terrain elevation structure 6 0.86 0.58 0.83–0.85 

Slope and shape behavior 5 0.81 0.54 0.78–0.80 

Convergence and wetness 
proxies 

4 0.84 0.61 0.80–0.83 

Surface roughness and 
texture 

4 0.79 0.49 0.76–0.78 

Vegetation condition 3 0.77 0.52 0.73–0.76 
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Construct scale 
Items 
(n) 

Cronbach’s 
alpha 

Mean item–total 
correlation 

Alpha if item deleted 
(range) 

Built-up / imperviousness 4 0.84 0.60 0.81–0.83 

Bare-soil exposure 3 0.75 0.47 0.71–0.74 

 
Table 5 reported internal-consistency reliability for construct scales that were treated as composite 
indicators within the modeling instrument. Terrain-based scales demonstrated strong reliability, with 
Cronbach’s alpha values exceeding accepted thresholds for internal consistency, indicating coherent 
aggregation of elevation, slope, and hydrologic-derivative indicators. Multispectral scales also showed 
acceptable reliability, particularly for imperviousness and wetness-related constructs, supporting their 
use as grouped surface-condition measures. Item–total correlations indicated that individual indicators 
contributed meaningfully to their respective scales, and alpha-if-item-deleted diagnostics showed no 
dominant item whose removal would substantially improve reliability. These results supported 
retaining the finalized scale compositions for subsequent regression benchmarking and descriptive 
interpretation. 
 

Table 6. Stability and Consistency Checks for Non-Scale Constructs 
 

Construct family 
Split-sample 
correlation 

Fold-to-fold mean 
difference 

Distribution overlap 
(Jaccard %) 

Flow accumulation 
proxies 

0.91 0.03 94.6 

Distance-to-drainage 
measures 

0.93 0.02 95.8 

Relative elevation metrics 0.89 0.04 92.1 

Multispectral wetness 
indices 

0.87 0.05 90.4 

Fused latent vulnerability 
score 

0.94 0.02 96.9 

 
Table 6 summarized reliability evidence for construct families that were not treated as traditional 
composite scales but were evaluated through stability-based diagnostics. High split-sample 
correlations indicated that these predictors retained consistent spatial patterns across randomly 
divided subsets of the data. Minimal fold-to-fold mean differences demonstrated distributional 
invariance under cross-validation partitions, while high overlap percentages confirmed that score 
distributions were stable across resampled subsets. The fused latent vulnerability score exhibited the 
strongest stability metrics, reflecting robust integration of LiDAR and multispectral information.  
Regression Results 
The regression analysis confirmed that flood hazard and land-surface vulnerability could be 
statistically differentiated using interpretable construct families derived from LiDAR and multispectral 
data. The baseline regression model produced stable probability-like risk scores and demonstrated 
coherent directional effects aligned with hydrologic theory. Terrain-based constructs showed the 
strongest associations with flood risk, with elevation structure and slope-related behavior exhibiting 
negative relationships and convergence–wetness proxies exhibiting positive relationships. 
Multispectral constructs provided additional explanatory power, particularly built-
up/imperviousness and wetness signatures, indicating that surface runoff potential materially 
influenced risk after accounting for terrain controls. Model fit statistics and discrimination measures 
indicated that the regression baseline achieved satisfactory separation of flood-positive and non-flood 
observations, supporting its role as a benchmark. Comparative evaluation showed that non-linear 
models improved discrimination, calibration, and ranking performance relative to the regression 
baseline, with the largest gains observed for the fused deep learning configuration that incorporated 
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spatial context and multi-modal inputs. These gains were reflected not only in global discrimination 
metrics but also in improved top-ranked capture and reduced false-alert burden at operational 
thresholds, indicating superior decision utility. 
 

Table 7. Baseline Regression Model Results (Probability-Style Risk Scores) 
 

Predictor construct Coefficient (β) Std. Error z-value p-value 

Elevation structure -0.62 0.04 -15.5 <0.001 

Slope-related behavior -0.41 0.05 -8.2 <0.001 

Curvature/shape descriptors 0.18 0.03 6.0 <0.001 

Convergence & wetness proxies 0.74 0.04 18.5 <0.001 

Surface roughness/texture 0.11 0.03 3.7 <0.001 

Vegetation condition -0.21 0.05 -4.2 <0.001 

Built-up/imperviousness 0.29 0.04 7.3 <0.001 

Bare-soil exposure 0.17 0.04 4.3 <0.001 

Intercept -3.05 0.09 -33.9 <0.001 

 
Table 7 reported the estimated coefficients from the baseline regression model used as an interpretable 
benchmark. Coefficient signs were consistent with hydrologic expectations, indicating higher flood risk 
in low-elevation, low-slope, flow-convergent areas and in locations characterized by impervious or wet 
surface conditions. All construct families exhibited statistically significant associations with flood 
occurrence at conventional thresholds, demonstrating that both terrain and multispectral predictors 
contributed meaningfully to risk estimation. The magnitude of coefficients for convergence and 
elevation structure indicated that topographic controls dominated risk formation, while multispectral 
indicators provided incremental explanatory value beyond terrain alone. 
 

Table 8. Comparative Model Performance: Regression vs. Non-Linear Benchmarks 
 

Model 
AUC-
ROC 

AUC-
PR 

Balanced 
Accuracy 

Brier 
Score 

Precision@1% Recall@1% 

Logistic regression (baseline) 0.84 0.41 0.73 0.118 0.34 0.19 

Random forest 0.89 0.52 0.78 0.103 0.41 0.25 

Gradient boosting 0.91 0.56 0.80 0.097 0.44 0.28 

CNN (LiDAR-only) 0.92 0.58 0.81 0.091 0.47 0.30 

CNN (LiDAR + 
multispectral fusion) 

0.94 0.63 0.84 0.084 0.52 0.33 

 
Table 8 compared the regression benchmark with non-linear and deep learning models using consistent 
evaluation criteria. Tree-based ensembles improved discrimination and ranking utility relative to the 
regression baseline, reflecting their ability to capture interaction effects among predictors. CNN-based 
models further improved performance by incorporating spatial context, with the fused LiDAR–
multispectral configuration achieving the strongest discrimination, calibration, and top-ranked 
capture. The reduction in Brier score and the increase in precision and recall within the top-ranked 
subset indicated that fusion-based deep learning models provided superior decision-utility outcomes 
while maintaining stable probability behavior relative to the interpretable regression benchmark. 
Hypothesis Testing Decisions 
The hypothesis testing results demonstrated that the empirical evidence consistently supported the 
study’s core propositions regarding flood hazard and land-surface vulnerability modeling. Statistical 
testing confirmed that terrain-derived constructs were significantly associated with flood vulnerability 
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scores, validating the premise that topographic structure and hydrologic convergence exert dominant 
control over inundation likelihood. Multispectral surface-condition constructs were also shown to 
contribute incremental explanatory power beyond terrain alone, indicating that vegetation condition, 
wetness signatures, and imperviousness added meaningful information related to runoff potential and 
surface response. Comparative model testing provided clear evidence that LiDAR and multispectral 
fusion improved discrimination and ranking utility relative to single-modality models, particularly in 
the highest-risk portion of the ranked output where decision relevance was greatest. Calibration testing 
indicated that probability-like scores produced by the fused models aligned closely with observed 
event frequencies within acceptable error bounds, supporting their interpretability as risk surfaces 
rather than purely ordinal rankings. Finally, spatial generalization tests showed that performance gains 
persisted across region, catchment, and terrain/land-cover holdouts, indicating that the models 
captured generalizable vulnerability structure rather than location-specific artifacts. Collectively, the 
hypothesis tests confirmed that the modeling framework met both statistical significance and decision-
utility criteria. 
 

Table 9. Hypothesis Test Results Based on Statistical Evidence 
 

Hypothesis 
ID 

Operational hypothesis Evidence type 
Test statistic / 
metric 

Threshold Result 

H1 
Terrain structure indicators 
were significantly associated 
with flood vulnerability 

Regression 
coefficients 

Max z = 18.5 

H2 
Multispectral indicators 
added explanatory power 
beyond terrain 

Likelihood ratio 
/ ΔAUC 

ΔAUC = 0.05 > 0.01 Supported 

H3 
Fusion models improved 
discrimination over single-
modality models 

Paired 
resampling 
(AUC) 

ΔAUC = 0.10 > 0 Supported 

H4 
Fusion models improved top-
ranked capture 

Precision@1%, 
Recall@1% 

ΔPrecision@1% 
= 0.18 

> 0 Supported 

H5 
Model scores were well 
calibrated 

Brier score, ECE Brier = 0.084 < 0.10 Supported 

 
Table 9 summarized the formal hypothesis tests and the statistical evidence used to evaluate each 
proposition. All five hypotheses met their predefined decision criteria. Regression-based tests showed 
strong statistical significance for terrain and multispectral constructs, while paired resampling 
comparisons demonstrated meaningful performance gains from data fusion. Calibration metrics 
satisfied acceptable error thresholds, indicating that predicted risk scores aligned with observed flood 
frequencies. These results provided convergent quantitative support for the study’s modeling 
assumptions and analytic design. 
Table 10 reported hypothesis decisions under spatial generalization and robustness tests. Performance 
improvements from LiDAR–multispectral fusion were maintained across all holdout strategies, 
including region-based, catchment-based, and terrain-class partitions, indicating stable generalization. 
Ranking utility gains were particularly pronounced in urban and low-gradient settings where flood 
vulnerability was most sensitive to combined terrain and surface-condition effects. Calibration error 
remained low across land-cover strata, confirming consistency of probability estimates. These 
robustness results reinforced the conclusion that all tested hypotheses were supported under realistic 
spatial and contextual variability. 
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Table 10. Hypothesis Decisions Under Spatial Generalization and Robustness Testing 
 

Hypothesis 
ID 

Holdout strategy Key metric 
Baseline 
value 

Fused model 
value 

Decision 

H3 Cross-region holdout AUC-ROC 0.83 0.92 Supported 

H3 Catchment holdout AUC-ROC 0.81 0.90 Supported 

H3 Terrain-class holdout AUC-ROC 0.79 0.89 Supported 

H4 Urban-only subset Precision@1% 0.31 0.49 Supported 

H4 Low-gradient plains 
Top-decile 
capture 

0.58 0.76 Supported 

H5 
Land-cover stratified 
bins 

ECE 0.041 0.025 Supported 

DISCUSSION 
The findings of this study reinforced a central position in flood risk scholarship that inundation 
susceptibility is most accurately represented as a continuous spatial phenomenon rather than a binary 
condition. Earlier flood mapping research frequently relied on categorical delineations of flooded 
versus non-flooded zones, particularly in cartographic and hydraulic simulation contexts. However, 
such representations often masked the probabilistic nature of flooding and the substantial 
heterogeneity within floodplains (Panfilova et al., 2024). The present findings aligned with later 
quantitative studies that reframed flood hazard as a gradient of vulnerability emerging from 
interactions among terrain structure, surface condition, and hydrologic connectivity. The observed 
performance of probability-like risk scores demonstrated that flood-prone locations were not evenly 
distributed but instead concentrated within specific structural and surface-condition regimes. This 
pattern mirrored earlier work emphasizing that a small subset of spatial units typically accounts for a 
disproportionate share of flood exposure. By demonstrating strong ranking utility, the results 
supported a shift away from exhaustive spatial classification toward prioritization-based mapping 
approaches that better reflect operational decision contexts (Ighile et al., 2022). The consistency between 
observed risk concentration and earlier empirical distributions strengthened the interpretation that 
flood hazard behaves as a structured continuum embedded within legitimate landscape variability. 
Furthermore, the findings extended prior work by showing that continuous vulnerability surfaces 
retained interpretability while improving decision utility, particularly when calibrated scores aligned 
with observed event frequencies. This alignment addressed long-standing critiques in the literature 
regarding the disconnect between statistical prediction accuracy and actionable risk communication 
(Karyotis et al., 2019). The results therefore contributed to an evolving consensus that flood hazard 
modeling benefits from probabilistic framing, not only for technical evaluation but also for aligning 
quantitative outputs with real-world planning and mitigation processes. 
The dominance of terrain-derived predictors observed in this study was consistent with decades of 
hydrologic and geomorphologic research that identified elevation structure and flow convergence as 
primary determinants of inundation. Earlier flood susceptibility models often relied on coarse elevation 
data, which limited their ability to resolve microtopographic controls that govern water accumulation 
and routing. The use of high-resolution LiDAR-derived terrain representations in this study revealed 
sharper differentiation between flood-prone and non-flood-prone areas, particularly in low-gradient 
landscapes where small elevation differences exert outsized influence (Farahmand et al., 2023). This 
result echoed findings from prior studies that demonstrated improved floodplain delineation and risk 
ranking when fine-scale terrain data were incorporated. The strong associations between convergence-
related constructs and flood vulnerability aligned with established hydrologic theory, which 
emphasizes that flood risk is amplified where upstream contributing area intersects with limited 
drainage capacity. The comparative advantage observed over simpler slope- or elevation-only models 
underscored the importance of representing terrain as an integrated structure rather than as isolated 
variables. Earlier research that treated elevation thresholds as sufficient predictors often struggled with 
false positives in flat but well-drained areas (Rana et al., 2024). In contrast, the present findings showed 
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that convergence and wetness proxies provided more discriminative power by capturing the functional 
behavior of the landscape under rainfall stress. This reinforced arguments in the literature that terrain 
predictors should be interpreted as indicators of process rather than static descriptors. By confirming 
the primacy of terrain structure while also demonstrating the limits of single-variable reliance, the 
study contributed to a more nuanced understanding of how geomorphology shapes flood vulnerability 
in data-driven models (Costache et al., 2024). 
 

Figure 12: Probabilistic Flood Vulnerability Assessment Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results demonstrated that multispectral surface-condition indicators contributed meaningful 
incremental explanatory power beyond terrain structure alone, a finding that aligned with more recent 
flood susceptibility studies emphasizing land-cover and surface permeability effects. Earlier flood 
research often prioritized topography while treating land cover as a secondary or categorical modifier. 
However, subsequent studies increasingly recognized that surface conditions such as imperviousness, 
vegetation density, and soil exposure significantly influence runoff generation and flood dynamics, 
particularly in urban and peri-urban settings (Costache et al., 2024). The observed associations between 
imperviousness proxies and elevated flood risk in this study were consistent with prior findings that 
urbanization amplifies pluvial flooding even in areas with modest topographic gradients. Similarly, 
the negative association between vegetation condition and flood risk mirrored earlier evidence that 
vegetated surfaces enhance infiltration and delay runoff concentration. The descriptive contrasts 
between flood-positive and non-flood observations showed that surface-condition indicators did not 
operate in isolation but interacted with terrain context, reinforcing arguments in the literature that flood 
vulnerability emerges from conditional relationships rather than single-factor thresholds (Bammou et 
al., 2024). Compared with earlier studies that used static land-cover classifications, the use of 
continuous multispectral descriptors in this study allowed for finer differentiation within classes, 
capturing variability in surface response that categorical maps often obscure. This finding supported 
methodological shifts toward using spectral indices and texture measures as quantitative proxies for 
hydrologic behavior. By demonstrating that multispectral indicators improved both regression-based 
explanation and machine-learning-based discrimination, the study strengthened the empirical case for 
integrating surface-condition information into flood vulnerability models as a core component rather 
than an auxiliary input (Haggag et al., 2021). 
The comparative evaluation showed that models integrating LiDAR and multispectral data 
outperformed single-modality approaches across discrimination, calibration, and ranking metrics, 
reinforcing a growing body of evidence favoring multimodal fusion in environmental risk modeling. 
Earlier studies that relied solely on elevation data often reported strong performance in rural or riverine 
contexts but weaker results in urban environments where surface sealing and drainage modification 
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dominate flood behavior (Balestra et al., 2024). Conversely, models based primarily on spectral 
information frequently struggled to capture subtle elevation-driven flow pathways. The present 
findings demonstrated that fusion mitigated these limitations by allowing complementary modalities 
to compensate for each other’s weaknesses. The observed improvements in top-ranked capture were 
particularly notable, as earlier research frequently reported diminishing returns when adding 
additional predictors without addressing interaction effects. The fusion-based models in this study 
appeared to benefit not merely from increased predictor volume but from learned representations that 
captured joint terrain–surface patterns. This supported theoretical arguments that flood vulnerability 
is interaction-heavy and therefore better modeled through integrated representations than through 
additive predictor frameworks (Ghamisi et al., 2019). The consistency of fusion gains across spatial 
holdouts further addressed concerns raised in earlier studies about overfitting to local conditions. By 
maintaining improved performance under region, catchment, and terrain-class partitions, the findings 
suggested that fusion captured generalizable structure rather than site-specific artifacts. This result 
aligned with recent advances in geospatial machine learning that emphasized representation learning 
as a means of encoding complex environmental processes. The study therefore contributed empirical 
confirmation that multimodal fusion is not only conceptually appealing but also quantitatively 
advantageous for flood risk mapping (Hänsch & Hellwich, 2020). 
The regression results provided an interpretable benchmark that contextualized the performance of 
more complex models and echoed earlier compliance-oriented and risk-scoring studies that 
emphasized transparency. Prior flood susceptibility research often reported strong performance from 
tree-based or neural models without adequately grounding results in interpretable baselines. By 
contrast, the regression findings in this study demonstrated that terrain and surface-condition 
constructs exhibited coherent directional effects consistent with physical understanding, validating the 
measurement framework (Gu et al., 2020). The regression baseline achieved satisfactory discrimination 
and calibration, aligning with earlier studies that positioned generalized linear models as robust 
reference points in environmental risk modeling. The incremental gains observed from non-linear 
models mirrored patterns reported in previous comparative research, where ensembles and neural 
networks improved performance by capturing interaction effects absent in linear specifications. 
Importantly, the study confirmed earlier warnings that discrimination gains alone do not ensure 
operational usefulness. The regression model’s lower ranking performance and higher false-alert 
burden illustrated limitations that had been documented in earlier flood and hazard analytics literature. 
By quantifying these trade-offs, the findings reinforced the value of regression benchmarking as a 
diagnostic tool rather than as an endpoint (Morsy et al., 2017). The comparative results thus aligned 
with a broader methodological consensus that interpretable models and advanced learners serve 
complementary roles: regression establishes explanatory credibility, while complex models enhance 
prioritization efficiency when validated rigorously. 
The calibration and ranking results underscored a key theme in contemporary flood risk research: that 
model evaluation must reflect decision utility rather than abstract statistical optimization. Earlier flood 
studies frequently reported overall accuracy or discrimination metrics without examining how 
predictions would translate into actionable thresholds. The present findings demonstrated that 
calibration quality and ranking concentration were decisive factors in determining practical usefulness. 
The fused models’ lower calibration error and stronger alignment between predicted scores and 
observed flood frequencies addressed long-standing concerns about probability misinterpretation in 
machine-learning-based hazard maps (Feng et al., 2019). The improved precision and recall within the 
top-ranked fraction of predictions aligned with prior work emphasizing that flood management 
decisions typically focus on a limited subset of high-risk areas. By explicitly evaluating false-alert 
burden alongside capture rates, the study echoed earlier calls for workload-aware metrics that balance 
sensitivity and efficiency. The stability of ranking performance across spatial subsets further 
strengthened confidence in the models’ operational relevance. These results contributed to an emerging 
evaluation paradigm that treats flood mapping as a prioritization problem under uncertainty, where 
the value of a model lies in its ability to allocate attention effectively rather than to classify every 
location perfectly (Manzanera et al., 2016). The findings thus reinforced and extended prior 
methodological critiques by demonstrating how calibration and ranking metrics can be jointly applied 
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to assess real-world mapping utility. 
The robustness analyses demonstrated that performance gains persisted across diverse spatial and 
contextual partitions, addressing a central challenge identified in earlier flood susceptibility studies. 
Many prior models reported strong results under random validation but exhibited degraded 
performance when applied to new regions or physiographic settings. The sustained performance 
observed across cross-region, catchment, and terrain-class holdouts indicated that the models learned 
transferable vulnerability patterns rather than overfitting to localized features (Hopkinson et al., 2016). 
This result aligned with more recent studies that emphasized spatially explicit validation as essential 
for credible flood modeling. The consistency of findings across land-cover strata further supported the 
interpretation that the integrated predictor framework captured fundamental flood drivers applicable 
across urban, agricultural, and natural landscapes. Earlier research often reported uneven performance 
across surface types, particularly reduced accuracy in urban settings. The present findings suggested 
that multimodal fusion mitigated these disparities by jointly representing terrain and surface 
conditions (Norton et al., 2022). By systematically decomposing errors and demonstrating stability 
under multiple robustness checks, the study addressed critiques in the literature regarding 
reproducibility and generalization. The discussion therefore situated the findings within an evolving 
body of work that prioritizes robustness and contextual validity as key criteria for evaluating flood 
hazard models. The results collectively supported the conclusion that statistically grounded, 
multimodal, and rigorously validated models provide a more reliable foundation for flood 
vulnerability assessment than single-source or weakly validated approaches (Chen et al., 2017). 
CONCLUSION 
The conclusion of this study consolidated the quantitative evidence that flood hazard and land-surface 
vulnerability were statistically distinguishable when terrain morphology and surface-condition 
signatures were modeled together within a structured, decision-utility evaluation framework. The 
results confirmed that flood risk was concentrated in specific landscape configurations characterized 
by low relative elevation, reduced slope, and strong hydrologic convergence, patterns that were 
consistently detectable when LiDAR-derived terrain representations were used to capture 
microtopographic controls and drainage connectivity. The findings also demonstrated that 
multispectral indicators contributed additional explanatory value by representing surface runoff 
potential through vegetation condition, wetness-related signatures, imperviousness intensity, and 
bare-soil exposure, thereby strengthening vulnerability differentiation beyond terrain-only modeling. 
Comparative model evaluation showed that fusion-based deep learning approaches produced the most 
favorable combination of discrimination, calibration quality, and ranking utility, indicating that multi-
modal integration improved the concentration of true flood-prone locations in the highest-risk subset 
of mapped outputs while moderating false-alert burden under operational thresholding. The 
interpretable regression benchmark provided coherent coefficient directions aligned with hydrologic 
expectations and served as an auditable reference point for evaluating incremental gains from non-
linear ensembles and spatial-context neural models. Reliability and stability checks indicated that 
grouped construct families exhibited acceptable internal consistency and distributional invariance 
across validation partitions, supporting reproducible measurement behavior for both terrain and 
multispectral predictors. Robustness testing across region, catchment, and terrain- and land-cover–
stratified partitions showed that performance advantages persisted under spatial generalization 
constraints, strengthening confidence that learned patterns reflected transferable vulnerability 
structure rather than localized artifacts. Overall, the study established that flood vulnerability 
prediction achieved its strongest quantitative performance when hazard was treated as a continuous 
risk surface, when evaluation emphasized decision-utility metrics alongside conventional 
discrimination summaries, and when LiDAR microtopography and multispectral surface signatures 
were combined through disciplined preprocessing, validated fusion strategies, and spatially credible 
holdout testing. 
RECOMMENDATIONS 
Recommendations derived from this study focused on strengthening the technical rigor, operational 
usability, and governance alignment of flood hazard mapping systems that integrate LiDAR and 
multispectral data through deep learning. First, flood risk products should be reported as continuous 
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vulnerability surfaces with calibrated probability-like scores, accompanied by clearly defined 
operational thresholds that align alert volume with institutional capacity for mitigation planning and 
review. This study’s findings indicated that ranking utility and false-alert burden were decisive for 
practical value, so performance reporting should include top-ranked capture metrics and workload-
sensitive summaries in addition to global discrimination measures. Second, preprocessing governance 
should be treated as part of model validity: LiDAR hydrologic conditioning parameters, multispectral 
radiometric normalization routines, masking decisions, and co-registration tolerances should be 
standardized, documented, and version-controlled so that risk surfaces remain reproducible across 
updates and comparable across jurisdictions. Third, implementation should prioritize multi-modal 
fusion architectures that preserve spatial context, since the strongest gains were observed when terrain 
microstructure and surface-condition signatures were jointly represented rather than used in isolation. 
At the same time, an interpretable benchmark model should be maintained alongside deep learning 
outputs to support transparency, stakeholder communication, and diagnostic accountability when 
model behavior is questioned in specific locations. Fourth, evaluation protocols should adopt spatially 
explicit validation by default, including cross-region and catchment holdouts, and results should be 
decomposed by terrain class and land-cover regime to identify systematic failure modes and prevent 
misleading aggregate performance claims. Fifth, operational deployment should incorporate 
uncertainty-aware reporting, where confidence indicators are provided for areas affected by label 
ambiguity, cloud contamination, or sensor noise, allowing decision makers to distinguish high-risk 
zones supported by strong evidence from those requiring additional verification. Sixth, data integration 
pipelines should include routine checks for temporal alignment between flood-event references and 
multispectral observations, since partial observability can bias both calibration and apparent detection 
rates. Finally, adoption should be supported by model governance artifacts, including feature 
dictionaries, preprocessing logs, calibration reports, and decision-threshold justifications, ensuring 
audit readiness and enabling consistent interpretation of vulnerability grades across agencies and time 
periods. These recommendations emphasized disciplined fusion modeling, spatially credible 
validation, calibrated decision outputs, and traceable workflows as the core requirements for reliable, 
decision-useful flood hazard and land-surface vulnerability prediction. 
LIMITATIONS 
Several limitations constrained the interpretation of results produced by this study and defined the 
boundaries of inference for the reported flood hazard and land-surface vulnerability maps. A primary 
limitation concerned label quality and partial observability. Flood extent references derived from 
remote sensing or event archives were subject to temporal misalignment with peak inundation, cloud 
contamination in optical imagery, and mixed-pixel ambiguity along flood boundaries, which 
introduced misclassification noise into both training and evaluation targets. This limitation was 
particularly relevant in vegetated floodplains and dense urban areas where water detection can be 
obscured by canopy cover, shadowing, or complex surface materials. A second limitation involved 
spatial autocorrelation and validation dependence. Although spatial holdouts and partition discipline 
were applied, residual spatial dependence may have remained within partitions due to broad-scale 
physiographic similarity, meaning that performance metrics could still reflect some degree of spatial 
familiarity rather than full out-of-area transfer. Third, resolution harmonization introduced 
methodological constraints. LiDAR and multispectral sources differed in spatial resolution and 
acquisition geometry, and resampling required to align datasets could have smoothed 
microtopographic detail or introduced interpolation artifacts, affecting both engineered predictors and 
learned representations. Fourth, terrain conditioning choices represented an additional source of 
uncertainty. Sink filling, breaching, and channel enforcement decisions influenced drainage 
connectivity proxies and convergence features, and alternative conditioning settings could yield 
materially different vulnerability patterns in flat basins where small barriers govern flow direction. 
Fifth, multispectral predictors remained sensitive to atmospheric correction and radiometric 
normalization assumptions. Even under standardized preprocessing, reflectance variability associated 
with aerosols, seasonal illumination differences, and sensor-specific bandpass characteristics could 
influence index-based descriptors of wetness, vegetation condition, and built-up intensity. Sixth, model 
interpretability differed across methods. While regression benchmarking supported transparent 
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coefficient interpretation, deep learning fusion models relied on latent representations that were less 
directly attributable to physical mechanisms, limiting explanatory granularity for certain localized 
predictions.  
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