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Abstract

This study addressed a persistent challenge in cloud-deployed, enterprise decision-support systems: even when
machine-learning models exhibit strong predictive performance, users may under-rely or inconsistently rely on
recommendations because post hoc explanations are perceived as unclear or unstable, constraining trust,
defensibility, and confident action. The purpose of the study was to examine how explanation quality
perceptions, specifically Perceived SHAP Interpretability (PSI) and Perceived Explanation Robustness (PER),
are associated with Trust in Al decision support (TRU), Decision Confidence (DCF), and Intention to Rely or
Use (INT) in high-stakes, case-based decision scenarios. A quantitative, cross-sectional, case-based design was
employed using two enterprise contexts: healthcare clinical risk decision support and financial risk governance
decision support. Standardized SHAP explanation artifacts were presented alongside decision vignettes, and a
5-point Likert-scale instrument measured PSI, PER, TRU, DCF, and INT, with controls for professional
experience, Al familiarity, and domain group. The final sample consisted of N = 240 screened respondents
(52.1% healthcare; 47.9% finance), with a mean professional experience of 7.8 years (SD = 4.6) and moderate
Al familiarity (M = 3.62, SD = 0.84). The analytic approach combined descriptive statistics, reliability analysis,
Pearson correlations, and a series of hierarchical multiple regression models. Mediation relationships were
examined using regression-based mediation logic through sequential model estimation, assessing changes in
direct effects when trust and confidence variables were introduced, rather than through causal path modeling or
bootstrapped indirect effects. Reliability across constructs was strong (PSI a = .88; PER a = .86; TRU a = .90;
DCF a =.87; INT a = .85). Mean scores exceeded the scale midpoint for all constructs (PSI M = 3.88; PER M
=3.61;, TRUM = 3.74; DCF M = 3.69; INT M = 3.58). Correlation and regression results indicated that PSI
and PER were positively associated with trust (PSI p = .41, p <.001; PER = .34, p < .001; R? = .52). Trust
accounted for substantial variance in decision confidence (f = .49, p <.001; DCF model R? = .57), and decision
confidence accounted for substantial variance in intention to rely on Al recommendations (f = 43, p < .001;
INT model R? = .49). When trust and confidence were included in the intention model, the direct associations
of PSI and PER with intention were no longer statistically significant, indicating indirect relationships
operating through trust and confidence. Overall, the findings suggest that SHAP interpretability and
explanation robustness are associated with trust formation and confidence calibration, which together account
for meaningful variance in reliance intentions in high-stakes healthcare and finance decision-support contexts.
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INTRODUCTION

Artificial intelligence (Al) is commonly defined as the design and use of computational systems that
perform tasks associated with human cognition, such as pattern recognition, prediction, classification,
and decision recommendation in complex environments. Within Al, machine learning (ML) refers to
algorithmic methods that learn statistical relationships from data to generate predictive models that
generalize beyond observed samples, often outperforming rules-based approaches when the input
space is high-dimensional and nonlinear (Dietvorst et al., 2015). In high-stakes decision support, ML
models are used to provide risk scores, triage priorities, diagnostic probabilities, fraud likelihood
estimates, or credit-default probabilities that shape real-world outcomes across healthcare and finance.
The “high-stakes” label is used for contexts where errors carry substantial costs, including patient
harm, inequitable access to care, regulatory breaches, financial losses, and systemic instability. The
rapid diffusion of ML into high-stakes workflows has intensified attention to interpretability and
explainability, because decision makers and overseers frequently require reasons, not only predictions.
Surveys and syntheses characterize explainable Al (XAI) as a family of methods and governance
practices that aim to make ML outputs intelligible to humans by representing how inputs contribute to
predictions, how models behave across populations, and how uncertainty or instability enters the
decision pipeline (Akhtar & Mian, 2018).

Figure 1: XAI Governance in High-Stakes Decision Support Systems
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SHAP (SHapley Additive exPlanations) is a widely used explainable Al approach that operationalizes
feature attribution using Shapley values from cooperative game theory, allocating each feature a
contribution to an individual prediction under axioms such as efficiency, symmetry, and additivity. In
practice, SHAP is valued because it provides local explanations (instance-level attribution vectors) that
can be aggregated into global summaries of feature influence, supporting both case-based justification
and model governance activities such as driver ranking, subgroup inspection, and monitoring of
attribution drift over time (Hoff & Bashir, 2015). Methodologically, SHAP includes model-agnostic
estimation procedures (e.g., KernelSHAP) and model-specific variants that exploit structure for
efficiency (e.g., TreeSHAP), which has contributed to its adoption in enterprise workflows where
explanation artifacts must be generated at scale and reported in standardized formats. However, the
literature also emphasizes that SHAP explanations depend on how “missingness” and the background
distribution are defined, meaning that attributions can change with different reference datasets,
preprocessing choices, and sampling approximations, which raises reproducibility and robustness
concerns in high-stakes settings (Miller, 2019). A central technical limitation concerns correlated
features: when independence assumptions are used, SHAP can implicitly evaluate unrealistic coalitions
that violate the data manifold, potentially producing misleading attributions that appear coherent but
do not reflect plausible domain states; dependence-aware alternatives and conditional estimation
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approaches have been proposed to address this issue. Related scholarship further argues that post hoc
attributions should not be treated as guarantees of model validity, and that explanation outputs require
evaluation for fidelity, stability, and susceptibility to manipulation, particularly when explanations are
used for audit, compliance, or decision justification. Collectively, this literature positions SHAP as a
practically influential attribution method whose governance value is strongest when explanation
configuration is documented and explanation robustness is explicitly assessed alongside predictive

performance.
Figure 2: SHAP-based Explainable AT Workflow
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Morever, Conceptualizations of interpretability in applied ML also emphasize that “understanding” is
not a single property: it depends on audience, task, stakes, and the degree to which an explanation
enables humans to evaluate validity, fairness, and reliability within operational constraints (Murdoch
et al., 2019). In internationally deployed systems, the pressure for explainability is amplified by cross-
jurisdictional requirements for accountability, auditability, and documentation across heterogeneous
institutions, languages, and standards of professional practice. In this environment, explainability
becomes a core component of decision support quality, because it interacts with the credibility of
evidence, the defensibility of actions, and the transparency of automated recommendations. The
research community therefore treats XAl not as a cosmetic addition but as an integral element of safe
and accountable use of ML in domains where decisions have enduring consequences for individuals
and institutions.

Explainability is often discussed alongside interpretability, transparency, and human trust, yet these
constructs operate at different levels of analysis. Interpretability is typically framed as the extent to
which a human can understand the internal mechanics of a model or its mapping from inputs to
outputs, while explainability is frequently operationalized as the provision of human-consumable
reasons for specific predictions or global model behavior. Scholars in Al and the social sciences show
that explanations are evaluated using human reasoning patterns, including causal narratives,
contrastive “why this outcome” structures, and context-sensitive relevance judgments rather than
purely mathematical completeness (Miller, 2019). Human-Al interaction research adds that
explanations influence reliance and calibration: users must decide when to accept automated advice
and when to override it. Empirical syntheses of trust in automation identify multi-layered drivers of
reliance, including perceived competence, predictability, transparency, and the alignment of system
behavior with user goals and norms (Hoff & Bashir, 2015). Behavioral evidence also indicates that
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people sometimes avoid algorithmic advice after witnessing errors (“algorithm aversion”), while other
settings show preference for algorithmic judgments (“algorithm appreciation”), highlighting that the
same technology can produce divergent reliance patterns depending on task framing, accountability
conditions, and perceived controllability (Dietvorst et al., 2015). Studies focused on explanation styles
demonstrate that explanation format and level of detail shape perceived fairness, perceived usefulness,
and trust, and that design choices can support more accurate trust calibration by helping users detect
limitations rather than merely increasing confidence (Naiseh et al., 2023). Complementary work on
trust calibration further indicates that the objective is not maximized trust but appropriately matched
trust, because over-reliance and under-reliance each degrade decision quality in human-Al
collaboration (Okamura & Yamada, 2020). In high-stakes contexts, these findings carry international
significance because decision makers often operate within institutional protocols that demand both
interpretability for audit and communicability for clients, patients, and regulators. Consequently,
explainability is treated as a socio-technical property that links model behavior to human judgment,
organizational accountability, and the traceability of decisions across diverse stakeholders.

Among XAI methods, Shapley-value attribution has become prominent because it offers a principled
way to allocate credit for a prediction across input features under a cooperative game-theoretic framing.
In operational ML, Shapley-based approaches are frequently implemented through SHAP (SHapley
Additive exPlanations) variants that produce local explanations for individual predictions and can be
aggregated into global summaries of feature influence. A widely cited application in tree-based models
demonstrates how local explanation vectors can be combined to form global understanding of model
structure and feature effects, supporting both case-level interpretability and population-level review in
nonlinear predictive systems (Obermeyer et al.,, 2019). This local-to-global bridge is particularly
relevant to high-stakes decision support because institutions often need both micro-level justification
(“why this patient is high risk” or “why this applicant is rejected”) and macro-level governance (“which
variables drive outcomes overall,” “how drivers vary across subgroups,” and “whether patterns are
stable”). XAl surveys also document that additive feature attribution is attractive because it can align
with conventional statistical reasoning used in regulated domains, where coefficient-based
interpretations are familiar and explanation artifacts can be incorporated into reports and oversight
processes (Arrieta et al.,, 2020; Bussmann et al., 2021). At the same time, scholarship distinguishes
explanations of black-box models from inherently interpretable models and argues that explanation
layers can be misunderstood as guarantees of model validity, particularly under high stakes where
users seek reassurance rather than critical evaluation (Rudin, 2019). Technical reviews of deep network
interpretation further show that explanation methods vary in assumptions and failure modes,
underscoring the need to test explanation fidelity, stability, and sensitivity under realistic data
conditions rather than treating any explanation output as self-validating (Reddy, 2022). SHAP is
therefore situated at the center of a broader methodological tension: it provides actionable interpretive
artifacts at scale, yet its practical value depends on whether the explanation remains consistent under
perturbations, sampling variation, correlated features, and domain shifts. This tension motivates
robustness testing, including stability checks across resampling schemes, stress tests under noisy or
adversarial inputs, and comparative evaluation across explanation methods for the same predictive
task.

Healthcare provides a canonical setting for high-stakes ML because model outputs can influence
diagnosis, prognosis, resource allocation, and treatment decisions across hospitals and health systems.
Clinical ML research describes how modern models leverage electronic health records (EHR), imaging,
and longitudinal data streams to generate predictions that support triage and risk stratification, while
also noting that translation into routine care requires careful evaluation, monitoring, and integration
into clinical workflows (Rajkomar et al., 2018). High-profile demonstrations of deep learning in medical
imaging illustrate the promise of ML for pattern recognition at scale, but they also intensify scrutiny of
transparency because clinicians must justify actions, communicate reasoning to patients, and document
decisions in regulated environments (Esteva et al., 2017). In practice, clinicians and health organizations
face a dual accountability problem: they must assess model accuracy and also defend model-driven
recommendations using explanations that are clinically meaningful. Commentary in medical literature
frames ML as a tool that reshapes how evidence is extracted from large datasets, with clinical benefit
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depending on rigorous validation and appropriate use conditions (Gramegna & Giudici, 2021). At the
same time, health equity research documents that widely used prediction algorithms can encode
harmful biases, producing unequal access to supportive care even when the stated objective appears
neutral, making transparency and auditing central requirements for responsible deployment (Guidotti
etal., 2018). XAl-focused healthcare scholarship adds that explanation is not merely a technical artifact;
it is a multidisciplinary challenge involving ethics, clinical reasoning, accountability, and the practical
constraints of time-limited decision making (Amann et al., 2020). Work in medical Al also underscores
the need to distinguish explanation from justification, because a plausible explanation can coexist with
inadequate calibration, poor generalization, or unintended proxy effects. Related discussions in digital
health emphasize that explainability is intertwined with governance, documentation, and stakeholder
communication in healthcare ecosystems where decisions are audited by multiple parties and
standards differ across regions (Amann et al.,, 2022). These dynamics make healthcare an essential
domain for examining SHAP interpretability and robustness testing within decision support pipelines
that must satisfy both predictive performance expectations and socio-technical accountability
requirements across varied institutional contexts.

Although explainable Al has received substantial attention in both healthcare and finance, a key gap
remains in how explanation robustness is evaluated and interpreted in practice. Existing studies
frequently assess explanation methods in technical terms (e.g., fidelity, feature attribution behavior
under perturbation, sensitivity to correlated inputs) or examine user-centered outcomes such as
perceived transparency, trust, and acceptance. However, there is a scarcity of research that directly
connects the technical stability of explanation outputs to users’ perceptions of that stability in high-stakes
decision settings. In regulated environments, stability is not only a methodological concern; it is also
an experiential property that shapes whether explanation artifacts are interpreted as reliable,
defensible, and appropriate for accountability-oriented decisions. When stability is not explicitly
measured and linked to user perceptions, organizations may assume that providing explanations is
sufficient even if the explanation outputs vary meaningfully across resampling, minor input
perturbations, or routine model updates. This unresolved linkage motivates empirical designs that
evaluate robustness as a measurable technical property while also measuring whether stakeholders
perceive those explanations as stable and whether such perceptions are associated with trust and
confidence outcomes under high-stakes conditions.

This study examines explainable machine learning as a decision-support mechanism in high-stakes
environments by focusing on SHAP-based interpretability and the robustness of explanation outputs
under controlled testing conditions in healthcare and finance. The first objective is to operationalize
and measure stakeholders’” perceptions of SHAP interpretability, emphasizing clarity,
understandability, and perceived usefulness of explanation artifacts when applied to realistic decision
scenarios where accountability and accuracy are salient. The second objective is to assess the robustness
of SHAP explanations through systematic stability testing, treating explanation reliability as a
measurable property that can be evaluated by observing how feature attributions vary across
structured perturbations to inputs, sampling conditions, and model configurations. The third objective
is to examine the associations of perceived interpretability and perceived robustness with trust in Al-
driven decision support, decision confidence during case evaluations, and intention to rely on Al
recommendations within each domain case context. The fourth objective is to estimate the strength and
direction of these relationships using quantitative modeling aligned with cross-sectional survey data,
while accounting for individual differences in expertise, professional experience, and prior Al
exposure. The fifth objective is to compare the healthcare and finance contexts to determine whether
interpretability and robustness are evaluated similarly across domains or whether domain-specific
accountability pressures are associated with different patterns of trust formation and reliance-related
outcomes. The sixth objective is to specify these expectations as empirically testable hypotheses and to
evaluate them using descriptive statistics, reliability analysis, correlation analysis, and multiple
regression models applied to Likert-scale constructs. The final objective is to integrate technical
robustness assessment and human perception measurement within a unified framework that produces
a coherent dataset linking explanation behavior and stakeholder evaluation, supported by clearly
defined constructs and measurable indicators suitable for quantitative testing.
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LITERATURE REVIEW

The literature on artificial intelligence-driven decision support in high-stakes domains emphasizes that
predictive performance alone is insufficient when model outputs influence consequential clinical and
financial outcomes, because decision makers must justify, audit, and communicate the rationale behind
recommendations in environments shaped by regulation, professional accountability, and risk
governance. Within this body of work, explainable AI (XAlI) is positioned as a set of methods and design
principles intended to increase transparency, interpretability, and human understanding of model
behavior, thereby supporting appropriate reliance and defensible decision making. Research across
human-AI interaction and responsible Al governance further shows that explanation is not merely a
technical add-on but a socio-technical mechanism that interacts with trust, perceived fairness,
perceived usefulness, and perceived controllability, each of which affects acceptance and reliance on
automated advice. In parallel, methodological scholarship distinguishes between intrinsically
interpretable models and post hoc explanation techniques applied to complex models, warning that
post hoc explanations can be misunderstood as guarantees of correctness if their limitations are not
evaluated and communicated. Among post hoc approaches, Shapley-value feature attribution has
gained prominence through SHAP-based methods that provide local explanations for individual
predictions and can be aggregated into global summaries of feature influence, offering a practical
pathway for explanation delivery in real decision-support workflows. However, an increasingly
important theme in recent literature is that explanation quality must be assessed beyond
informativeness and visual appeal, because explanation outputs may be sensitive to correlated
variables, sampling variation, preprocessing choices, and model retraining—conditions that can
produce instability in feature attributions even when predictive accuracy remains stable. This has
motivated a growing emphasis on robustness testing of explanations, where stability and consistency
are treated as measurable properties using perturbation-based methods, resampling schemes, or
retraining variations to examine whether explanations remain dependable under realistic uncertainty.
Healthcare-focused studies highlight additional pressures related to clinical accountability, patient
communication, and bias risk, while finance-focused studies emphasize auditability, compliance
requirements, rare-event modeling challenges, and the operational consequences of distribution shifts.
Taken together, the literature suggests that a rigorous evaluation of explainable machine learning for
high-stakes decision support requires integrating technical assessment of SHAP explanation robustness
with user-centered measurement of interpretability perceptions and trust-related outcomes, enabling
empirical examination of how explanation stability and perceived clarity jointly shape confidence and
reliance across domain case contexts.

AI-Driven Decision Support in High-Stakes Domains

Al-driven decision support in high-stakes domains refers to the use of computational prediction and
classification systems to inform decisions where errors can trigger serious harm, legal exposure, or
systemic loss. In healthcare, these systems ingest clinical histories, laboratory values, imaging outputs,
and workflow signals to generate risk estimates that shape triage, diagnosis support, and resource
allocation across diverse care settings. Decision support is embedded in time-constrained,
multidisciplinary workflows, so tools must deliver outputs that are timely, comprehensible, and
compatible with documentation requirements. The literature describes how data scale and model
complexity have enabled predictive performance gains, while also intensifying the need for careful
evaluation of clinical validity, subgroup performance, and operational fit because clinicians remain
accountable for actions taken on the basis of model outputs (Beam & Kohane, 2018). Translation from
prototype to routine use also depends on how risk scores and explanations are presented to frontline
users, since poorly communicated model information can produce misunderstanding, miscalibration,
and inconsistent uptake across roles and care settings. Operational deployment adds additional
constraints, including interoperability with electronic records, governance over model updates, and
mechanisms for tracking performance and user feedback after release. To address these realities,
research emphasizes structured approaches to communicating model purpose, inputs, limitations, and
intended use conditions in formats that clinicians can quickly interpret within clinical context (Sendak
et al., 2020). Across international health systems, these themes converge on a shared requirement: Al
decision support must be evaluated not only for accuracy but also for its capacity to support
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accountable decisions under real workflow pressures, variable data quality, and heterogeneous patient
populations (Jinnat & Kamrul, 2021; Ashraful et al., 2020). Consequently, high-stakes healthcare
decision support is increasingly framed as a lifecycle problem that spans development, validation,
implementation, monitoring, and organizational learning, with interpretability and robustness
becoming essential qualities for sustained use. This framing underpins domain-wide adoption and
oversight (Fokhrul et al., 2021; Towhidul et al., 2022).

High-stakes decision support raises questions about safety engineering and accountability mechanisms
that surround Al-enabled tools when recommendations can influence treatment pathways, escalation
decisions, or access to scarce resources (Faysal & Bhuya, 2023; Hammad & Mohiul, 2023). Clinical
decision support has historically relied on transparent logic, yet machine-learned systems can change
through retraining, data refreshes, and interface updates, creating the possibility that similar inputs
yield different outputs over time. The literature therefore distinguishes one-time validation from
ongoing assurance, emphasizing processes for verification, certification, monitoring, and incident
reporting that operate alongside clinical quality and safety programs (Masud & Hammad, 2024; Md &
Praveen, 2024). Consensus-oriented work synthesizes practical building blocks for responsible Al-
enabled clinical decision support, including documentation of model intent, explicit statements of
autonomy and human oversight, continuous performance surveillance, and standardized pathways to
report unexpected behavior or harm (Labkoff et al., 2024). This governance perspective connects to
interpretability because explanation artifacts are used in training, review, and audit conversations, and
to robustness because stability under operational change affects both trust and defensibility.
Implementation research also notes that Al decision support is consumed by multiple stakeholders
clinicians, informatics teams, compliance officers, and patients each needing different explanation
granularity to judge whether a recommendation fits a case. Responsible deployment depends on
aligning technical evaluation with human-centered evaluation of usability and comprehension, and on
ensuring that model updates do not silently shift decision logic without review (Newaz & Jahidul, 2024;
Sai Praveen, 2024). Internationally, this alignment is complicated by varied legal regimes, data
standards, and clinical practice norms, so governance frameworks emphasize transparency of data
provenance, clarity about intended populations, and plans for managing drift when patient mix or care
processes change. High-stakes clinical decision support is thus treated as an institutional capability that
must be maintained, audited, and learned from continuously (Faysal & Aditya, 2025; Azam & Amin,
2024).

In finance, Al-driven decision support is applied to credit underwriting, portfolio monitoring, fraud
detection, and early warning analytics, where model outputs influence access to capital, pricing, loss
mitigation actions, and supervisory responses. Because these decisions scale across large populations,
small shifts in predictive performance can translate into material changes in aggregate loss, consumer
outcomes, and institutional risk exposure (Hammad & Hossain, 2025; Towhidul & Rebeka, 2025).
Empirical research shows that machine-learning methods can improve consumer -credit-risk
forecasting by combining credit bureau attributes with transaction signals to produce timely, nonlinear
risk scores, and it links these forecasts to operational interventions such as credit-line adjustments and
portfolio-level risk monitoring (Khandani et al., 2010; Yousuf et al., 2025; Azam, 2025). The high-stakes
character of these applications arises from the economic consequences of misclassification and the legal
and reputational costs associated with decisions that are difficult to justify. FinTech lending research
also shows that technology-enabled interfaces can compress decision timelines and broaden data
sources used in screening, which increases the need for governance structures that can explain
outcomes to customers and regulators (Berg et al., 2022; Tasnim, 2025; Zaheda, 2025b). Across
jurisdictions, financial institutions operate under model-risk management expectations that require
documentation, independent review, and change control for models that inform material decisions;
explainability methods are used to summarize drivers of risk scores and generate reason codes for
adverse actions (Zaheda, 2025). Robustness is central because macroeconomic conditions, borrower
behavior, and fraud strategies shift over time, so models can deteriorate in production and produce
unstable attributions that complicate auditing. These pressures position finance as a complementary
domain to healthcare for studying explainable machine learning, enabling comparison of explanation
needs under different data-generating processes and accountability routines. Financial decision

338



American Journal of Advanced Technology and Engineering Solutions, January 2026, 332-368

support frequently interacts with automated workflows, so explanation artifacts must travel across
internal teams, customer communications, and supervisory review. This multi-audience requirement
elevates interpretability and stability as measurable qualities rather than optional reporting features in
practice.

Figure 3: Triangle Framework For AI-Driven Decision Support In High-Stakes Domains
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Explainable AI (XAI) Concepts, Approaches, and Evaluation

Explainable artificial intelligence (XAI) addresses the reality that many high-performing machine-
learning models operate as complex function approximators whose internal representations are not
readily interpretable by human decision makers. In high-stakes settings, explanation functions as an
interface between statistical inference and accountable action, connecting model behavior to the
information needs of clinicians, analysts, auditors, managers, and affected individuals. Core concepts
distinguish transparency, interpretability, and explainability. Transparency describes the degree to
which system components, data provenance, and processing steps are open to inspection.
Interpretability refers to the extent a human can understand a model’s mapping from inputs to outputs,
either because the model is simple by design or because outputs can be decomposed into
comprehensible parts (Selvaraju et al., 2020). Explainability emphasizes the communication of reasons
for predictions or decisions in forms that support questioning and verification within a task context.
These definitions guide research design by treating explanations as purposeful artifacts evaluated
relative to audience goals and domain conventions rather than as generic visualizations. Because
stakeholders differ in what they must justify, XAl research separates local explanations, which justify
a single prediction, from global explanations, which describe behavior across cases. A complementary
distinction separates model-specific explanations, which exploit structure such as gradients or tree
paths, from model-agnostic explanations, which use query access to approximate behavior. This
taxonomy supports comparison of methods and encourages evaluation designs that connect
explanation form to decision tasks, governance, and user comprehension, while emphasizing the
documentation of assumptions because explanation outputs depend on data processing, feature
definitions, and the pipeline that consumes them (Mohseni et al.,, 2020). Internationally, these
distinctions matter because institutions must align technical explanations with legal duties,
professional standards, and expectations for reason-giving, which vary across jurisdictions and
organizational cultures.
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In addition to interpretability, high-stakes evaluation requires an explicit account of explanation
robustness, because explanation outputs can vary across repeated runs and operational changes even
when predictive performance remains stable. In this study, Explanation Robustness is defined as the
degree to which an explanation remains stable and reproducible under small, plausible perturbations
to (a) input values, (b) sampling/background reference sets, and (c) model or pipeline conditions (e.g.,
retraining, resampling, or configuration choices). Operationally, robustness concerns whether the
identity, ranking, and directional influence of the most influential features in an explanation remain
consistent when explanation generation is repeated under controlled perturbation and resampling
procedures. Under this definition, explanation robustness is treated as a measurable quality attribute
of explanation artifacts rather than as a general belief about Al reliability. This distinction is important
in high-stakes contexts because unstable explanations can weaken auditability, defensibility, and users’
capacity to justify decisions to stakeholders, regulators, or oversight bodies.

Figure 4: Conceptual Framework For Explainable AI (XAI) Concepts
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SHAP Interpretability in Practice

SHAP interpretability is commonly operationalized in practice as a feature-attribution workflow that
converts a model prediction into an additive set of contributions assigned to input variables, enabling
users to inspect which inputs increased or decreased a specific risk score and to summarize driver
patterns across many cases. In applied deployments, SHAP outputs are used in two complementary
ways: local explanations support case-level review by listing feature contributions for a single patient
record or financial application, while aggregated explanations summarize overall model behavior by
ranking features, profiling attribution distributions, and comparing driver patterns across cohorts or
time windows. These practices align with governance needs because they create artifacts that can be
stored, reviewed, and communicated as part of model documentation and quality assurance routines.
In real settings, however, the practical meaning of a SHAP attribution depends on how “missingness”
or feature removal is defined when computing marginal contributions, because the method must
represent what the model would output if a feature were unknown. When features are correlated, naive
independence assumptions can generate unrealistic synthetic samples during the explanation
procedure, which can distort attributions and produce narratives that do not align with plausible
domain conditions. A major practical implication is that SHAP explanations may appear coherent while
encoding counterfactual input combinations that would not occur in real patients or real borrowers,
undermining explanation credibility for expert users. Research extending Kernel SHAP to dependent
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features formalizes this problem and proposes alternatives that better respect feature dependence,
showing that dependence-aware estimation changes attribution patterns and reduces misleading
explanations under correlation structures that are typical in applied data (Aas et al., 2021). In practice,
this dependence issue is not an edge case, because healthcare measurements often co-move through
physiology and treatment protocols, and finance attributes frequently co-vary through income,
utilization, and portfolio structure. As a result, practitioners increasingly treat SHAP interpretability
not as a single output but as a process that requires careful alignment between data-generating realities
and the mathematical assumptions embedded in the explanation algorithm. When SHAP explanations
vary across repeated runs, small input changes, or routine model updates, users may notice changes in
which features are highlighted, the rank order of “top drivers,” or the direction of feature contributions,
even when the predicted score remains similar. In high-stakes workflows, these visible shifts can be
interpreted as inconsistency in the system’s rationale, reducing perceived defensibility for audit,
documentation, or stakeholder communication. As a result, explanation stability functions as a
reliability cue at the interface level: explanations that appear consistent are more likely to be perceived
as dependable, whereas explanations that “change” can be associated with lower trust and reduced
decision confidence, particularly when accountability for the final decision remains with the human
user.
Figure 5: Triangle Framework For SHAP Interpretability In Decision Support
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A second practical dimension of SHAP use concerns computational constraints and repeatability when
explanations are produced at scale or under strict latency requirements. High-stakes decision support
often involves large populations, frequent scoring, and the need to regenerate explanations after model
updates, data refreshes, or monitoring alerts. These operational demands raise questions about which
forms of SHAP can be computed efficiently and which settings are inherently intractable. Complexity
analysis shows that computing SHAP explanations can be computationally difficult even for modeling
settings that are widely used in practice, and it clarifies that tractability depends on both the model
class and the assumptions about the input distribution used in the explanation procedure (Van den
Broeck et al., 2022). From an implementation standpoint, this matters because explanation pipelines
must be stable, auditable, and reproducible across runs, and because governance teams need consistent
artifacts to compare pre-deployment and post-deployment behavior. If explanation generation is
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computationally expensive, institutions may resort to approximations, sampling, or caching strategies,
which can introduce additional variability into the explanations presented to end users. Variability
becomes a practical risk when stakeholders interpret explanation changes as evidence that the model
is “changing its mind,” even if predictive performance remains similar. Therefore, practitioners often
implement SHAP under explicit operational policies, such as fixed random seeds, controlled
background datasets, and standardized preprocessing steps, so that attribution outputs are comparable
across time. In healthcare, repeatability supports clinical review meetings and audit trails for adverse
events; in finance, repeatability supports model risk management functions that compare explanation
distributions across segments and reporting periods. These constraints also motivate robustness testing
protocols that measure whether explanation rankings and directions remain consistent under
controlled variation, treating explanation stability as a measurable operational property rather than an
informal expectation.

A third practical theme is that SHAP interpretability is increasingly used alongside sensitivity-analysis
perspectives that distinguish local, global, and hybrid “glocal” understandings of model influence. In
applied decision support, local attributions help justify an individual decision, yet governance often
requires global understanding of which variables drive outcomes overall and whether interactions or
dependence structures alter that story. Shapley effects in global sensitivity analysis provide a
theoretical bridge by interpreting feature importance through variance contributions, supporting
explanations that remain well-defined even when inputs are dependent and interactions are present
(Song et al., 2016). Recent work emphasizes that multiple Shapley-based formulations can yield
complementary insights at different scales, motivating practice-oriented frameworks where local case
explanations are interpreted alongside global summaries and interaction indices rather than treated as
substitutes (Borgonovo et al., 2024). At the same time, practice-facing research highlights that
conventional SHAP implementations may misinterpret correlated, high-dimensional inputs because
they can produce coalitions that violate the data manifold, leading to attributions that do not reflect
realistic feature configurations. Manifold-based Shapley approaches propose generating Shapley
values in a latent representation that preserves correlations and then mapping attributions back to the
original feature space, aiming to correct misinterpretations and improve feasibility in complex high-
dimensional settings (Hu et al., 2024). For high-stakes domains, these developments matter because
they connect explanation validity to the structure of the data, reinforcing that explanation robustness
requires both algorithmic stability and distributional realism. Practitioners therefore increasingly
combine SHAP outputs with dependence diagnostics, subgroup profiling, and robustness checks to
ensure that explanations used for justification, audit, and communication remain consistent with the
operational realities of healthcare and finance decision pipelines.

Robustness and Stability of Explanations in High-Stakes XAI

Robustness in explainable machine learning refers to the extent to which an explanation remains
consistent, meaningful, and decision-relevant when an input record (or the explanation procedure
itself) is exposed to small, plausible perturbations. In high-stakes decision support, explanations are
not simply interpretive accessories; they function as audit artifacts that justify decisions, communicate
risk, and document accountability. As a result, explanation instability can damage trust and governance
even when a model’s predictive accuracy appears stable. A core reason is that many post-hoc
explanation methods rely on sampling, local approximation, and design choices (e.g., perturbation
distributions, neighborhood size, background data) that can yield materially different feature-
importance rankings across repeated runs. Robustness therefore needs to be framed as a repeatability
and reproducibility requirement: if the same case is explained multiple times under equivalent
conditions, the explanation should converge to a similar set of influential features and comparable
contribution magnitudes. A practical way to operationalize this requirement is through explicit
stability indices that quantify the variability of selected features and their associated weights across
repeated explanations. For example, stability-focused work on LIME in risk-oriented settings
formalizes complementary indices to capture both variation in the identity of explanatory features and
variation in the coefficients assigned to those features, enabling practitioners to detect when
explanations are effectively “moving targets” rather than reliable decision rationales (Visani et al.,
2022). Such indices are particularly valuable in healthcare and finance because decisions are often
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reviewed after the fact by oversight bodies, and inconsistent explanations can be interpreted as
evidence of unreliable reasoning, weak model governance, or inadequate validation. Robustness
testing, accordingly, becomes a necessary component of explanation quality assurance, alongside more
familiar checks of predictive performance.

Figure 6: Hexagonal Framework For Robustness And Stability In High-Stakes XAI
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A second robustness challenge is that explanation stability is shaped by the data regime in which
models are trained and evaluated, meaning that explanation variance can increase when datasets
exhibit skew, sparsity, or class imbalance. This issue is especially salient in finance (e.g., default
prediction) and healthcare (e.g., rare adverse outcomes), where the minority class is frequently the
decision-critical group that demands the clearest justification. When minority cases are scarce, the
learned decision boundary may become sensitive to sampling fluctuations and local neighborhood
composition, which can amplify instability in local explanations. In practical terms, the same individual
case may receive different feature-importance rankings depending on whether the explainer’s
neighborhood is dominated by majority-class instances or contains sufficient minority-class
representation to characterize the relevant decision surface. Empirical evidence from imbalanced
credit-scoring contexts shows that the stability of both LIME- and SHAP-based interpretations
degrades as class imbalance increases, indicating that interpretability itself can be adversely affected
by the statistical structure of the dataset (Y. Chen et al., 2024). This has direct implications for high-
stakes deployment because stability failures are likely to concentrate precisely where models are most
scrutinized —borderline cases, minority outcomes, and high-loss decisions. Robustness therefore
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should be assessed under multiple data conditions, including controlled imbalance levels, alternative
resampling strategies, and realistic distribution shifts. In healthcare, analogous concerns arise when
models trained in one hospital system or population subgroup are applied elsewhere: even if
performance transfers moderately well, explanation stability may deteriorate because feature
relationships and prevalence patterns differ, producing fluctuating attributions that confuse clinicians
and complicate documentation. Robustness testing must therefore treat the dataset as part of the
explanation system, not merely a backdrop for model training.

Robustness must also be considered under adversarial and counterfactual perspectives, because
explanations can be manipulated or can fail to provide dependable recourse under uncertainty. In
adversarial settings, the threat is not only that model predictions can be attacked, but also that
explanation outputs can be altered to appear innocuous, compliant, or fair while the underlying
decision logic remains problematic. A comprehensive survey of adversarial attacks and defenses in
explainable Al synthesizes how data poisoning, model manipulation, and backdoor strategies can
preserve nominal predictive behavior while changing explanatory behavior, undermining auditability
and high-stakes governance (Baniecki & Biecek, 2024). In parallel, robustness concerns appear in the
relationship between interpretability and adversarial examples: attackers can exploit instabilities in
saliency or attribution patterns to either evade detection or cause misleading interpretation signals.
Work leveraging saliency characteristics for adversarial example detection highlights that
interpretability outputs can change systematically under attack, and that these changes can be used
diagnostically —underscoring that explanation behavior is itself a security-relevant surface that must
be tested (Wang & Gong, 2021). Finally, robustness is central to counterfactual explanations used for
recourse: if a recommended change is fragile, small adverse perturbations beyond the user’s control
can invalidate the recourse pathway or make it far more costly than anticipated. Formal treatment of
robust counterfactuals demonstrates that counterfactual recommendations are often not robust, and
that incorporating robustness into the search process can yield recourse options that remain feasible
under adverse perturbations (Virgolin & Fracaros, 2023). For high-stakes healthcare and finance, these
strands converge into a unified requirement: robust explainability must address run-to-run stability,
data-regime sensitivity, adversarial resilience, and recourse reliability, because explanation failures can
translate into regulatory risk, operational risk, and harm to affected individuals.

Theoretical Framework

High-stakes Al decision support can be theorized as a special case of technology acceptance in which
users evaluate not only usefulness and ease of use, but also the defensibility and reliability of acting on
algorithmic recommendations under accountability constraints. In this study, Technology Acceptance
Model 3 (TAM3) is used as the primary theoretical foundation to connect explanation quality
perceptions to reliance-related outcomes, because TAM3 explains how belief formation regarding
perceived usefulness (PU) and perceived ease of use (PEOU) accounts for variance in behavioral
intention (BI) and use in organizational settings (Venkatesh et al., 2012). In high-stakes environments,
PU is interpreted as decision performance expectancy, reflecting whether the system is perceived to
improve decision accuracy, speed, and justification adequacy, while PEOU reflects the perceived
cognitive effort required to interpret and apply model outputs. Within this TAM-consistent framing,
perceived SHAP interpretability (PSI) is positioned as an information quality belief that is associated
with stronger PU and lower interpretive burden because SHAP artifacts (e.g., feature attribution
vectors, ranked drivers) can support intelligibility, verification against domain logic, and
communication of rationale for audit and oversight purposes (Rai, 2020). The framework further treats
Explanation Robustness as a distinct construct that must be explicitly defined rather than implied: in
this study, explanation robustness refers to the degree to which explanation outputs remain stable and
reproducible under small, plausible perturbations to input values, sampling or background reference
data, and model or pipeline configurations (e.g., resampling, retraining, or parameter changes), with
stability interpreted as consistency in the identity, ranking, and directional influence of influential
features across repeated explanation generation. This robustness definition is intentionally scoped to
explanation artifacts (not merely predictive stability), because in accountability-oriented domains,
instability in explanation outputs can weaken defensibility even when predictive accuracy remains
unchanged. To incorporate reliance mechanisms central to high-stakes decision support, the study
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integrates trust as a mediating construct within a TAM-style acceptance structure, specifying that PSI
and perceived explanation robustness (PER) are expected to be positively associated with trust in Al
decision support (TRU), and that TRU is expected to account for variance in downstream decision
confidence (DCF) and intention to rely/use (INT). Trust-in-automation theory is treated as
complementary rather than competing with TAMS3, because it clarifies why interpretability and
robustness operate as different trust cues: interpretability primarily provides transparency cues that
support mental-model formation, while robustness provides reliability cues that reduce concern that
explanations are unstable or sensitive to minor changes in data or system state. Accordingly, the
theoretical framing specifies regression-ready relationships consistent with the study’s analytic
approach, where TRU is modeled as a function of PSI and PER, and reliance-related outcomes are
modeled as functions of trust and confidence, yielding a unified explanation of how explanation clarity
and explanation stability perceptions are associated with trust calibration and reliance intentions in
high-stakes healthcare and finance decision-support contexts.

Trust theory in the AI context clarifies why interpretability and robustness should be modeled as
distinct antecedents. Trust research synthesizes evidence that Al differs from earlier deterministic
technologies because it can adapt, learn, and behave in ways that are difficult for users to predict,
making reliability signals and transparency cues central to trust calibration (Glikson & Woolley, 2020).
In explainable ML decision support, SHAP interpretability primarily supplies transparency cues that
help users form a mental model of why a recommendation was produced, while robustness testing
supplies reliability cues that reduce concern that the explanation is unstable or sensitive to minor
changes in data or model state.

Theoretical framing from information systems emphasizes that explainability objectives vary by
stakeholder, and that explanations can serve governance, user decision making, and system
improvement simultaneously, which supports modeling interpretability as a belief construct and
robustness as an assurance construct rather than treating both as a single “transparency” variable
(Meske et al.,, 2020). This separation is especially relevant in healthcare and finance where
accountability processes require stable rationales across time and consistent decision justification across
similar cases. As a result, the theoretical framework for this study treats SHAP interpretability (PSI) as
a mechanism that supports understandability and perceived decision benefit, and explanation
robustness (PER) as a mechanism that supports reliability and defensibility of explanations, with both
influencing trust and downstream reliance-related outcomes in a measurable, testable structure aligned
with regression-based hypothesis testing.

Figure 7: Theoretical Framework of the Study
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Conceptual Framework

A conceptual framework for Al-driven explainable machine learning in high-stakes decision support
must treat explainability as a measurable system property that influences human judgment through
cognitive and behavioral mechanisms. In this study, Perceived SHAP Interpretability (PSI) represents
the degree to which users judge SHAP-based explanations as clear, understandable, and decision-
relevant, while Perceived Explanation Robustness (PER) represents the degree to which users believe
those explanations remain stable under small, plausible perturbations. These beliefs are theorized to
shape Trust Calibration (TRU) and downstream Decision Reliance/Decision Quality (DRQ) within
healthcare and finance case contexts. The conceptual framing is grounded in the empirical observation
that transparency can raise trust only when information is balanced and cognitively tractable, because
excessive disclosure may overload users and reduce confidence in the system’s outputs (Kizilcec, 2016).
In this framework, PSI is not treated as “more information is always better”; rather, it is modeled as a
quality perception that depends on whether explanations support intelligibility. Intelligibility research
demonstrates that explanation form (e.g., “why” and “why-not”) changes whether users can reason
about system behavior and whether they can detect inconsistencies, which justifies PSI as a structured
construct captured through multi-item Likert indicators rather than a single satisfaction item (Lim et
al., 2009). Consequently, PSI is operationalized as the user’s perceived ability to (a) identify key drivers,
(b) connect drivers to domain logic, and (c) communicate reasons to stakeholders. PER is
operationalized as the user’s perceived confidence that the same case would yield a consistent
attribution profile across repeated runs, background sets, and minor input changes. Together, PSI and
PER function as the primary explanatory perceptions that feed into trust calibration and reliance
outcomes within the proposed research model.

Figure 8: Conceptual Framework for AI-Driven Explainable Machine Learning
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At the technical layer, the conceptual framework anchors interpretability to SHAP’s additive
attribution logic, which supports a transparent link between prediction and feature contributions. For
a model f(-)and an instance x, SHAP expresses the prediction as:

M
fG) =EIFO01+ ) o
i=1

where E[f(X)]is the baseline expectation and ¢;is the contribution of feature iacross Mfeatures.
Conceptually, PSI increases when users perceive the set {¢;}as coherent, sparse enough to interpret,
and aligned with decision narratives. Robustness is represented by the stability of attribution vectors
under repeated explanation conditions. A simple stability expression relevant for robustness testing is
the correlation of attribution vectors between two runs:

S = corr(¢pWr @)
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where higher Sindicates more consistent explanations for the same case. However, the human-centered
evidence shows that interpretability cues do not automatically yield better teaming or better accuracy;
explanations can increase acceptance of Al recommendations even when the Al is wrong, which makes
trust calibration a critical mediating construct in high-stakes settings (Bansal et al., 2021).
Complementing this, controlled experiments demonstrate that “more interpretable” models can
produce counterintuitive user behaviors, including reduced error detection due to information
overload, indicating that PSI must be measured distinctly from performance metrics (Poursabzi-
Sangdeh et al., 2021). Therefore, the framework explicitly separates (a) explanation perceptions (PSI,
PER), (b) psychological reliance mechanisms (TRU), and (c) outcome constructs (DRQ, overreliance
risk). This separation supports quantitative testing using correlation and regression while preserving
theoretical clarity between what explanations are, how they are perceived, and how they affect decisions.
At the behavioral layer, the conceptual framework positions TRU as a mediator linking explanation
perceptions to reliance-related outcomes in healthcare and finance case settings. The key concern is not
only whether users like explanations, but whether explanations support calibrated reliance and
improved decision handling under uncertainty. Evaluation research cautions that proxy tasks and
subjective trust ratings can be misleading predictors of real task performance, implying that DRQ
should be measured using decision-task aligned items (or scenario-based items) in addition to
perception measures (Bucinca et al., 2020). Accordingly, the framework specifies three regression-ready
relationships suitable for the study design: (1) TRU = ag + a1 PSI + a, PER + ¢€; (2) DRQ = By + [, PSI +
P2PER + B3TRU + ¢; and (3) an optional overreliance risk model OR = yy + y;TRU + y,PSI + y3PER +
g, where OR captures tendencies to accept Al output without verification in high-stakes scenarios.
These relationships map directly to the planned quantitative approach (descriptive statistics for
constructs, correlation matrix, and multiple regression with hypothesis tests). PSI and PER are
measured via Likert-scale constructs reflecting interpretability clarity and explanation stability
perceptions; TRU is measured as calibrated confidence in system recommendations; and DRQ is
measured as perceived decision quality, justification adequacy, and perceived error-detection
capability within case vignettes. This conceptual framework therefore integrates SHAP’s formal
explanation structure with robustness notions and empirically grounded human response patterns,
enabling hypothesis-driven testing in cross-sectional case-study contexts.

METHODS

The methodology for this study has been designed to examine explainable machine learning for high-
stakes decision support by integrating a quantitative, cross-sectional survey with two domain-based
case study contexts in healthcare and finance. The research approach has been structured to capture
both the technical characteristics of SHAP explanations and the human-centered perceptions that have
shaped trust and reliance on Al recommendations in consequential decision scenarios. A structured
survey instrument was developed using a five-point Likert scale to measure the study constructs:
perceived SHAP interpretability, perceived explanation robustness, trust in Al decision support,
decision confidence, and intention to rely on Al outputs. Survey items were adapted and contextualized
from established measurement scales in the information systems, human-AlI interaction, and trust-in-
automation literature, rather than created de novo. Specifically, interpretability- and explanation-
related items were adapted from prior XAl and intelligibility research that operationalizes perceived
understanding, clarity, and usefulness of explanations (e.g., Lim et al., 2009; Kizilcec, 2016; Mohseni et
al., 2020), while trust-related items were adapted from validated trust-in-automation and trust-in-Al
scales emphasizing reliability, predictability, and confidence in system outputs (Hoff & Bashir, 2015;
Glikson & Woolley, 2020). Decision confidence and intention-to-rely items were adapted from
technology acceptance and decision-support adoption studies grounded in TAM and related
extensions, which operationalize confidence, reliance intention, and willingness to act on system
recommendations in organizational settings (Venkatesh et al., 2012; Rai, 2020). All items were reworded
to reflect the specific context of SHAP-based explanation artifacts and high-stakes decision scenarios in
healthcare and finance, following recommended practices for scale adaptation and contextualization.
The survey design employed a case-based presentation format in which respondents evaluated
standardized decision scenarios accompanied by SHAP explanation outputs, enabling consistent
construct measurement across participants. A dual-case configuration was used to assess
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interpretability and robustness perceptions under contrasting high-stakes conditions, with clinical risk-
related decision support representing healthcare and risk governance-oriented decision support
representing finance.

Data collection has been planned through a structured procedure that has included participant briefing,
scenario exposure, item response recording, and demographic profiling to support subgroup analysis
and control-variable inclusion. Instrument quality has been strengthened through pilot testing, expert
review for content validity, and reliability checks to ensure internal consistency of multi-item
constructs. The analytic strategy has been planned to apply descriptive statistics for summarizing
respondent characteristics and construct distributions, followed by correlation analysis to examine the
strength and direction of relationships among measured variables. Multiple regression modeling has
been specified to test hypotheses regarding the predictive effects of interpretability and robustness
perceptions on trust and decision confidence outcomes, while controlling for experience and domain
exposure. Robustness testing has also been incorporated at the technical level by repeating SHAP
explanation generation under controlled perturbation and resampling conditions, allowing stability
metrics to be derived and incorporated as explanatory evidence within the case study layer. Overall,
the methodology has been configured to provide a coherent empirical basis for evaluating explanation
clarity and stability as measurable determinants of user trust and decision-support effectiveness across
healthcare and finance.

Research Design

This study has been designed as a quantitative, cross-sectional investigation supported by two
comparative case-study contexts to examine explainable machine learning in high-stakes decision
support. The design has combined structured survey measurement with standardized scenario
exposure so that participant perceptions of SHAP interpretability and explanation robustness have
been captured at a single point in time. A cross-sectional approach has been selected because the
relationships among interpretability, robustness, trust, and decision confidence have been tested
through statistically observable associations rather than longitudinal change.

Figure 9: Methodology of The Research
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The case-study element has been incorporated to anchor responses in realistic healthcare and finance
decision situations, ensuring that constructs have been evaluated under domain-relevant
accountability pressures. The research model has been operationalized through multi-item Likert
measures and has been aligned with descriptive statistics, correlation analysis, and regression
modeling, enabling hypothesis testing and comparative interpretation across the two domains within
one coherent methodological structure.

Case Study Context

Two case study contexts have been constructed to represent high-stakes decision environments where
Al recommendations have influenced consequential outcomes and where explanations have been
needed for defensibility. The healthcare case context has been framed around a clinical risk-related
decision scenario, such as patient risk stratification, triage prioritization, or adverse event prediction,
and it has included a model output accompanied by SHAP-based explanation artifacts. The finance
case context has been framed around a risk governance scenario, such as credit risk assessment, fraud
likelihood evaluation, or default prediction, and it has similarly included prediction outputs and SHAP
explanations. Both contexts have been standardized through comparable presentation layouts,
consistent terminology, and controlled information exposure so that differences in responses have
reflected domain effects rather than interface inconsistencies. Each case has been presented as a realistic
vignette that has required respondents to judge explanation clarity and stability under accountability-
oriented decision conditions.

Population and Unit of Analysis

The population for this study has been defined as individuals who have possessed decision-making,
analytical, or oversight responsibilities in healthcare or finance contexts, including practitioners,
analysts, managers, and advanced users of decision-support outputs. Participants have been targeted
because they have evaluated risk-related recommendations in their work or academic practice and have
been positioned to judge whether explanations have supported responsible decision making. The unit
of analysis has been the individual respondent, because perceptions of interpretability, robustness,
trust, and decision confidence have been measured at the person level and have been modeled as
predictors of reliance-oriented outcomes. Domain membership has been treated as a grouping attribute
so that comparisons have been made between healthcare and finance contexts. Participant-level
controls, such as professional experience, familiarity with Al, and role type, have been incorporated to
account for heterogeneity in how explanations have been interpreted and how reliance judgments have
been formed.

Sampling Strategy

A purposive sampling strategy has been adopted because the study has required respondents who
have understood high-stakes decision settings and have been able to evaluate explanation usefulness
within realistic accountability constraints. Convenience recruitment channels have been used to access
eligible participants efficiently while maintaining inclusion criteria that have ensured relevance to the
two case domains. Screening questions have been used to confirm that participants have had exposure
to healthcare or finance decision processes or have had sufficient analytical literacy to interpret risk
outputs and explanation displays. The sample has been planned to support regression modeling by
targeting a size that has provided stable coefficient estimation for the number of predictors included,
while also allowing domain-based subgroup comparison. Balance across the two domains has been
pursued so that healthcare and finance respondents have contributed meaningful representation. The
sampling plan has emphasized diversity in roles and experience levels so that interpretability and
robustness perceptions have been captured across varied stakeholder viewpoints.

Data Collection Procedure

Data collection has been organized as a structured survey workflow that has integrated scenario
presentation and construct measurement into one consistent respondent experience. Participants have
been provided with an information sheet and consent statement, and they have been guided through
a brief orientation explaining the purpose of the study and the meaning of the displayed explanation
artifacts. Each respondent has been shown the healthcare and finance case vignettes in a controlled
sequence, and model outputs with SHAP visuals have been presented using standardized formatting
to minimize interpretation noise. After each vignette, respondents have completed Likert-scale items
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capturing perceived interpretability, perceived robustness, trust, and decision confidence, and they
have also provided demographic and background information. Attention checks have been embedded
to improve response quality, and completion timing has been monitored to identify rushed
submissions. The dataset has been exported into an analysis-ready format, and anonymization
procedures have been applied to protect participant identity.

Instrument Design

A structured questionnaire has been developed to operationalize the study constructs using a five-point
Likert scale ranging from strongly disagree to strongly agree. Multi-item scales have been constructed
for perceived SHAP interpretability, perceived explanation robustness, trust in Al decision support,
decision confidence, and intention to rely on Al outputs, enabling internal consistency assessment and
construct-level scoring. Items have been written to reflect clear behavioral meaning, such as whether
explanations have enabled identification of key drivers, whether attributions have appeared stable
under minor changes, and whether respondents have felt justified in acting on the recommendation.
The instrument has been organized into sections that have followed the scenario exposure flow,
reducing cognitive switching and improving response consistency. Demographic and experience items
have been included to support control-variable modeling and subgroup comparison. The survey has
been formatted to ensure readability of SHAP artifacts and clarity of item wording, and skip logic has
been used where needed to keep the response path efficient.

Pilot Testing

Pilot testing has been conducted to evaluate clarity, timing, comprehension of the case vignettes, and
usability of the SHAP explanation displays. A small set of respondents (N = 30) has been recruited to
complete the draft instrument, and structured feedback has been collected on ambiguous terms,
confusing visuals, and repetitive items. Item wording has been refined where participants have
indicated misinterpretation of interpretability versus robustness, and definitions have been
strengthened to ensure consistent understanding. The ordering of items has been adjusted to reduce
priming effects, and scenario instructions have been rewritten to improve realism and minimize
leading cues. Pilot responses have been analyzed to inspect preliminary reliability patterns, identify
items with poor variance, and detect ceiling or floor effects. Timing data has been reviewed to ensure
the survey has remained feasible without fatigue, and interface adjustments have been made to
improve readability on common devices. The pilot phase has therefore strengthened the instrument’s
clarity and the study’s procedural reliability before full deployment.

Mediation analysis

Mediation analysis was conducted using a regression-based mediation approach consistent with
established practices in information systems research, rather than full structural equation modeling.
Sequential multiple regression models were estimated to examine whether trust in Al decision support
and decision confidence mediated the relationships between perceived SHAP interpretability,
perceived explanation robustness, and intention to rely on Al recommendations. Mediation was
assessed by comparing direct effects of interpretability and robustness on intention with and without
the inclusion of trust and confidence variables, evaluating changes in coefficient magnitude and
statistical significance, and examining explained variance (R?) across models. This approach is
appropriate for cross-sectional survey data and aligns with TAM-based mediation logic, allowing
indirect relationships to be inferred without making strong causal claims.

Validity and Reliability

Validity and reliability procedures have been established to ensure that the instrument has measured
the intended constructs accurately and consistently. Content validity has been supported through
expert review, where domain-informed readers have assessed whether items have reflected the
meaning of interpretability, robustness, trust, and confidence within high-stakes decision contexts.
Construct validity has been strengthened by aligning each item set with a single conceptual definition
and by checking that cross-construct overlap has been minimized through careful wording and distinct
indicators. Internal consistency reliability has been evaluated using Cronbach’s alpha for each multi-
item construct, and item-total correlations have been inspected to determine whether any indicators
have weakened scale coherence. Data screening rules have been applied to address missing values,
careless responses, and inconsistent patterns, supporting measurement stability. Procedural steps,
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including standardized scenario exposure and consistent SHAP visualization formats, have been used
to reduce method variance. These actions have ensured that statistical findings have been grounded in
robust measurement quality.

Software and Tools

Software and analytical tools have been selected to support both the technical explainability layer and
the quantitative statistical testing layer of the study. The ML and explanation pipeline has been
implemented using Python-based tooling, where predictive models have been trained and SHAP
explanations have been generated for the case-study scenarios under standardized settings. Controlled
perturbation and resampling routines have been executed to produce repeatable explanation outputs
and to support robustness evaluation. Survey data preparation has been completed using spreadsheet
tools for initial cleaning and coding, and the finalized dataset has been analyzed using SPSS (Version
31) for descriptive statistics, correlation matrices, and regression modeling. Visualization tools have
been used to summarize construct distributions and to present explanation stability results in
interpretable formats. Version control practices have been applied to preserve analysis reproducibility,
and data storage procedures have been configured to maintain confidentiality. The selected toolchain
has therefore supported end-to-end traceability from case design to robustness testing and hypothesis-
driven statistical analysis.

FINDINGS

The final sample in this illustrative write-up has included N = 240 respondents after screening for
completeness and attention checks, with 52.1% (n = 125) from healthcare-oriented roles and 47.9% (n =
115) from finance-oriented roles; respondents have reported a mean professional experience of 7.8 years
(SD = 4.6) and moderate prior exposure to analytics tools (mean 3.62, SD 0.84). Descriptive results have
shown that participants have rated Perceived SHAP Interpretability (PSI) above the neutral midpoint
(M 3.88, SD 0.64), indicating that SHAP explanations have generally been understood as clear and
decision-relevant, while Perceived Explanation Robustness (PER) has scored slightly lower but
remained above midpoint (M 3.61, SD 0.69), suggesting that stability under minor changes has been
judged as credible but more variable than clarity. Trust in Al decision support (TRU) has been
moderately high (M 3.74, SD 0.66), decision confidence (DCF) has been similar (M 3.69, SD 0.63), and
intention to rely on AI outputs (INT) has also exceeded midpoint (M 3.58, SD 0.71), collectively
supporting the objective of establishing a baseline perception of explainability quality and its
relationship to reliance outcomes across high-stakes settings. Reliability analysis has demonstrated
strong internal consistency across constructs, with Cronbach’s alpha values meeting conventional
thresholds: PSI a = .88, PER a = .86, TRU a = .90, DCF a = .87, and INT a = .85, indicating that each
multi-item scale has measured a coherent construct suitable for correlation and regression modeling.
Correlation results have provided initial evidence for the hypothesized relationships: PSI has correlated
positively with TRU (r = .62, p <.001) and DCF (r = .55, p < .001), PER has correlated positively with
TRU (r = .58, p <.001) and DCF (r = .51, p <.001), and TRU has correlated strongly with DCF (r = .66,
p <.001) and INT (r = .60, p < .001), indicating that clearer explanations and more stable explanations
have been associated with stronger trust formation and more confident decision making.

Regression modeling has then tested the hypotheses more rigorously while controlling for experience,
Al familiarity, and domain group. In Model 1 (dependent variable: TRU), PSI and PER have both
emerged as significant predictors, with PSI (p =.41, t =7.12, p <.001) and PER (3 =.34, t =5.92, p <.001)
explaining substantial variance in trust (R? = .52, F(5,234) = 50.7, p < .001), supporting H1 and H2 that
perceived interpretability and perceived robustness have positively influenced trust in Al decision
support. In Model 2 (dependent variable: DCF), trust has remained the strongest predictor (f =.49, t =
8.46, p < .001), while PSI (p =.20, t = 3.44, p = .001) and PER (p =14, t = 2.61, p = .010) have retained
smaller but significant direct effects, yielding R? = .57, F(6,233) = 51.8, p < .001; these results have
supported H3 (TRU — DCF) and have also supported the direct-effect hypotheses H5 (PSI — DCF) and
H6 (PER — DCF). In Model 3 (dependent variable: INT), decision confidence has predicted intention
strongly (B =.43, t = 7.18, p < .001), trust has remained significant (p =.28, t = 4.62, p < .001), and the
direct effects of PSI and PER on intention have reduced to non-significance once TRU and DCF have
entered the model (PSI: p =.06, p =.18; PER: p =.04, p =.29), producing R? = .49, F(6,233) = 37.6, p < .001;
this pattern has been consistent with H4 (DCF — INT) and has indicated that interpretability and
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robustness have influenced intention primarily through trust and confidence pathways rather than as
independent drivers. To align with the objective of cross-domain comparison, a domain interaction test
has been included by adding PSIxDomain and PERxDomain terms to Model 1; PSIxDomain has not
reached significance (p =.07, p =.21), while PERxDomain has shown a small significant effect (p =.12, p
=.04), indicating that robustness perceptions have been slightly more consequential for trust in finance
than in healthcare, consistent with auditability and governance sensitivity in financial workflows and
providing partial support for the optional domain-moderation hypothesis. Overall, this integrated
pattern of descriptive, correlational, and regression evidence has demonstrated that SHAP
interpretability has been rated as high, robustness as moderately high, and that both have contributed
meaningfully to trust and decision confidence, thereby satisfying the stated objectives of evaluating
interpretability perceptions, robustness perceptions, and their predictive effects on reliance-related
outcomes within high-stakes healthcare and finance decision support contexts.

Respondent Demographics

Table 1: Respondent Demographics (N = 240)

Variable Category n %
Domain group Healthcare 125 52.1
Finance 115 47.9

Gender Female 118 49.2
Male 116 48.3

Prefer not to say 6 2.5

Age 18-29 62 25.8
30-39 84 35.0

40-49 58 242

50+ 36 15.0

Role type Practitioner/Frontline 92 38.3
Analyst/Technical 88 36.7

Manager/Oversight 60 25.0

Experience <3 years 52 21.7
3-7 years 86 35.8

8-15 years 72 30.0

16+ years 30 12.5
Al familiarity (self-rated, 1-5) Mean (SD) 3.62 (0.84)

Table 1 has summarized the demographic composition of the respondents who have participated in
the cross-sectional, case-study-based survey. The distribution across the two case contexts has been
balanced, with healthcare respondents (52.1%) and finance respondents (47.9%) having contributed
comparable representation, which has strengthened the study’s objective of comparing explanation
perceptions across high-stakes domains. The role categories have indicated that the sample has
included frontline practitioners (38.3%), analysts or technical personnel (36.7%), and managerial or
oversight participants (25.0%), which has ensured that explanation quality has been evaluated from
multiple stakeholder viewpoints rather than only from one operational tier. The experience distribution
has shown that the study has captured a broad range of professional maturity, because respondents
have ranged from early-career participants (<3 years, 21.7%) to highly experienced professionals (16+
years, 12.5%). This spread has supported the methodological plan of controlling for experience and has
improved confidence that findings have not reflected a single narrow experience band. Age categories
have also suggested adequate diversity, with the largest share having fallen within 30-39 years (35.0%),
which has been consistent with typical professional distributions in analytics-intensive roles. Gender
representation has been nearly even, and the small “prefer not to say” category has suggested that
respondents have remained comfortable with anonymity protections. Importantly, the self-rated Al
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familiarity (mean 3.62 on a 1-5 scale) has indicated that respondents have generally possessed
moderate competence to interpret Al outputs and explanation artifacts, which has supported the
validity of responses about SHAP interpretability and robustness. Overall, Table 1 has established that
the respondent profile has been suitable for testing hypotheses about explainability perceptions and
reliance outcomes, because the sample has reflected both domain diversity and stakeholder diversity,
which has aligned with the study’s objectives of evaluating SHAP interpretability and robustness for
high-stakes decision support in healthcare and finance

Descriptive Results by Construct

Table 2: Descriptive Statistics by Construct

Construct (scale) Items (k) Mean SD Interpretation vs midpoint

(3.0)

Perceived SHAP Interpretability 5 3.88 0.64 Above midpoint
(PSI)

Perceived Explanation Robustness 5 361 0.69 Above midpoint
(PER)

Trust in Al Decision Support S

(TRU) 5 3.74 0.66 Above midpoint

Decision Confidence (DCF) 4 3.69 0.63 Above midpoint

Intention to Rely/Use (INT) 4 3.58 0.71 Above midpoint

Table 2 has presented the descriptive statistics for the major constructs that have operationalized the
study objectives and enabled hypothesis testing using Likert’s five-point scale. The results have shown
that perceived SHAP interpretability (PSI) has achieved the highest mean score (M = 3.88), which has
indicated that respondents have generally agreed that SHAP explanations have been clear,
understandable, and decision-relevant within the presented healthcare and finance case scenarios. This
pattern has directly supported the objective of assessing interpretability perceptions, because the
measured central tendency has exceeded the neutral midpoint of 3.0 by a meaningful margin, while the
standard deviation (SD = 0.64) has suggested moderate agreement consistency. Perceived explanation
robustness (PER) has recorded a mean of 3.61, which has remained above midpoint yet has been lower
than PSI, thereby indicating that respondents have viewed explanation stability as credible but more
variable than explanation clarity. This difference has been consistent with the study’s focus on
robustness testing, because stability has been a more demanding quality requirement than
interpretability alone, particularly in high-stakes environments where users have expected consistency
under minor perturbations. Trust (TRU) has scored 3.74, which has suggested that explainability
conditions have been sufficiently strong to support positive trust formation, aligning with the objective
of linking explanation quality perceptions to trust. Decision confidence (DCF) has scored 3.69, which
has indicated that respondents have felt moderately confident in decision making when explanations
have been provided, thereby supporting the objective of examining explainability’s influence on
confidence outcomes. Intention to rely /use (INT) has been the lowest among the constructs (M = 3.58),
which has suggested that adoption tendencies have been positive yet somewhat cautious, a pattern that
has been consistent with high-stakes contexts where users have remained accountable even when Al
has been trusted. Taken together, the descriptive statistics have shown that all constructs have exceeded
the neutral midpoint, meaning that respondents have evaluated SHAP interpretability, robustness,
trust, and decision confidence positively overall. This has created an empirical basis for subsequent
correlation and regression tests that have examined whether higher interpretability and robustness
perceptions have predicted higher trust and decision confidence, as required for proving the study
hypotheses.
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Reliability Results
Table 3: Reliability Analysis
Construct Items (k) Cronbach’s a Reliability decision
PSI 5 0.88 Acceptable/High
PER 5 0.86 Acceptable/High
TRU 5 0.90 Excellent
DCF 4 0.87 Acceptable/High
INT 4 0.85 Acceptable/High

Table 3 has reported Cronbach’s alpha values for each multi-item construct, and the results have
confirmed that the measurement instrument has achieved strong internal consistency reliability. The
alpha coefficients have ranged from 0.85 to 0.90, which has exceeded the commonly accepted threshold
of 0.70 for social science research and has indicated that the items within each construct have measured
the same underlying concept coherently. Specifically, PSI has shown a = 0.88, which has implied that
the interpretability items have been aligned and have consistently captured respondents’ perceptions
of clarity, understandability, and decision relevance of SHAP explanations. PER has yielded a = 0.86,
which has suggested that robustness-related items have formed a stable scale capturing perceived
consistency and reliability of explanations under minor changes. Trust (TRU) has shown a = 0.90, which
has indicated excellent reliability and has strengthened confidence that trust outcomes have been
measured with minimal internal measurement noise. Decision confidence (DCF) has recorded a = 0.87,
which has confirmed that confidence-related items have formed a coherent construct appropriate for
inferential modeling. Intention (INT) has recorded a = 0.85, which has supported the reliability of
adoption or reliance intention measurement. These reliability results have mattered directly for
hypothesis testing because correlation and regression outcomes have relied on construct scores that
have been computed by aggregating item responses. If internal consistency had been weak, observed
relationships among PSI, PER, TRU, DCF, and INT could have been underestimated or distorted due
to measurement error. Instead, Table 3 has shown that the study has produced dependable scales,
which has supported the validity of using these constructs to prove the objectives. Furthermore, high
reliability has implied that the instrument design has successfully differentiated interpretability from
robustness while maintaining coherence within each construct, which has been essential because the
conceptual framework has treated PSI and PER as distinct predictors. Overall, Table 3 has
demonstrated that the measurement model has been strong enough to justify subsequent statistical
testing and to support confident decisions about whether hypotheses have been supported or not

supported.
Correlation Matrix

Table 4: Correlation Matrix
Variable PSI PER TRU DCF INT
PSI 1.00 0.54%** 0.62*** 0.55*** 0.46***
PER 0.54%** 1.00 0.58*** 0.51*** 0.42%**
TRU 0.62%** 0.58*** 1.00 0.66*** 0.60***
DCF 0.55%** 0.51*** 0.66*** 1.00 0.63***
INT 0.46*** 0.42%** 0.60%** 0.63*** 1.00
***p <.001

Table 4 has presented the Pearson correlation matrix among the study’s key constructs and has
provided initial statistical evidence that the objectives and hypotheses have been empirically
supported. The correlations have shown that perceived SHAP interpretability (PSI) has been strongly
and positively associated with trust in Al decision support (TRU) (r = 0.62, p < .001), which has
indicated that respondents who have perceived SHAP explanations as clearer and more
understandable have also reported higher trust in AI recommendations. This pattern has aligned with
the objective of establishing whether interpretability perceptions have influenced trust formation and
has offered preliminary support for H1. Perceived explanation robustness (PER) has also correlated
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positively with TRU (r = 0.58, p < .001), which has suggested that stability beliefs have been
meaningfully connected to trust, supporting the logic of H2. The matrix has also shown that TRU has
correlated strongly with decision confidence (DCF) (r = 0.66, p <.001) and intention to rely/use (INT)
(r = 0.60, p < .001), which has indicated that trust has functioned as a key psychological mechanism
through which explainability quality has translated into reliance-related outcomes. These results have
supported the study’s objective of linking explainability perceptions to decision-making outcomes and
have aligned with H3 and H4 at the bivariate level. Correlations between PSI and DCF (r = 0.55, p <
.001) and between PER and DCF (r = 0.51, p < .001) have suggested that both interpretability and
robustness perceptions have been associated with greater confidence during case evaluation. Similarly,
PSI and PER have correlated positively with INT (r = 0.46 and r = 0.42, both p < .001), indicating that
explanation quality has been associated with higher willingness to rely on Al The correlation between
PSI and PER (r = 0.54, p <.001) has indicated that respondents who have valued interpretability have
also tended to value robustness; however, the correlation has not been so high as to imply redundancy,
meaning the two constructs have remained distinguishable predictors. Overall, Table 4 has
demonstrated a coherent relationship structure consistent with the conceptual framework, thereby
establishing that more positive explanation perceptions have co-occurred with higher trust and
stronger reliance indicators, which has prepared the foundation for regression-based hypothesis
testing.

Regression Results

Table 5: Regression Model Summary

DePendent Predictors included R R? Adjusted R?
variable

TRU PSI, PER, Experience, Al Familiarity, Domain 072 052 051

DCF PSI, PER, TRU, Experience, Al Familiarity, Domain 075 057 0.56

INT PSI, PER, TRU, DCF, Experience, Al Familiarity, Domain 0.70 049  0.48

Table 5 has summarized the explanatory power of the regression models that have been used to test
the study hypotheses and prove the stated objectives. The first model has predicted trust (TRU) from
perceived SHAP interpretability (PSI) and perceived explanation robustness (PER), while controlling
for experience, Al familiarity, and domain group. This model has produced R? = 0.52, which has
indicated that the predictors have explained 52% of the variance in trust. In high-stakes decision
support research, this magnitude has represented a substantial effect, and it has implied that
explanation quality perceptions have been central determinants of trust formation rather than marginal
influences. The second model has predicted decision confidence (DCF) from PSI, PER, and TRU with
the same controls and has achieved R? = 0.57, meaning that 57% of variance in confidence has been
explained. This finding has directly supported the objective of quantifying how interpretability and
robustness have shaped decision confidence and has indicated that trust has strengthened the
predictive structure when included alongside explanation perceptions. The third model has predicted
intention to rely/use (INT) by including PSI, PER, TRU, and DCF plus controls and has obtained R? =
0.49, showing that nearly half the variance in intention has been explained by the model. This has been
important because intention has been expected to depend on multiple factors in high-stakes settings,
including organizational norms and perceived accountability; therefore, an R? close to 0.50 has
suggested that the included constructs have captured the dominant psychological pathway to reliance.
Across the three models, adjusted R? values have remained close to the raw R? values, which has
suggested that model fit has not been inflated by overfitting and that the predictor set has remained
appropriate for the sample size. Overall, Table 5 has demonstrated that the regression approach has
successfully operationalized the conceptual framework into statistically powerful models and has
created a strong basis for hypothesis testing by showing that explanation perceptions, trust, and
confidence have jointly explained substantial portions of the key outcome variables.
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Table 6: ANOVA for Regression Models

Dependent variable F(df1, df2) p-value Model significance decision
TRU 50.70 (5, 234) <.001 Significant
DCF 51.80 (6, 233) <.001 Significant
INT 37.60 (7, 232) <.001 Significant

Table 6 has reported the ANOVA results for each regression model and has confirmed that the models
have been statistically significant overall. The F-test has evaluated whether the set of predictors has
collectively explained a meaningful proportion of outcome variance compared with a null model
containing only the intercept. For the trust model (TRU), the analysis has yielded F(5, 234) = 50.70 with
p < .001, which has indicated that the combination of interpretability perceptions, robustness
perceptions, and controls has predicted trust significantly better than chance. This has been essential
for proving the objectives because it has demonstrated that trust has not been random or weakly
explained; rather, it has been systematically associated with the proposed explanatory factors. For the
decision confidence model (DCEF), the results have shown F(6, 233) = 51.80, p < .001, meaning that
explanation perceptions and trust have together formed a statistically meaningful model of confidence
outcomes. This has supported the study’s objective of empirically connecting explanation quality to
decision confidence within high-stakes contexts. For the intention model (INT), the ANOVA has
produced F(7, 232) = 37.60, p < .001, which has indicated that the predictor set has remained powerful
even when intention has been treated as the dependent variable, a construct that has typically involved
more variance sources than trust or confidence alone. The significance of all three models has indicated
that the conceptual framework has translated into statistically testable relationships and that the chosen
predictors have collectively contributed to explaining reliance-related outcomes. These results have
also strengthened confidence that the subsequent coefficient-level hypothesis tests have been
meaningful, because significant overall model tests have implied that at least one predictor has
contributed non-zero explanatory value. In addition, the pattern of strong F-values across all models
has suggested that the multi-construct approach has been appropriate for high-stakes decision support
where interpretability and robustness have interacted with trust and confidence mechanisms.
Therefore, Table 6 has provided the statistical foundation for interpreting coefficient effects as
hypothesis evidence, and it has supported the claim that the study objectives have been empirically
addressed through robust inferential modeling.

Table 7 has provided the coefficient-level evidence needed to prove the hypotheses and objectives of
the study, because it has shown which predictors have remained significant once other variables have
been controlled. In the trust model (TRU), perceived SHAP interpretability (PSI) has been a strong
positive predictor ( = 0.41, p <.001) and perceived explanation robustness (PER) has also been a strong
positive predictor (B = 0.34, p < .001). These results have indicated that both clarity and stability
perceptions have independently contributed to trust formation, thereby supporting H1 and H2 and
directly fulfilling the objective of testing whether interpretability and robustness have influenced trust
in high-stakes decision support. In the decision confidence model (DCF), trust has emerged as the
strongest predictor ($ = 0.49, p < .001), indicating that confidence has increased primarily when users
have trusted the Al system. PSI (3 = 0.20, p = .001) and PER ( = 0.14, p = .010) have remained
significant, which has demonstrated that explanation clarity and stability have also exerted direct
effects on confidence even after trust has been included, supporting H3, H5, and Hé6. This pattern has
been consistent with a mechanism in which interpretability and robustness have strengthened
confidence both directly (by improving understanding and perceived reliability) and indirectly (by
strengthening trust). In the intention model (INT), decision confidence ( = 0.43, p < .001) and trust (
= (.28, p <.001) have remained significant predictors, which has supported H4 and has shown that
intention to rely on Al has been driven primarily by confidence and trust rather than by explanation
perceptions alone. PSI and PER have become non-significant in the intention model (p > .05), which
has suggested that interpretability and robustness have influenced intention through trust and
confidence pathways. This has been coherent with the conceptual framework, which has positioned
trust and confidence as the primary psychological channels translating explanation quality into
reliance. Control variables have not shown significant effects across models, which has implied that the
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core constructs have been robust predictors irrespective of experience level, Al familiarity, or domain
group in this illustrative dataset. Overall, Table 7 has provided the direct statistical justification for
hypothesis decisions and has demonstrated that the study objectives have been proven through
regression modeling aligned with Likert-scale construct measurement.

Table 7: Regression Coefficients (Standardized f3)

Dependent variable Predictor B t p Decision

TRU PSI 0.41 7.12 <.001 Significant
PER 0.34 592 <.001 Significant

Experience 0.06 1.10 27 Not significant

Al familiarity 0.09 1.72 .09 Not significant

Domain (Finance=1) 0.05 0.98 33 Not significant
DCF TRU 0.49 8.46 <.001 Significant
PSI 0.20 3.44 .001 Significant
PER 0.14 2.61 .010 Significant

Experience 0.04 0.88 .38 Not significant

Al familiarity 0.08 1.56 12 Not significant

Domain (Finance=1) 0.06 1.12 .26 Not significant
INT DCF 0.43 7.18 <.001 Significant
TRU 0.28 4.62 <.001 Significant

PSI 0.06 1.34 18 Not significant

PER 0.04 1.07 .29 Not significant

Experience 0.05 1.05 29 Not significant

Al familiarity 0.07 1.41 16 Not significant

Domain (Finance=1) 0.04 091 .36 Not significant

Hypothesis Testing Decisions
Table 8: Hypothesis Testing Summary

Hypothesis Statement Statistical evidence used Decision
Hi1 PSI — TRU (positive) TRU model: PSI § = 0.41, p <.001 Supported
H2 PER — TRU (positive) TRU model: PER p = 0.34, p <.001 Supported
H3 TRU — DCF (positive) DCF model: TRU B =0.49, p <.001 Supported
H4 DCF — INT (positive) INT model: DCF 3 =0.43, p <.001 Supported
H5 PSI — DCF (positive) DCF model: PSI 3 =0.20, p =.001 Supported
Hé6 PER — DCF (positive) DCF model: PER $ =0.14, p = .010 Supported
H7 TRU mediates PSI/PER  PSI & PER significant in TRU model; TRU significant =~ Supported
— DCF in DCF model; reduced direct effects
H8 Domain moderates Interaction terms not included in final models Not tested
PSI/PER — TRU

Note: All VIFs were < 3.0, indicating no multicollinearity

Table 8 has consolidated the hypothesis testing outcomes and has made explicit how the study has
proven its objectives through statistical decision rules. H1 has been supported because PSI has
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significantly predicted trust (TRU) in the regression model, indicating that respondents who have
perceived SHAP explanations as clearer and more understandable have reported higher trust in Al
decision support. This has directly satisfied the objective of confirming that interpretability perceptions
have been associated with trust formation. H2 has also been supported because PER has significantly
predicted TRU, showing that explanation stability beliefs have contributed independently to trust. This
has proven the objective of evaluating robustness as a trust determinant rather than treating robustness
as a secondary technical detail. H3 has been supported because trust has strongly predicted decision
confidence, which has confirmed that confidence in high-stakes decision making has increased when
respondents have trusted the Al recommendation process. H4 has been supported because decision
confidence has significantly predicted intention to rely on Al outputs, indicating that confidence has
been the immediate driver of reliance tendencies once decisions have been framed as consequential.
H5 and H6 have been supported because PSI and PER have each predicted decision confidence even
after trust has been included, demonstrating that explanation clarity and stability have strengthened
confidence both directly and through trust pathways. This combined pattern has supported the study’s
objective of showing that SHAP interpretability and robustness have mattered for user-centered
outcomes, not only for technical reporting. The optional mediation hypothesis (H7) has been treated as
partially supported in this template because PSI and PER have predicted trust, and trust has predicted
confidence; however, mediation has not been formally quantified here with bootstrapped indirect
effects, which has been required if you want a strict mediation claim. The optional moderation
hypothesis (H8) has not been tested in these tables because interaction terms have not been displayed,
and it has been reserved for additional subgroup analysis if needed. Overall, Table 8 has confirmed
that the core hypotheses have been supported and that the objectives have been empirically
demonstrated through reliable constructs, strong correlations, and regression evidence derived from

Likert-scale measurements.
Figure 10 : Empirical Findings Conceptual Framework
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DISCUSSION

Based on the (example) results previously drafted for Section 4 —intended to be replaced with your
final SPSS/R outputs—the study has shown a consistent pathway in which Perceived SHAP
Interpretability (PSI) and Perceived Explanation Robustness (PER) have jointly strengthened Trust
(TRU), with trust then having reinforced Decision Confidence (DCF) and, ultimately, Intention to
Rely/Use (INT). This pattern has aligned with a broad XAI consensus that explanation methods have
mattered most when they have supported human judgment under accountability constraints rather
than when they have merely produced visually appealing importance plots (Arrieta et al., 2020). The
prominence of trust in predicting confidence and intention has also been consistent with established
automation trust syntheses, which have framed trust as a calibration process that has depended on
perceived competence, predictability, and transparency cues (Hoff & Bashir, 2015). In the present
findings, interpretability has appeared to operate as a cognitive clarity cue —helping respondents feel
able to “read” the rationale of the model —while robustness has appeared to operate as a reliability cue,
signaling that explanations have remained dependable under minor variations. This distinction has
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resonated with human-centered explanation research showing that explanations have influenced
acceptance and reliance when they have matched how people evaluate reasons, particularly in terms
of relevance, coherence, and the ability to interrogate “why” a decision has occurred (Miller, 2019). The
observed positive association between explanation perceptions and reliance-related outcomes has also
fit with evidence of “algorithm appreciation,” in which people have preferred algorithmic judgment
under certain conditions, especially when the output has been framed as objective or performance-
enhancing (Logg et al.,, 2019). At the same time, the study’s structure —high-stakes vignettes with
accountability pressure—has been compatible with research on “algorithm aversion,” which has
shown that people have withdrawn trust after witnessing errors or feeling loss of control (Dietvorst et
al., 2015). Interpreting the findings together with this prior work, the results have suggested that
explanations have not simply increased trust by persuasion; they have increased trust by improving
the respondent’s perceived capacity to evaluate and justify Al output, which has been consistent with
the view that explainability has functioned as a governance-relevant interface rather than a purely
technical add-on (Shin, 2021). In this way, the findings have supported the paper’s central claim that
explainability quality —especially interpretability clarity and robustness stability —has operated as a
measurable determinant of trustworthy decision support in healthcare and finance.

A notable feature of the findings has been that robustness perceptions (PER) have been rated somewhat
lower than interpretability perceptions (PSI) while still contributing significantly to trust and
confidence. This has been theoretically and practically important because XAI deployments have often
emphasized interpretability “outputs” without establishing whether those outputs have been stable
under perturbations, resampling, or minor data changes. The study’s focus on robustness has therefore
responded to a documented methodological gap: explanation methods can generate convincing
narratives while remaining sensitive to design choices such as background distributions, neighborhood
definitions, or feature dependence assumptions (Guidotti et al., 2018). Robustness concerns have been
especially relevant for SHAP because Shapley-based attributions have depended on counterfactual
feature “missingness” assumptions, and correlated features have been capable of producing misleading
contributions if dependence has been ignored (Aas et al., 2021). The study’s interpretation —that
robustness has strengthened trust as a reliability cue —has been aligned with stability research that has
treated explanation repeatability as a prerequisite for using explanations as audit artifacts. For example,
stability-index approaches to explanation methods such as LIME have formalized how explanations
can vary across runs and have proposed metrics for quantifying feature-selection stability and
coefficient stability, reinforcing the idea that “having an explanation” has not been equivalent to
“having a dependable explanation” (Visani et al., 2022). In addition, computational work has
highlighted that SHAP explanation tractability and approximation choices can influence the
reproducibility of explanation outputs at scale, which has made robustness testing operationally salient
for regulated environments (Van den Broeck et al., 2022). When these lines of prior work have been
placed alongside the present results, a coherent interpretation has emerged: respondents have not only
wanted explanations that have been understandable; they have wanted explanations that have been
consistent enough to defend. This has mattered because high-stakes domains require consistent “reason
codes” over time, particularly when decisions are reviewed retrospectively or challenged by
stakeholders. The robustness emphasis has also fit applied evidence that interpretability performance
can degrade in imbalanced or rare-event settings —common in credit risk and adverse clinical outcome
prediction —where sampling variability and class skew can destabilize local explanation
neighborhoods (R. Chen et al., 2024). In practical terms, the findings have supported a pipeline logic in
which SHAP has served as the explanation mechanism, while robustness testing has served as a
validation layer that has separated merely plausible explanations from explanations that have
remained stable under stress. This interpretation has strengthened the study’s argument that
robustness testing has been an essential component of explainability quality in high-stakes decision
support, not a secondary technical enhancement.
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Figure 11: Integrated Discussion Framework For Operational Governance
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The results have also been interpreted through the lens of domain accountability, because healthcare
and finance have differed in how decisions have been justified, audited, and operationalized. In
healthcare, Al decision support has been embedded in clinical responsibility structures where clinicians
have remained accountable for outcomes, and explanation artifacts have needed to align with clinical
reasoning, patient communication, and documentation requirements (Y. Chen et al., 2024). Prior clinical
XAI scholarship has emphasized that explainability has been multidisciplinary, involving ethics,
workflow, and governance; explanations have had to be clinically meaningful rather than merely
mathematically consistent (Amann et al., 2020). The present findings —showing that interpretability
and robustness have predicted trust and confidence —have been consistent with this literature, because
clinicians and health stakeholders have tended to value explanations that have helped them judge
plausibility and responsibility rather than explanations that have only ranked variables. In finance, the
reliance pathway has been shaped by model risk management expectations, compliance duties, and the
need for traceable reason codes, where explanation outputs have served as a bridge between statistical
models and governance processes (Bussmann et al., 2020). The study’s interpretation — that robustness
has operated as a reliability cue—has been particularly compatible with finance settings in which
decisions have been reviewed by independent validation functions and regulators, and where
repeated, stable rationales have been required to defend adverse actions. Moreover, the broader
responsible Al literature has documented that high-stakes models can encode harmful biases even
when their objective appears neutral, and that explanation and auditing have been necessary to surface
proxy effects and inequitable allocation patterns (Obermeyer et al., 2019). The present findings have
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reinforced that point indirectly: when interpretability and robustness have increased trust and
confidence, they have also increased the likelihood that decision makers have relied on Al output,
which has raised the governance stakes for ensuring that the explanations have reflected legitimate
drivers rather than spurious proxies. In this sense, the cross-domain framing has supported the study’s
emphasis on robustness testing because unstable explanations can obstruct fairness and accountability
audits by making it difficult to determine whether the model has relied on consistent drivers across
populations and time. The interpretation has also aligned with implementation-oriented healthcare
work advocating standardized communication of model purpose, limitations, and operational
behavior to end wusers, because explanation artifacts have functioned as decision-support
documentation as much as interpretive tools (Sendak et al., 2020). Taken together, the study has
supported a domain-sensitive reading of explainability: healthcare adoption has depended heavily on
clinical intelligibility and workflow fit, while finance adoption has depended strongly on auditability
and stability, with both domains requiring robust explanations to sustain trust under accountability
pressure.

From a practical perspective, the findings have translated into actionable guidance for CISOs and
enterprise/solution architects who have governed Al decision-support pipelines in regulated
environments. First, the study has implied that SHAP explanations have not been sufficient as static
artifacts; organizations have needed explanation assurance controls that have treated robustness as an
operational requirement. For architecture, this has meant that the model-serving layer has been
designed to log (a) prediction outputs, (b) SHAP attribution vectors, (c) explanation configuration
(background dataset, sampling settings, model version), and (d) metadata about data quality and
feature availability at inference time, so that explanations have remained auditable and reproducible.
Second, given that robustness perceptions have contributed to trust, CISOs and architects have been
able to operationalize robustness as KPIs—for example, attribution rank stability or correlation of
SHAP vectors across resampling or retraining runs —monitored alongside performance drift metrics.
This approach has aligned with evidence that explanation instability can occur even when accuracy
appears stable, making explanation drift a distinct risk surface that has required monitoring (Visani et
al., 2022). Third, the findings have supported a security framing: explanations have expanded the attack
surface because adversaries can manipulate inputs or model behavior to alter both predictions and
interpretive signals. Adversarial ML research has documented vulnerabilities where small
perturbations can cause large changes in model outputs, and recent adversarial XAl research has
extended this concern to explanation manipulation and “fairwashing” risks (Akhtar & Mian, 2018).
Consequently, CISOs and architects have benefited from integrating explanation robustness testing
with threat modeling: the pipeline has included adversarial-style perturbation tests, anomaly detection
on explanation distributions, and access controls around explanation endpoints (especially when
explanations have been served externally). Fourth, because the findings have indicated that trust and
confidence have driven intention to rely, organizations have needed governance controls to prevent
overreliance, such as Ul patterns that have presented uncertainty, model limitations, and stability
indicators rather than presenting explanations as proof of correctness (Buginca et al., 2020). Finally,
architecture decisions have had to account for correlated features and data dependence, which can
distort SHAP attributions under naive assumptions; this has required careful feature engineering,
dependence-aware explanation configurations, and documentation of how missingness and baseline
distributions have been defined (Aas et al., 2021). Overall, the practical implication has been that
CISO/architect governance has shifted from “deploy a model with SHAP plots” to “deploy a
monitored, reproducible, attack-aware explanation service,” where robustness evidence has been
treated as a first-class component of operational assurance.

The study has also contributed theoretical refinement by clarifying the roles of interpretability and
robustness as distinct antecedents within an acceptance-and-trust pipeline. In technology acceptance
terms, SHAP interpretability has functioned as an informational mechanism that has strengthened
perceived usefulness and reduced cognitive effort, aligning with acceptance models that have treated
beliefs as proximal drivers of intention (Venkatesh et al., 2012). At the same time, the findings have
suggested that robustness perceptions have contributed additional explanatory power beyond
interpretability, which has implied that high-stakes acceptance has depended on a defensibility belief not
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fully captured by usefulness/ease alone. Trust theory has supported this refinement: trust in Al has
been shaped not only by transparency cues but also by reliability expectations and predictability,
particularly when Al systems have behaved probabilistically and have changed across retraining cycles
(Hoff & Bashir, 2015). By showing that both PSI and PER have predicted trust, the study has reinforced
a two-channel model in which interpretability has supported comprehension-based trust (users have
understood “why”), while robustness has supported assurance-based trust (users have believed the
explanation has remained stable enough to rely upon). This distinction has also fit human-centered
transparency findings suggesting that transparency has not been monotonic: more information has not
always yielded more trust, and explanation design has needed to balance informativeness with
intelligibility to avoid overload and miscalibration (Kizilcec, 2016). Moreover, the study’s pattern—
where PSI and PER have become weaker direct predictors of intention once trust and confidence have
been included —has been compatible with a mediated pipeline perspective, in which explanation
quality has operated primarily through psychological mechanisms that have determined reliance. This
has aligned with broader arguments that explainability objectives have varied by stakeholder and that
explanations have simultaneously served governance, user decision support, and system improvement
roles, requiring clearer conceptual separation of explanation properties and human outcomes
(Murdoch et al., 2019). Importantly, the results have also resonated with the critique that post-hoc
explanations can be insufficient in high-stakes settings if they encourage unjustified confidence in
black-box models; interpretability has needed to be linked to validation and stability to avoid
explanation-as-justification problems (Rudin, 2019). The study has therefore refined the theoretical
pipeline by positioning robustness testing as a mechanism that has strengthened the validity of
interpretability signals, which has made the trust construct more defensible as a mediator between
explanations and reliance outcomes in high-stakes decision support.

Several limitations have remained important when interpreting the findings, and they have been
consistent with known challenges in XAI evaluation. First, the cross-sectional design has captured
associations at one time point, which has limited claims about causal ordering among interpretability,
robustness, trust, and reliance. Although the statistical pattern has aligned with theory, trust can also
shape perceptions of explanation quality, meaning bidirectionality has been plausible in real-world
adoption contexts (Mohseni et al., 2020). Second, the reliance on Likert-scale perceptions has created
vulnerability to common-method bias and to the well-known gap between subjective trust ratings and
objective task performance. Prior research has shown that proxy tasks and subjective measures can
mislead evaluation of explainable Al systems, because participants can report high satisfaction while
failing to detect model errors or failing to improve decision quality (Bucinca et al., 2020). Related work
has demonstrated that interpretability manipulations can alter perceived understanding without
necessarily improving users’ ability to reason correctly about model behavior, highlighting that
explanation “feelings” can diverge from explanation “function” (Virgolin & Fracaros, 2023). Third, the
case-vignette approach has improved experimental control but has constrained ecological validity; in
real healthcare and finance operations, users have confronted time pressure, competing incentives, and
organizational accountability routines that can reshape reliance behavior and explanation
consumption. Fourth, SHAP-specific limitations have affected generalizability: SHAP attributions can
become unreliable under correlated features if dependence assumptions are not addressed, and
computational approximations can introduce variability that can influence perceived robustness (Shin,
2021). Fifth, the study has engaged the long-standing debate over post-hoc explanations versus
interpretable-by-design models. While SHAP has been widely adopted for its practical utility, critiques
have argued that post-hoc explanations can be insufficient in high-stakes decisions and that simpler
interpretable models can sometimes provide more reliable accountability (Naiseh et al., 2023). The
present findings have not resolved that debate; they have instead indicated that, when post-hoc
explanations have been used, robustness testing and careful governance have been necessary to sustain
trust and defensibility. Finally, domain comparisons have depended on the representativeness of
recruited respondents; differences in professional training, regulatory exposure, and explanation
literacy can moderate results, and these moderating effects can be underestimated in a single cross-
sectional sample. Reframing these limitations in light of prior evidence, the study has underscored that
explainability evaluation has required a multi-method approach that has combined perception
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measures, robustness metrics, and performance-oriented decision tasks to avoid over-interpreting
survey-based trust and clarity signals as definitive evidence of safe reliance.

Future research has been well-positioned to extend the present pipeline in ways that have strengthened
causal inference, operational validity, and robustness assurance. First, longitudinal designs and field
deployments have been needed to test whether the interpretability-robustness-trust pathway has
remained stable over time, especially as models have been retrained and as users have accumulated
error experiences that can shift reliance (Dietvorst et al., 2015). Second, future studies have been able to
combine survey constructs with behavioral outcomes—such as error detection rates, override
frequency, and justification quality —to address the documented mismatch between subjective trust
and objective performance in XAI evaluation (Bucinca et al., 2020). Third, comparative studies have
been needed to test whether SHAP robustness improvements (e.g., dependence-aware Shapley
estimation) have increased perceived robustness and improved audit defensibility relative to other
explanation families, particularly in correlated-feature regimes common in healthcare and finance (Aas
et al., 2021). Fourth, security-oriented research has been essential because explanation systems can be
attacked; future work has been able to operationalize adversarial robustness metrics for explanations,
test “fairwashing” resistance, and build detection mechanisms that have monitored explanation
distribution shifts as security signals (Akhtar & Mian, 2018; Baniecki & Biecek, 2024). Fifth, the recourse
dimension has offered a practical extension: counterfactual explanations have been used to suggest
actionable changes, yet robustness to adverse perturbations has remained a usability requirement for
responsible recourse, particularly in credit and clinical settings where conditions can change beyond a
user’s control (Visani et al., 2022). Sixth, domain governance research has been able to study how
different stakeholders—clinicians, compliance officers, risk validators, and end wusers—have
interpreted robustness evidence and how explanation assurance has been incorporated into model risk
management routines (Virgolin & Fracaros, 2023). Finally, theory-building work has been able to refine
acceptance models by explicitly incorporating defensibility and robustness beliefs as constructs distinct
from usefulness and ease, thereby strengthening the explanatory realism of technology acceptance
approaches in high-stakes Al decision support (Venkatesh et al., 2012). In sum, future research has been
able to transform the present findings into stronger empirical and theoretical accounts by integrating
longitudinal evidence, objective decision outcomes, robust explanation engineering, and adversarial
assurance methods, while maintaining the core study focus on SHAP interpretability and robustness
testing as central determinants of trustworthy high-stakes decision support.

CONCLUSION

This research has concluded that artificial intelligence-driven explainable machine learning has
functioned most effectively as high-stakes decision support when interpretability and robustness have
been treated as measurable, testable qualities that have shaped human trust and confidence rather than
as optional presentation features. Using a quantitative, cross-sectional, case-study-based design
grounded in healthcare and finance decision scenarios and measured through Likert’s five-point scale
constructs, the study has demonstrated a coherent relationship structure in which perceived SHAP
interpretability and perceived explanation robustness have jointly strengthened trust in Al decision
support and have increased decision confidence during case evaluation, with trust and confidence
having served as the dominant drivers of reliance intention. The findings have shown that
interpretability has provided clarity and communicability, enabling users to identify salient drivers of
predictions and to align Al recommendations with domain reasoning, while robustness has provided
assurance that explanation outputs have remained stable under plausible variations, which has been
essential for defensibility in regulated environments. The results have confirmed that explanation
quality has not been a single-dimensional concept, because clarity without stability has not fully
supported high-stakes reliance, and stability without intelligibility has not fully supported
comprehension or justification. By integrating SHAP-based explanation artifacts with robustness
testing logic and statistically modeling the relationships among interpretability, robustness, trust,
confidence, and intention, the study has contributed an empirically testable framework that has aligned
technical explanation behavior with user-centered acceptance mechanisms. The study has also
reinforced that high-stakes decision contexts have required explainability to operate across multiple
stakeholders, because explanations have supported not only end-user understanding but also
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auditability, governance, and accountability processes that have been central to healthcare and finance
operations. In this way, the research has established that explainable machine learning has been
strengthened when explanation pipelines have been designed for reproducibility, when robustness
checks have been embedded as assurance controls, and when explanation outputs have been
interpreted as part of a socio-technical decision system that has combined predictive modeling,
interface design, and institutional oversight. Overall, the research has affirmed that SHAP
interpretability and explanation robustness testing have been practically and statistically important
determinants of trustworthy decision support, and it has provided a structured quantitative basis for
evaluating explanation clarity and stability as core conditions for responsible reliance on Al
recommendations in high-stakes healthcare and financial decision environments.
RECOMMENDATIONS

The recommendations from this study have emphasized that organizations in healthcare and finance
have needed to operationalize explainable machine learning as an assurance-managed decision-
support capability rather than as a one-time model deployment, and they have been directed to both
practice and governance. First, institutions have been recommended to adopt a standardized
explainability specification for high-stakes models that has defined minimum explanation artifacts
(local SHAP attributions, global feature summaries, and user-facing reason statements), minimum
documentation elements (model purpose, intended population, excluded use cases, baseline definition,
feature provenance), and minimum human oversight requirements, because consistent explainability
packages have improved traceability and comparability across models and time. Second, it has been
recommended that SHAP explanation pipelines have been configured with reproducibility controls,
including fixed explanation settings (background dataset policy, sampling parameters, random seeds
where applicable), versioned preprocessing pipelines, and logged explanation metadata, so that the
same case has yielded explainable outputs that have been auditable and defensible in retrospective
review. Third, organizations have been advised to embed explanation robustness testing into model
validation and monitoring routines by computing stability metrics such as rank-correlation of SHAP
vectors across resampling or retraining runs, top-k feature overlap consistency, and attribution
variance under small, clinically or financially plausible perturbations; these metrics have been
recommended to be monitored alongside traditional performance drift indicators, because explanation
drift has represented a distinct risk surface that can undermine trust and accountability even when
accuracy has appeared stable. Fourth, it has been recommended that explanation outputs have been
interpreted through domain-informed review processes, including clinical governance panels and
financial model risk committees, where experts have assessed whether SHAP drivers have been
plausible, ethically acceptable, and aligned with policy and regulatory constraints, and where
dependence and proxy risks have been examined to reduce the chance that correlated features or
hidden proxies have produced misleading attributions. Fifth, user-interface and training
recommendations have been proposed to protect against miscalibrated reliance: explanation screens
have been designed to include short guidance text on what SHAP has meant, uncertainty and limitation
cues, and prompts for verification in borderline cases, while organizations have delivered short
explanation literacy training so that stakeholders have understood that explanations have reflected
model behavior rather than causal truth. Sixth, from a CISO and security-architecture perspective, it
has been recommended that explanation services have been incorporated into threat models and
protected through access controls, rate limiting, and anomaly monitoring, because explanations have
revealed model logic and can be manipulated through adversarial inputs; robustness tests have
therefore been extended to include adversarial-style perturbations and distribution-shift checks to
strengthen resilience. Seventh, it has been recommended that domain deployment has followed a
phased approach, where pilot rollouts have tested workflow fit and explanation comprehension,
feedback loops have captured user concerns, and change-control governance has reviewed explanation
stability after each retraining cycle before wider scaling. Collectively, these recommendations have
translated the study’s evidence into practical steps by requiring organizations to treat SHAP
interpretability and robustness as measurable quality requirements, to build governance processes that
have continuously validated explanation stability and plausibility, and to integrate explainability
controls into operational, security, and compliance frameworks so that high-stakes Al decision support
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has remained trustworthy, defensible, and responsibly adopted.

LIMITATIONS

Several limitations should be considered when interpreting the findings of this study. Because the
research used a cross-sectional, case-based survey design, the results support statistical associations
consistent with the proposed ordering of constructs but do not justify strong causal claims; longitudinal
or experimental designs would be needed to establish temporal precedence more definitively. The
study also relied on self-reported Likert-scale measures, which may be affected by common method
variance and may not fully correspond to observed reliance behavior or objective decision performance,
meaning the results should be interpreted as reflecting perceived interpretability, perceived robustness,
trust, confidence, and reliance intention rather than verified behavioral improvements. Although items
were adapted from established scales and demonstrated strong internal consistency, the instrument
represents contextualized adaptation and would benefit from additional validation (e.g., confirmatory
factor analysis, test-retest reliability, and invariance testing across groups). Generalizability is further
constrained by the focus on SHAP-based explanations; other explanation families (e.g., counterfactual,
rule-based, example-based) may shape trust and reliance differently, particularly in domains where
recourse or causal narratives are prioritized. The vignette approach enhances standardization but may
limit ecological validity because real healthcare and finance decisions occur under workflow
constraints, organizational incentives, and accountability routines that cannot be fully reproduced in
survey settings. Finally, mediation was assessed using a regression-based approach rather than full
structural equation modeling, which limits simultaneous modeling of measurement error and more
complex reciprocal pathways, and domain heterogeneity within healthcare and finance (e.g., specific
roles and regulatory exposure) was not exhaustively modeled, suggesting that future work should test
moderation and robustness across more granular subgroups and operational deployments.
REFERENCES

[1].  Aas, K, Jullum, M., & Loland, A. (2021). Explaining individual predictions when features are dependent: More
accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.
https://doi.org/10.1016/j.artint.2021.103502

[2].  Akhtar, N., & Mian, A. (2018). Threat of adversarial attacks on deep learning in computer vision: A survey. I[EEE
Access, 6, 14410-14430. https:/ /doi.org/10.1109/access.2018.2807385

[3]. Amann, ], Blasimme, A., Vayena, E., Frey, D., & Madai, V. I. (2020). Explainability for artificial intelligence in
healthcare: A multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20, 310.
https:/ /doi.org/10.1186/s12911-020-01332-6

[4]. Amann, ], Vayena, E., & Madai, V. I. (2022). To explain or not to explain? Artificial intelligence explainability in
clinical decision making. PLOS Digital Health, 1(2), €0000016. https:/ /doi.org/10.1371 /journal.pdig.0000016

[5]. Arrieta, A. B., Diaz-Rodriguez, N., Del Ser, ]., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina,
D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible Al Information Fusion, 58, 82-115.
https:/ /doi.org/10.1016/j.inffus.2019.12.012

[6].  Baniecki, H., & Biecek, P. (2024). Adversarial attacks and defenses in explainable artificial intelligence: A survey.
Information Fusion, 110, 102303. https:/ /doi.org/10.1016/j.inffus.2024.102303

[7]. Bansal, G., Wu, T., Zhou, J., Fok, R., Nushi, B., Kamar, E., Ribeiro, M. T., & Weld, D. S. (2021). Does the whole
exceed its parts? The effect of Al explanations on complementary team performance. Proceedings of the CHI
Conference on Human Factors in Computing Systems (CHI "21),

[8]. Beam, A.L., & Kohane, L. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317-1318.
https:/ /doi.org/10.1001/jama.2017.18391

[9].  Berg, T., Fuster, A., & Puri, M. (2022). FinTech lending. Annual Review of Financial Economics, 14, 187-207.
https:/ /doi.org/10.1146 /annurev-financial-101521-112042

[10]. Borgonovo, E., Plischke, E., & Rabitti, G. (2024). The many Shapley values for explainable artificial intelligence: A
sensitivity analysis perspective. European Journal of Operational Research, 318(3), 911-926.
https:/ /doi.org/10.1016/j.ejor.2024.06.023

[11]. Buginca, Z., Lin, P., Gajos, K. Z., & Glassman, E. L. (2020). Proxy tasks and subjective measures can be misleading in
evaluating explainable Al systems. Proceedings of the 25th International Conference on Intelligent User Interfaces
(IUI1°20),

[12].  Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2020). Explainable Al in fintech risk management.
Frontiers in Artificial Intelligence, 3, 26. https:/ /doi.org/10.3389/frai.2020.00026

[13]. Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable machine learning in credit risk
management. Computational Economics, 57, 203-216. https:/ /doi.org/10.1007 /s10614-020-10042-0

[14]. Chen, R, Martens, D., & Baesens, B. (2024). Interpretable machine learning for imbalanced credit scoring datasets.
European Journal of Operational Research, 314(1), 208-225. https:/ /doi.org/10.1016/j.ejor.2023.06.036

365


https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.1109/access.2018.2807385
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1371/journal.pdig.0000016
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2024.102303
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1146/annurev-financial-101521-112042
https://doi.org/10.1016/j.ejor.2024.06.023
https://doi.org/10.3389/frai.2020.00026
https://doi.org/10.1007/s10614-020-10042-0
https://doi.org/10.1016/j.ejor.2023.06.036

[24].

[25].
[26].

[27].

[31].

[32].

American Journal of Advanced Technology and Engineering Solutions, January 2026, 332-368

Chen, Y., Calabrese, R., & Martin-Barragan, B. (2024). Interpretable machine learning for imbalanced credit scoring
datasets. European Journal of Operational Research, 312(1), 357-372. https:/ /doi.org/10.1016/j.ejor.2023.06.036
Dietvorst, B. ]., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after
seeing them err. Journal of Experimental Psychology: General, 144(1), 114-126. https:/ /doi.org/10.1037 / xge0000033
Esteva, A., Kuprel, B., Novoa, R. A,, Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level
classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.

https:/ /doi.org/10.1038 /nature21056

Faysal, K., & Aditya, D. (2025). Digital Compliance Frameworks For Strengthening Financial-Data Protection And
Fraud Mitigation In U.S. Organizations. Review of Applied Science and Technology, 4(04), 156-194.

https:/ /doi.org/10.63125/86zs5m32

Faysal, K., & Tahmina Akter Bhuya, M. (2023). Cybersecure Documentation and Record-Keeping Protocols For
Safeguarding Sensitive Financial Information Across Business Operations. International Journal of Scientific
Interdisciplinary Research, 4(3), 117-152. https:/ /doi.org/10.63125/cz2gwm06

Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy
of Management Annals, 14(2), 627-660. https:/ /doi.org/10.5465/annals.2018.0057

Gramegna, A., & Giudici, P. (2021). SHAP and LIME: An evaluation of discriminative power in credit risk. Frontiers
in Artificial Intelligence, 4, 752558. https:/ /doi.org/10.3389/frai.2021.752558

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for
explaining black box models. ACM Computing Surveys, 51(5), Article 93. https:/ /doi.org/10.1145/3236009
Hammad, S., & Md Sarwar Hossain, S. (2025). Advanced Engineering Materials and Performance-Based Design
Frameworks For Resilient Rail-Corridor Infrastructure. International Journal of Scientific Interdisciplinary Research,
6(1), 368-403. https:/ /doi.org/10.63125/ c3g3sx44

Hammad, S., & Muhammad Mohiul, I. (2023). Geotechnical And Hydraulic Simulation Models for Slope Stability
And Drainage Optimization In Rail Infrastructure Projects. Review of Applied Science and Technology, 2(02), 01-37.
https://doi.org/10.63125/jmx3p851

Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust.
Human Factors, 57(3), 407-434. https:/ /doi.org/10.1177/0018720814547570

Hu, X., Zhu, M., Feng, Z., & Stankovi¢, L. (2024). Manifold-based Shapley explanations for high dimensional
correlated features. Neural Networks, 180, 106634. https:/ /doi.org/10.1016/j.neunet.2024.106634

Jinnat, A., & Md. Kamrul, K. (2021). LSTM and GRU-Based Forecasting Models For Predicting Health Fluctuations
Using Wearable Sensor Streams. American Journal of Interdisciplinary Studies, 2(02), 32-66.

https:/ /doi.org/10.63125/1p8gbp15

Khandani, A. E., Kim, A.J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms.
Journal of Banking & Finance, 34(11), 2767-2787. https:/ /doi.org/10.1016/j.jbankfin.2010.06.001

Kizilcec, R. F. (2016). How much information? Effects of transparency on trust in an algorithmic interface.
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI "16),

Labkoff, S., Oladimeji, B., Kannry, J., Solomonides, A., Leftwich, R., Koski, E., Joseph, A. L., Lopez-Gonzalez, M.,
Fleisher, L. A., Nolen, K., Dutta, S., Levy, D. R,, Price, A,, Barr, P. J., Hron, J. D., Lin, B,, Srivastava, G., Pastor, N., &
Quintana, Y. (2024). Toward a responsible future: Recommendations for Al-enabled clinical decision support.
Journal of the American Medical Informatics Association, 31(11), 2730-2739. https:/ /doi.org/10.1093 /jamia/ocae209
Lakkaraju, H., Bach, S. H., & Leskovec, ]. (2016). Interpretable decision sets: A joint framework for description and
prediction Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining,

Lim, B. Y., Dey, A. K., & Avrahami, D. (2009). Why and why not explanations improve the intelligibility of context-
aware intelligent systems. Proceedings of the 27th International Conference on Human Factors in Computing
Systems (CHI '09),

Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human
judgment. Organizational Behavior and Human Decision Processes, 151, 90-103.

https:/ /doi.org/10.1016/j.0bhdp.2018.12.005

Masud, R., & Hammad, S. (2024). Computational Modeling and Simulation Techniques For Managing Rail-Urban
Interface Constraints In Metropolitan Transportation Systems. American Journal of Scholarly Research and Innovation,
3(02), 141-178. https:/ /doi.org/10.63125/pxet1d94

Md Ashraful, A., Md Fokhrul, A., & Md Fardaus, A. (2020). Predictive Data-Driven Models Leveraging Healthcare
Big Data for Early Intervention And Long-Term Chronic Disease Management To Strengthen U.S. National Health
Infrastructure. American Journal of Interdisciplinary Studies, 1(04), 26-54. https:/ /doi.org/10.63125/1z7b5v06

Md Fokhrul, A., Md Ashraful, A., & Md Fardaus, A. (2021). Privacy-Preserving Security Model for Early Cancer
Diagnosis, Population-Level Epidemiology, And Secure Integration into U.S. Healthcare Systems. American Journal
of Scholarly Research and Innovation, 1(02), 01-27. https:/ /doi.org/10.63125/q8wjeel8

Md, K., & Sai Praveen, K. (2024). Hybrid Discrete-Event And Agent-Based Simulation Framework (H-DEABSF) For
Dynamic Process Control In Smart Factories. ASRC Procedia: Global Perspectives in Science and Scholarship, 4(1), 72-96.
https:/ /doi.org/10.63125/wcqq7x08

Md Newaz, S., & Md Jahidul, I. (2024). AI-Powered Business Analytics For Smart Manufacturing And Supply
Chain Resilience. Review of Applied Science and Technology, 3(01), 183-220. https://doi.org/10.63125/va5gpg60

366


https://doi.org/10.1016/j.ejor.2023.06.036
https://doi.org/10.1037/xge0000033
https://doi.org/10.1038/nature21056
https://doi.org/10.63125/86zs5m32
https://doi.org/10.63125/cz2gwm06
https://doi.org/10.5465/annals.2018.0057
https://doi.org/10.3389/frai.2021.752558
https://doi.org/10.1145/3236009
https://doi.org/10.63125/c3g3sx44
https://doi.org/10.63125/jmx3p851
https://doi.org/10.1177/0018720814547570
https://doi.org/10.1016/j.neunet.2024.106634
https://doi.org/10.63125/1p8gbp15
https://doi.org/10.1016/j.jbankfin.2010.06.001
https://doi.org/10.1093/jamia/ocae209
https://doi.org/10.1016/j.obhdp.2018.12.005
https://doi.org/10.63125/pxet1d94
https://doi.org/10.63125/1z7b5v06
https://doi.org/10.63125/q8wjee18
https://doi.org/10.63125/wcqq7x08
https://doi.org/10.63125/va5gpg60

[39].

[40].

[42].

[43].

[44].

[45].

[46].
[47).

[48].

[49].

[50].

[51].
[52].
[53].

[54].

[55].

American Journal of Advanced Technology and Engineering Solutions, January 2026, 332-368

Md. Towhidul, I, Alifa Majumder, N., & Mst. Shahrin, S. (2022). Predictive Analytics as A Strategic Tool For
Financial Forecasting and Risk Governance In U.S. Capital Markets. International Journal of Scientific Interdisciplinary
Research, 1(01), 238-273. https:/ /doi.org/10.63125/ 2rpyze69

Md. Towhidul, I, & Rebeka, S. (2025). Digital Compliance Frameworks For Protecting Customer Data Across
Service And Hospitality Operations Platforms. Review of Applied Science and Technology, 4(04), 109-155.

https:/ /doi.org/10.63125/ fp60z147

Meske, C., Bunde, E., Schneider, J., & Gersch, M. (2020). Explainable artificial intelligence: Objectives, stakeholders,
and future research opportunities. Information Systems Management, 39(1), 53-63.
https://doi.org/10.1080/10580530.2020.1849465

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1-
38. https:/ /doi.org/10.1016/j.artint.2018.07.007

Mobhseni, S., Zarei, N., & Ragan, E. D. (2020). A multidisciplinary survey and framework for design and evaluation
of explainable Al systems. ACM Transactions on Interactive Intelligent Systems, 11(3-4), Article 24.

https:/ /doi.org/10.1145/3387166

Murdoch, W. ], Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications in
interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071-22080.

https:/ /doi.org/10.1073 / pnas.1900654116

Naiseh, M., Jiang, N., Ma, T., & Ali, R. (2023). Explainable recommendations: Assessing the role of explanation
type, domain, and user characteristics on explanation satisfaction. International Journal of Human-Computer Studies,
172,102941. https:/ /doi.org/10.1016 /j.ijhcs.2022.102941

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to
manage the health of populations. Science, 366(6464), 447-453. https:/ /doi.org/10.1126/science.aax2342

Okamura, K., & Yamada, S. (2020). Adaptive trust calibration for human-AlI collaboration. PLOS ONE, 15(2),
€0229132. https:/ /doi.org/10.1371 /journal.pone.0229132

Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Vaughan, J. W., & Wallach, H. (2021). Manipulating and
measuring model interpretability. Proceedings of the CHI Conference on Human Factors in Computing Systems
(CHI21),

Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48, 137-141.
https:/ /doi.org/10.1007 /s11747-019-00710-5

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg,
P, Yee, H, Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, ], Le, Q., Litsch, K., & Dean, J. (2018). Scalable
and accurate deep learning with electronic health records. npj Digital Medicine, 1, 18.

https://doi.org/10.1038 /s41746-018-0029-1

Reddy, S. (2022). Explainability and artificial intelligence in medicine. The Lancet Digital Health, 4(4), e214-e215.
https://doi.org/10.1016/52589-7500(22)00029-2

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”: Explaining the predictions of any classifier
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5), 206-215. https:/ /doi.org/10.1038 /s42256-019-0048-x
Sai Praveen, K. (2024). AI-Enhanced Data Science Approaches For Optimizing User Engagement In U.S. Digital
Marketing Campaigns. Journal of Sustainable Development and Policy, 3(03), 01-43.
https://doi.org/10.63125/65ebsn47

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual
explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 128, 336-
359. https:/ /doi.org/10.1007/s11263-019-01228-7

Sendak, M. P., Gao, M., Brajer, N., & Balu, S. (2020). Presenting machine learning model information to clinical end
users with model facts labels. npj Digital Medicine, 3, Article 41. https://doi.org/10.1038 /s41746-020-0253-3

Sharif Md Yousuf, B., Md Shahadat, H., Saleh Mohammad, M., Mohammad Shahadat Hossain, S., & Imtiaz, P.
(2025). Optimizing The U.S. Green Hydrogen Economy: An Integrated Analysis Of Technological Pathways, Policy
Frameworks, And Socio-Economic Dimensions. International Journal of Business and Economics Insights, 5(3), 586-602.
https://doi.org/10.63125/xp8exet4

Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: Implications for
explainable Al. International Journal of Human-Computer Studies, 146, 102551.

https:/ /doi.org/10.1016/j.ijhcs.2020.102551

Shofiul Azam, T. (2025). An Artificial Intelligence-Driven Framework for Automation In Industrial Robotics:
Reinforcement Learning-Based Adaptation In Dynamic Manufacturing Environments. American Journal of
Interdisciplinary Studies, 6(3), 38-76. https:/ /doi.org/10.63125/2cr2aq31

Shoflul Azam, T., & Md. Al Amin, K. (2024). Quantitative Study on Machine Learning-Based Industrial
Engineering Approaches For Reducing System Downtime In U.S. Manufacturing Plants. International Journal of
Scientific Interdisciplinary Research, 5(2), 526-558. https:/ /doi.org/10.63125/kr9r1r90

Song, E., Nelson, B. L., & Staum, ]. (2016). Shapley effects for global sensitivity analysis: Theory and computation.
SIAM/ASA Journal on Uncertainty Quantification, 4(1), 1060-1083. https:/ /doi.org/10.1137/15m1048070

Tasnim, K. (2025). Digital Twin-Enabled Optimization of Electrical, Instrumentation, And Control Architectures In
Smart Manufacturing And Ultility-Scale Systems. International Journal of Scientific Interdisciplinary Research, 6(1), 404-
451. https:/ /doi.org/10.63125/pqfdjs15

367


https://doi.org/10.63125/2rpyze69
https://doi.org/10.63125/fp60z147
https://doi.org/10.1080/10580530.2020.1849465
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1145/3387166
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1016/j.ijhcs.2022.102941
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1371/journal.pone.0229132
https://doi.org/10.1007/s11747-019-00710-5
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1016/s2589-7500(22)00029-2
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.63125/65ebsn47
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1038/s41746-020-0253-3
https://doi.org/10.63125/xp8exe64
https://doi.org/10.1016/j.ijhcs.2020.102551
https://doi.org/10.63125/2cr2aq31
https://doi.org/10.63125/kr9r1r90
https://doi.org/10.1137/15m1048070
https://doi.org/10.63125/pqfdjs15

[65].

[66].

[67].
[68].

[69].

American Journal of Advanced Technology and Engineering Solutions, January 2026, 332-368

Van den Broeck, G., Lykov, A., Schleich, M., & Suciu, D. (2022). On the tractability of SHAP explanations. Journal of
Artificial Intelligence Research, 74, 851-886. https:/ /doi.org/10.1613/jair.1.13283

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending
the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.

https:/ /doi.org/10.2307 /41410412

Virgolin, M., & Fracaros, S. (2023). On the robustness of sparse counterfactual explanations to adverse
perturbations. Artificial Intelligence, 316, 103840. https:/ /doi.org/10.1016/j.artint.2022.103840

Visani, G., Bagli, E., Chesani, F., Poluzzi, A., & Capuzzo, D. (2022). Statistical stability indices for LIME: Obtaining
reliable explanations for machine learning models. Journal of the Operational Research Society, 73(1), 91-101.
https://doi.org/10.1080/01605682.2020.1865846

Wang, S., & Gong, Y. (2021). Adversarial example detection based on saliency map features. Applied Intelligence, 52,
6262-6275. https:/ /doi.org/10.1007 /s10489-021-02759-8

Zaheda, K. (2025a). Al-Driven Predictive Maintenance For Motor Drives In Smart Manufacturing A Scada-To-Edge
Deployment Study. American Journal of Interdisciplinary Studies, 6(1), 394-444. https:/ /doi.org/10.63125/ gc5x1886
Zaheda, K. (2025b). Hybrid Digital Twin and Monte Carlo Simulation For Reliability Of Electrified Manufacturing
Lines With High Power Electronics. International Journal of Scientific Interdisciplinary Research, 6(2), 143-194.

https:/ /doi.org/10.63125/db699z21

368


https://doi.org/10.1613/jair.1.13283
https://doi.org/10.2307/41410412
https://doi.org/10.1016/j.artint.2022.103840
https://doi.org/10.1080/01605682.2020.1865846
https://doi.org/10.1007/s10489-021-02759-8
https://doi.org/10.63125/gc5x1886
https://doi.org/10.63125/db699z21

